26
|
Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Burgess AW, Busam D, Zhao Q, Strausberg RL, Simpson AJ, Tomlinson IPM, Gibbs P, Sieber OM. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene 2013; 32:4675-82. [PMID: 23085758 PMCID: PMC3787794 DOI: 10.1038/onc.2012.486] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/20/2012] [Accepted: 09/04/2012] [Indexed: 01/05/2023]
Abstract
Biallelic protein-truncating mutations in the adenomatous polyposis coli (APC) gene are prevalent in sporadic colorectal cancer (CRC). Mutations may not be fully inactivating, instead producing WNT/β-catenin signalling levels 'just-right' for tumourigenesis. However, the spectrum of optimal APC genotypes accounting for both hits, and the influence of clinicopathological features on genotype selection remain undefined. We analysed 630 sporadic CRCs for APC mutations and loss of heterozygosity (LOH) using sequencing and single-nucleotide polymorphism microarrays, respectively. Truncating APC mutations and/or LOH were detected in 75% of CRCs. Most truncating mutations occurred within a mutation cluster region (MCR; codons 1282-1581) leaving 1-3 intact 20 amino-acid repeats (20AARs) and abolishing all Ser-Ala-Met-Pro (SAMP) repeats. Cancers commonly had one MCR mutation plus either LOH or another mutation 5' to the MCR. LOH was associated with mutations leaving 1 intact 20AAR. MCR mutations leaving 1 vs 2-3 intact 20AARs were associated with 5' mutations disrupting or leaving intact the armadillo-repeat domain, respectively. Cancers with three hits had an over-representation of mutations upstream of codon 184, in the alternatively spliced region of exon 9, and 3' to the MCR. Microsatellite unstable cancers showed hyper-mutation at MCR mono- and di-nucleotide repeats, leaving 2-3 intact 20AARs. Proximal and distal cancers exhibited different preferred APC genotypes, leaving a total of 2 or 3 and 0 to 2 intact 20AARs, respectively. In conclusion, APC genotypes in sporadic CRCs demonstrate 'fine-tuned' interdependence of hits by type and location, consistent with selection for particular residual levels of WNT/β-catenin signalling, with different 'optimal' thresholds for proximal and distal cancers.
Collapse
|
27
|
Church DN, Briggs SEW, Palles C, Domingo E, Kearsey SJ, Grimes JM, Gorman M, Martin L, Howarth KM, Hodgson SV, Kaur K, Taylor J, Tomlinson IPM. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 2013; 22:2820-8. [PMID: 23528559 PMCID: PMC3690967 DOI: 10.1093/hmg/ddt131] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/19/2013] [Indexed: 12/31/2022] Open
Abstract
Accurate duplication of DNA prior to cell division is essential to suppress mutagenesis and tumour development. The high fidelity of eukaryotic DNA replication is due to a combination of accurate incorporation of nucleotides into the nascent DNA strand by DNA polymerases, the recognition and removal of mispaired nucleotides (proofreading) by the exonuclease activity of DNA polymerases δ and ε, and post-replication surveillance and repair of newly synthesized DNA by the mismatch repair (MMR) apparatus. While the contribution of defective MMR to neoplasia is well recognized, evidence that faulty DNA polymerase activity is important in cancer development has been limited. We have recently shown that germline POLE and POLD1 exonuclease domain mutations (EDMs) predispose to colorectal cancer (CRC) and, in the latter case, to endometrial cancer (EC). Somatic POLE mutations also occur in 5-10% of sporadic CRCs and underlie a hypermutator, microsatellite-stable molecular phenotype. We hypothesized that sporadic ECs might also acquire somatic POLE and/or POLD1 mutations. Here, we have found that missense POLE EDMs with good evidence of pathogenic effects are present in 7% of a set of 173 endometrial cancers, although POLD1 EDMs are uncommon. The POLE mutations localized to highly conserved residues and were strongly predicted to affect proofreading. Consistent with this, POLE-mutant tumours were hypermutated, with a high frequency of base substitutions, and an especially large relative excess of G:C>T:A transversions. All POLE EDM tumours were microsatellite stable, suggesting that defects in either DNA proofreading or MMR provide alternative mechanisms to achieve genomic instability and tumourigenesis.
Collapse
|
28
|
Willis L, Graham TA, Alarcón T, Alison MR, Tomlinson IPM, Page KM. What can be learnt about disease progression in breast cancer dormancy from relapse data? PLoS One 2013; 8:e62320. [PMID: 23671591 PMCID: PMC3646031 DOI: 10.1371/journal.pone.0062320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023] Open
Abstract
Breast cancer patients have an anomalously high rate of relapse many years–up to 25 years–after apparently curative surgery removed the primary tumour. Disease progression during the intervening years between resection and relapse is poorly understood. There is evidence that the disease persists as dangerous, tiny metastases that remain at a growth restricted, clinically undetectable size until a transforming event restarts growth. This is the starting point for our study, where patients who have metastases that are all tiny and growth-restricted are said to have cancer dormancy. Can long-term follow-up relapse data from breast cancer patients be used to extract knowledge about the progression of the undetected disease? Here, we evaluate whether this is the case by introducing and analysing four simple mathematical models of cancer dormancy. These models extend the common assumption that a random transforming event, such as a mutation, can restart growth of a tiny, growth-restricted metastasis; thereafter, cancer dormancy progresses to detectable metastasis. We find that physiopathological details, such as the number of random transforming events that metastases must undergo to escape from growth restriction, cannot be extracted from relapse data. This result is unsurprising. However, the same analysis suggested a natural question that does have a surprising answer: why are interesting trends in long-term relapse data not more commonly observed? Further, our models indicate that (a) therapies which induce growth restriction among metastases but do not prevent increases in metastases' tumourigenicity may introduce a time post-surgery when more patients are prone to relapse; and (b), if a number of facts about disease progression are first established, how relapse data might be used to estimate clinically relevant variables, such as the likely numbers of undetected growth-restricted metastases. This work is a necessary, early step in building a quantitative mechanistic understanding of cancer dormancy.
Collapse
|
29
|
Beggs AD, Jones A, Shepherd N, Arnaout A, Finlayson C, Abulafi AM, Morton DG, Matthews GM, Hodgson SV, Tomlinson IPM. Loss of expression and promoter methylation of SLIT2 are associated with sessile serrated adenoma formation. PLoS Genet 2013; 9:e1003488. [PMID: 23671423 PMCID: PMC3649993 DOI: 10.1371/journal.pgen.1003488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/11/2013] [Indexed: 12/22/2022] Open
Abstract
Serrated adenomas form a distinct subtype of colorectal pre-malignant lesions that may progress to malignancy along a different molecular pathway than the conventional adenoma-carcinoma pathway. Previous studies have hypothesised that BRAF mutation and promoter hypermethylation plays a role, but the evidence for this is not robust. We aimed to carry out a whole-genome loss of heterozygosity analysis, followed by targeted promoter methylation and expression analysis to identify potential pathways in serrated adenomas. An initial panel of 9 sessile serrated adenomas (SSA) and one TSA were analysed using Illumina Goldengate HumanLinkage panel arrays to ascertain regions of loss of heterozygosity. This was verified via molecular inversion probe analysis and microsatellite analysis of a further 32 samples. Methylation analysis of genes of interest was carried out using methylation specific PCR (verified by pyrosequencing) and immunohistochemistry used to correlate loss of expression of genes of interest. All experiments used adenoma samples and normal tissue samples as control. SSA samples were found on whole-genome analysis to have consistent loss of heterozygosity at 4p15.1-4p15.31, which was not found in the sole TSA, adenomas, or normal tissues. Genes of interest in this region were PDCH7 and SLIT2, and combined MSP/IHC analysis of these genes revealed significant loss of SLIT2 expression associated with promoter methylation of SLIT2. Loss of expression of SLIT2 by promoter hypermethylation and loss of heterozygosity events is significantly associated with serrated adenoma development, and SLIT2 may represent a epimutated tumour suppressor gene according to the Knudson "two hit" hypothesis.
Collapse
|
30
|
Beggs AD, Jones A, El-Bahrawy M, El-Bahwary M, Abulafi M, Hodgson SV, Tomlinson IPM. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 2013; 229:697-704. [PMID: 23096130 PMCID: PMC3619233 DOI: 10.1002/path.4132] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/02/2012] [Accepted: 10/10/2012] [Indexed: 12/19/2022]
Abstract
Changes in DNA methylation, whether hypo- or hypermethylation, have been shown to be associated with the progression of colorectal cancer. Methylation changes substantially in the progression from normal mucosa to adenoma and to carcinoma. This phenomenon has not been studied extensively and studies have been restricted to individual CpG islands, rather than taking a whole-genome approach. We aimed to study genome-wide methylation changes in colorectal cancer. We obtained 10 fresh-frozen normal tissue-cancer sample pairs, and five fresh-frozen adenoma samples. These were run on the lllumina HumanMethylation27 whole-genome methylation analysis system. Differential methylation between normal tissue, adenoma and carcinoma was analysed using Bayesian regression modelling, gene set enrichment analysis (GSEA) and hierarchical clustering (HC). The highest-rated individual gene for differential methylation in carcinomas versus normal tissue and adenomas versus normal tissue was GRASP (padjusted = 1.59 × 10(-5) , BF = 12.62, padjusted = 1.68 × 10(-6) , BF = 14.53). The highest-rated gene when comparing carcinomas versus adenomas was ATM (padjusted = 2.0 × 10(-4) , BF = 10.17). Hierarchical clustering demonstrated poor clustering by the CIMP criteria for methylation. GSEA demonstrated methylation changes in the Netrin-DCC and SLIT-ROBO pathways. Widespread changes in DNA methylation are seen in the transition from adenoma to carcinoma. The finding that GRASP, which encodes the general receptor for phosphoinositide 1-associated scaffold protein, was differentially methylated in colorectal cancer is interesting. This may be a potential biomarker for colorectal cancer.
Collapse
|
31
|
Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R, Rodriguez-Justo M, Keshav S, Travis SPL, Graham TA, East J, Clark S, Tomlinson IPM. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 2013; 62:83-93. [PMID: 22287596 PMCID: PMC3551213 DOI: 10.1136/gutjnl-2011-301601] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2011] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN The authors generated mice that expressed temporally controlled, stabilised β-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS In the mouse, β-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.
Collapse
|
32
|
Mäkinen N, Heinonen HR, Moore S, Tomlinson IPM, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget 2012; 2:966-9. [PMID: 22182697 PMCID: PMC3282101 DOI: 10.18632/oncotarget.370] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Uterine leiomyomas, or fibroids, are extremely common tumors. Regardless of their benign nature, fibroids can cause considerable morbidity. Women with African ancestry have a threefold increased risk of developing uterine leiomyomas with a greater symptom severity when compared to white women. Recently, we demonstrated that exon 2 of the MED12 gene is somatically altered in up to 70 per cent of uterine leiomyomas in a series of Finnish (Caucasian) patients. To validate these results in other populations, we sequenced a set of 28 uterine leiomyomas for MED12 exon 2 mutations from 18 different Black African or Coloured South African patients. We observed 14 mutation positive lesions (50%). When corrected by tumor size, these results are very similar to those derived in the Finnish material. This study confirms a major role of MED12 in the genesis of leiomyomas, regardless of ethnicity.
Collapse
|
33
|
Tomlinson IPM, Houlston RS, Montgomery GW, Sieber OM, Dunlop MG. Investigation of the effects of DNA repair gene polymorphisms on the risk of colorectal cancer. Mutagenesis 2012; 27:219-23. [PMID: 22294770 DOI: 10.1093/mutage/ger070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite their prime candidate status, polymorphisms near genes involved in DNA repair or in other functions related to genome stability have been conspicuously under-represented in the significant associations reported from genome-wide association studies (GWAS) of cancer susceptibility. In this study, we assessed a set of single-nucleotide polymorphisms (SNPs) near 157 DNA repair genes in three colorectal cancer (CRC) GWAS. Although no individual SNP showed evidence of association, the set of SNPs as a whole was associated with colorectal cancer risk. When candidate SNPs were examined, our data did not support most of the previously reported associations with CRC susceptibility, an exception being an effect of the MLH1 promoter SNP -93G>A (rs1800734). Rare variants in CHEK2 (I157T and possibly del1100C) also appear to be associated with CRC risk. Overall, the absence to date of disease-associated DNA repair SNPs in cancer GWAS may be explained by a combination of the following: (i) many loci with individually very small effects on risk; (ii) rare alleles of moderate effect and (iii) subgroups of CRC, such as those with microsatellite instability, associated with specific variants. It will be particularly intriguing to determine whether any GWAS across cancer types identify DNA variants that predispose to cancers of more than one site.
Collapse
|
34
|
Enciso-Mora V, Hosking FJ, Sheridan E, Kinsey SE, Lightfoot T, Roman E, Irving JAE, Tomlinson IPM, Allan JM, Taylor M, Greaves M, Houlston RS. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia 2012; 26:2212-5. [PMID: 22456626 DOI: 10.1038/leu.2012.89] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Recent genome-wide association studies (GWAS) have provided the first unambiguous evidence that common genetic variation influences the risk of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), identifying risk single-nucleotide polymorphisms (SNPs) localizing to 7p12.2, 9p21.3, 10q21.2 and 14q11.2. The testing of SNPs individually for an association in GWA studies necessitates the imposition of a very stringent P-value to address the issue of multiple testing. While this reduces false positives, real associations may be missed and therefore any estimate of the total heritability will be negatively biased. Using GWAS data on 823 BCP-ALL cases by considering all typed SNPs simultaneously, we have calculated that 24% of the total variation in BCP-ALL risk is accounted for common genetic variation (95% confidence interval 6-42%). Our findings provide support for a polygenic basis for susceptibility to BCP-ALL and have wider implications for future searches for novel disease-causing risk variants.
Collapse
|
35
|
Jones AM, Beggs AD, Carvajal-Carmona L, Farrington S, Tenesa A, Walker M, Howarth K, Ballereau S, Hodgson SV, Zauber A, Bertagnolli M, Midgley R, Campbell H, Kerr D, Dunlop MG, Tomlinson IPM. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 2012; 61:248-54. [PMID: 21708826 PMCID: PMC3245900 DOI: 10.1136/gut.2011.239772] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 05/04/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Shorter telomeres have been associated with increased risk of malignancy, including colorectal cancer (CRC). Telomere length is heritable and may be an intermediate phenotype linked to genetic susceptibility to CRC. METHODS In a large sample, the study investigated whether candidate single nucleotide polymorphisms (SNP) in 'telomere biology' genes were associated with telomere length in leucocytes. SNP associated with an increased risk of CRC were searched for separately. RESULTS Carriers of the common allele at SNP rs10936599, near the telomerase RNA component (TERC) locus, had significantly longer telomeres. It was independently found that the same rs10936599 allele was associated with increased risk of both CRC and colorectal adenomas. Neither telomere length nor CRC risk was associated with variation near telomerase reverse transcriptase or other telomere biology genes. In silico analysis showed that SNP rs2293607 was strongly correlated with rs10936599, mapped within TERC transcripts, had a predicted effect on messenger RNA folding and lay at a reported transcription factor binding site. TERC mRNA were expressed, differing only at the alleles of rs2293607, in CRC cell line HCT116. The long-telomere/CRC-risk allele was associated with higher levels of TERC mRNA and the formation of longer telomeres. CONCLUSIONS Common genetic variation at TERC is associated with both longer telomeres and an increased risk of CRC, a potential mechanism being reduced levels of cell senescence or death. This finding is somewhat paradoxical, given retrospective studies reporting that CRC cases have shorter telomeres than controls. One possibility is that that association actually results from poorer survival in patients with longer telomeres.
Collapse
|
36
|
Spain SL, Carvajal-Carmona LG, Howarth KM, Jones AM, Su Z, Cazier JB, Williams J, Aaltonen LA, Pharoah P, Kerr DJ, Cheadle J, Li L, Casey G, Vodicka P, Sieber O, Lipton L, Gibbs P, Martin NG, Montgomery GW, Young J, Baird PN, Morreau H, van Wezel T, Ruiz-Ponte C, Fernandez-Rozadilla C, Carracedo A, Castells A, Castellvi-Bel S, Dunlop M, Houlston RS, Tomlinson IPM. Refinement of the associations between risk of colorectal cancer and polymorphisms on chromosomes 1q41 and 12q13.13. Hum Mol Genet 2011; 21:934-46. [PMID: 22076443 PMCID: PMC3263985 DOI: 10.1093/hmg/ddr523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In genome-wide association studies (GWASs) of colorectal cancer, we have identified two genomic regions in which pairs of tagging-single nucleotide polymorphisms (tagSNPs) are associated with disease; these comprise chromosomes 1q41 (rs6691170, rs6687758) and 12q13.13 (rs7163702, rs11169552). We investigated these regions further, aiming to determine whether they contain more than one independent association signal and/or to identify the SNPs most strongly associated with disease. Genotyping of additional sample sets at the original tagSNPs showed that, for both regions, the two tagSNPs were unlikely to identify a single haplotype on which the functional variation lay. Conversely, one of the pair of SNPs did not fully capture the association signal in each region. We therefore undertook more detailed analyses, using imputation, logistic regression, genealogical analysis using the GENECLUSTER program and haplotype analysis. In the 1q41 region, the SNP rs11118883 emerged as a strong candidate based on all these analyses, sufficient to account for the signals at both rs6691170 and rs6687758. rs11118883 lies within a region with strong evidence of transcriptional regulatory activity and has been associated with expression of PDGFRB mRNA. For 12q13.13, a complex situation was found: SNP rs7972465 showed stronger association than either rs11169552 or rs7136702, and GENECLUSTER found no good evidence for a two-SNP model. However, logistic regression and haplotype analyses supported a two-SNP model, in which a signal at the SNP rs706793 was added to that at rs11169552. Post-GWAS fine-mapping studies are challenging, but the use of multiple tools can assist in identifying candidate functional variants in at least some cases.
Collapse
|
37
|
Abulí A, Fernández-Rozadilla C, Giráldez MD, Muñoz J, Gonzalo V, Bessa X, Bujanda L, Reñé JM, Lanas A, García AM, Saló J, Argüello L, Vilella À, Carreño R, Jover R, Xicola RM, Llor X, Carvajal-Carmona L, Tomlinson IPM, Kerr DJ, Houlston RS, Piqué JM, Carracedo A, Castells A, Andreu M, Ruiz-Ponte C, Castellví-Bel S. A two-phase case-control study for colorectal cancer genetic susceptibility: candidate genes from chromosomal regions 9q22 and 3q22. Br J Cancer 2011; 105:870-5. [PMID: 21811255 PMCID: PMC3171011 DOI: 10.1038/bjc.2011.296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second cause of cancer-related death in the Western world. Much of the CRC genetic risk remains unidentified and may be attributable to a large number of common, low-penetrance genetic variants. Genetic linkage studies in CRC families have reported additional association with regions 9q22-31, 3q21-24, 7q31, 11q, 14q and 22q. There are several plausible candidate genes for CRC susceptibility within the aforementioned linkage regions including PTCH1, XPA and TGFBR1 in 9q22-31, and EPHB1 and MRAS in 3q21-q24. METHODS CRC cases and matched controls were from EPICOLON, a prospective, multicentre, nationwide Spanish initiative, composed of two independent phases. Phase 1 corresponded to 515 CRC cases and 515 controls, whereas phase 2 consisted of 901 CRC cases and 909 controls. Genotyping was performed for 172 single-nucleotide polymorphisms (SNPs) in 84 genes located within regions 9q22-31 and 3q21-q24. RESULTS None of the 172 SNPs analysed in our study could be formally associated with CRC risk. However, rs1444601 (TOPBP1) and rs13088006 (CDV3) in region 3q22 showed interesting results and may have an effect on CRC risk. CONCLUSIONS TOPBP1 and CDV3 genetic variants on region 3q22 may modulate CRC risk. Further validation and meta-analysis should be undertaken in larger CRC cohorts.
Collapse
|
38
|
Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED, Jerby L, Micaroni M, Chaneton B, Adam J, Hedley A, Kalna G, Tomlinson IPM, Pollard PJ, Watson DG, Deberardinis RJ, Shlomi T, Ruppin E, Gottlieb E. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 2011; 477:225-8. [PMID: 21849978 DOI: 10.1038/nature10363] [Citation(s) in RCA: 373] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/11/2011] [Indexed: 02/07/2023]
Abstract
Fumarate hydratase (FH) is an enzyme of the tricarboxylic acid cycle (TCA cycle) that catalyses the hydration of fumarate into malate. Germline mutations of FH are responsible for hereditary leiomyomatosis and renal-cell cancer (HLRCC). It has previously been demonstrated that the absence of FH leads to the accumulation of fumarate, which activates hypoxia-inducible factors (HIFs) at normal oxygen tensions. However, so far no mechanism that explains the ability of cells to survive without a functional TCA cycle has been provided. Here we use newly characterized genetically modified kidney mouse cells in which Fh1 has been deleted, and apply a newly developed computer model of the metabolism of these cells to predict and experimentally validate a linear metabolic pathway beginning with glutamine uptake and ending with bilirubin excretion from Fh1-deficient cells. This pathway, which involves the biosynthesis and degradation of haem, enables Fh1-deficient cells to use the accumulated TCA cycle metabolites and permits partial mitochondrial NADH production. We predicted and confirmed that targeting this pathway would render Fh1-deficient cells non-viable, while sparing wild-type Fh1-containing cells. This work goes beyond identifying a metabolic pathway that is induced in Fh1-deficient cells to demonstrate that inhibition of haem oxygenation is synthetically lethal when combined with Fh1 deficiency, providing a new potential target for treating HLRCC patients.
Collapse
|
39
|
Tomlinson IPM, Carvajal-Carmona LG, Dobbins SE, Tenesa A, Jones AM, Howarth K, Palles C, Broderick P, Jaeger EEM, Farrington S, Lewis A, Prendergast JGD, Pittman AM, Theodoratou E, Olver B, Walker M, Penegar S, Barclay E, Whiffin N, Martin L, Ballereau S, Lloyd A, Gorman M, Lubbe S, Howie B, Marchini J, Ruiz-Ponte C, Fernandez-Rozadilla C, Castells A, Carracedo A, Castellvi-Bel S, Duggan D, Conti D, Cazier JB, Campbell H, Sieber O, Lipton L, Gibbs P, Martin NG, Montgomery GW, Young J, Baird PN, Gallinger S, Newcomb P, Hopper J, Jenkins MA, Aaltonen LA, Kerr DJ, Cheadle J, Pharoah P, Casey G, Houlston RS, Dunlop MG. Multiple common susceptibility variants near BMP pathway loci GREM1, BMP4, and BMP2 explain part of the missing heritability of colorectal cancer. PLoS Genet 2011; 7:e1002105. [PMID: 21655089 PMCID: PMC3107194 DOI: 10.1371/journal.pgen.1002105] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 04/08/2011] [Indexed: 02/02/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.
Collapse
|
40
|
Sakthianandeswaren A, Christie M, D'Andreti C, Tsui C, Jorissen RN, Li S, Fleming NI, Gibbs P, Lipton L, Malaterre J, Ramsay RG, Phesse TJ, Ernst M, Jeffery RE, Poulsom R, Leedham SJ, Segditsas S, Tomlinson IPM, Bernhard OK, Simpson RJ, Walker F, Faux MC, Church N, Catimel B, Flanagan DJ, Vincan E, Sieber OM. PHLDA1 Expression Marks the Putative Epithelial Stem Cells and Contributes to Intestinal Tumorigenesis. Cancer Res 2011; 71:3709-19. [DOI: 10.1158/0008-5472.can-10-2342] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Lee AJX, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J, Szallasi Z, Tomlinson IPM, Howell M, Kschischo M, Swanton C. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 2011; 71:1858-70. [PMID: 21363922 DOI: 10.1158/0008-5472.can-10-3604] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aneuploidy is associated with poor prognosis in solid tumors. Spontaneous chromosome missegregation events in aneuploid cells promote chromosomal instability (CIN) that may contribute to the acquisition of multidrug resistance in vitro and heighten risk for tumor relapse in animal models. Identification of distinct therapeutic agents that target tumor karyotypic complexity has important clinical implications. To identify distinct therapeutic approaches to specifically limit the growth of CIN tumors, we focused on a panel of colorectal cancer (CRC) cell lines, previously classified as either chromosomally unstable (CIN(+)) or diploid/near-diploid (CIN(-)), and treated them individually with a library of kinase inhibitors targeting components of signal transduction, cell cycle, and transmembrane receptor signaling pathways. CIN(+) cell lines displayed significant intrinsic multidrug resistance compared with CIN(-) cancer cell lines, and this seemed to be independent of somatic mutation status and proliferation rate. Confirming the association of CIN rather than ploidy status with multidrug resistance, tetraploid isogenic cells that had arisen from diploid cell lines displayed lower drug sensitivity than their diploid parental cells only with increasing chromosomal heterogeneity and isogenic cell line models of CIN(+) displayed multidrug resistance relative to their CIN(-) parental cancer cell line derivatives. In a meta-analysis of CRC outcome following cytotoxic treatment, CIN(+) predicted worse progression-free or disease-free survival relative to patients with CIN(-) disease. Our results suggest that stratifying tumor responses according to CIN status should be considered within the context of clinical trials to minimize the confounding effects of tumor CIN status on drug sensitivity.
Collapse
|
42
|
Niittymäki I, Tuupanen S, Li Y, Järvinen H, Mecklin JP, Tomlinson IPM, Houlston RS, Karhu A, Aaltonen LA. Systematic search for enhancer elements and somatic allelic imbalance at seven low-penetrance colorectal cancer predisposition loci. BMC MEDICAL GENETICS 2011; 12:23. [PMID: 21314996 PMCID: PMC3045878 DOI: 10.1186/1471-2350-12-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 02/14/2011] [Indexed: 01/20/2023]
Abstract
BACKGROUND Common single-nucleotide polymorphisms (SNPs) in ten chromosomal loci have been shown to predispose to colorectal cancer (CRC) in genome-wide association studies. A plausible biological mechanism of CRC susceptibility associated with genetic variation has so far only been proposed for three loci, each pointing to variants that affect gene expression through distant regulatory elements. In this study, we aimed to gain insight into the molecular basis of seven low-penetrance CRC loci tagged by rs4779584 at 15q13, rs10795668 at 10p14, rs3802842 at 11q23, rs4444235 at 14q22, rs9929218 at 16q22, rs10411210 at 19q13, and rs961253 at 20p12. METHODS Possible somatic gain of the risk allele or loss of the protective allele was studied by analyzing allelic imbalance in tumour and corresponding normal tissue samples of heterozygous patients. Functional variants were searched from in silico predicted enhancer elements locating inside the CRC-associating linkage-disequilibrium regions. RESULTS No allelic imbalance targeting the SNPs was observed at any of the seven loci. Altogether, 12 SNPs that were predicted to disrupt potential transcription factor binding sequences were genotyped in the same population-based case-control series as the seven tagging SNPs originally. None showed association with CRC. CONCLUSIONS The results of the allelic imbalance analysis suggest that the seven CRC risk variants are not somatically selected for in the neoplastic progression. The bioinformatic approach was unable to pinpoint cancer-causing variants at any of the seven loci. While it is possible that many of the predisposition loci for CRC are involved in control of gene expression by targeting transcription factor binding sites, also other possibilities, such as regulatory RNAs, should be considered.
Collapse
|
43
|
Tie J, Lipton L, Desai J, Gibbs P, Jorissen RN, Christie M, Drummond KJ, Thomson BNJ, Usatoff V, Evans PM, Pick AW, Knight S, Carne PWG, Berry R, Polglase A, McMurrick P, Zhao Q, Busam D, Strausberg RL, Domingo E, Tomlinson IPM, Midgley R, Kerr D, Sieber OM. KRAS mutation is associated with lung metastasis in patients with curatively resected colorectal cancer. Clin Cancer Res 2011; 17:1122-30. [PMID: 21239505 DOI: 10.1158/1078-0432.ccr-10-1720] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogene mutations contribute to colorectal cancer development. We searched for differences in oncogene mutation profiles between colorectal cancer metastases from different sites and evaluated these as markers for site of relapse. EXPERIMENTAL DESIGN One hundred colorectal cancer metastases were screened for mutations in 19 oncogenes, and further 61 metastases and 87 matched primary cancers were analyzed for genes with identified mutations. Mutation prevalence was compared between (a) metastases from liver (n = 65), lung (n = 50), and brain (n = 46), (b) metastases and matched primary cancers, and (c) metastases and an independent cohort of primary cancers (n = 604). Mutations differing between metastasis sites were evaluated as markers for site of relapse in 859 patients from the VICTOR trial. RESULTS In colorectal cancer metastases, mutations were detected in 4 of 19 oncogenes: BRAF (3.1%), KRAS (48.4%), NRAS (6.2%), and PIK3CA (16.1%). KRAS mutation prevalence was significantly higher in lung (62.0%) and brain (56.5%) than in liver metastases (32.3%; P = 0.003). Mutation status was highly concordant between primary cancer and metastasis from the same individual. Compared with independent primary cancers, KRAS mutations were more common in lung and brain metastases (P < 0.005), but similar in liver metastases. Correspondingly, KRAS mutation was associated with lung relapse (HR = 2.1; 95% CI, 1.2 to 3.5, P = 0.007) but not liver relapse in patients from the VICTOR trial. CONCLUSIONS KRAS mutation seems to be associated with metastasis in specific sites, lung and brain, in colorectal cancer patients. Our data highlight the potential of somatic mutations for informing surveillance strategies.
Collapse
|
44
|
Venkatachalam R, Ligtenberg MJL, Hoogerbrugge N, Schackert HK, Görgens H, Hahn MM, Kamping EJ, Vreede L, Hoenselaar E, van der Looij E, Goossens M, Churchman M, Carvajal-Carmona L, Tomlinson IPM, de Bruijn DRH, Van Kessel AG, Kuiper RP. Germline epigenetic silencing of the tumor suppressor gene PTPRJ in early-onset familial colorectal cancer. Gastroenterology 2010; 139:2221-4. [PMID: 21036128 DOI: 10.1053/j.gastro.2010.08.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 01/05/2023]
|
45
|
Elliott KS, Zeggini E, McCarthy MI, Gudmundsson J, Sulem P, Stacey SN, Thorlacius S, Amundadottir L, Grönberg H, Xu J, Gaborieau V, Eeles RA, Neal DE, Donovan JL, Hamdy FC, Muir K, Hwang SJ, Spitz MR, Zanke B, Carvajal-Carmona L, Brown KM, Hayward NK, Macgregor S, Tomlinson IPM, Lemire M, Amos CI, Murabito JM, Isaacs WB, Easton DF, Brennan P, Barkardottir RB, Gudbjartsson DF, Rafnar T, Hunter DJ, Chanock SJ, Stefansson K, Ioannidis JPA. Evaluation of association of HNF1B variants with diverse cancers: collaborative analysis of data from 19 genome-wide association studies. PLoS One 2010; 5:e10858. [PMID: 20526366 PMCID: PMC2878330 DOI: 10.1371/journal.pone.0010858] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/28/2010] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies have found type 2 diabetes-associated variants in the HNF1B gene to exhibit reciprocal associations with prostate cancer risk. We aimed to identify whether these variants may have an effect on cancer risk in general versus a specific effect on prostate cancer only. METHODOLOGY/PRINCIPAL FINDINGS In a collaborative analysis, we collected data from GWAS of cancer phenotypes for the frequently reported variants of HNF1B, rs4430796 and rs7501939, which are in linkage disequilibrium (r(2) = 0.76, HapMap CEU). Overall, the analysis included 16 datasets on rs4430796 with 19,640 cancer cases and 21,929 controls; and 21 datasets on rs7501939 with 26,923 cases and 49,085 controls. Malignancies other than prostate cancer included colorectal, breast, lung and pancreatic cancers, and melanoma. Meta-analysis showed large between-dataset heterogeneity that was driven by different effects in prostate cancer and other cancers. The per-T2D-risk-allele odds ratios (95% confidence intervals) for rs4430796 were 0.79 (0.76, 0.83)] per G allele for prostate cancer (p<10(-15) for both); and 1.03 (0.99, 1.07) for all other cancers. Similarly for rs7501939 the per-T2D-risk-allele odds ratios (95% confidence intervals) were 0.80 (0.77, 0.83) per T allele for prostate cancer (p<10(-15) for both); and 1.00 (0.97, 1.04) for all other cancers. No malignancy other than prostate cancer had a nominally statistically significant association. CONCLUSIONS/SIGNIFICANCE The examined HNF1B variants have a highly specific effect on prostate cancer risk with no apparent association with any of the other studied cancer types.
Collapse
|
46
|
Willis L, Alarcón T, Elia G, Jones JL, Wright NA, Tomlinson IPM, Graham TA, Page KM. Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res 2010; 70:4310-7. [PMID: 20501854 DOI: 10.1158/0008-5472.can-09-3144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Late relapse of breast cancer can occur more than 25 years after primary diagnosis. During the intervening years between initial treatment and relapse, occult cancers are maintained in an apparent state of dormancy that is poorly understood. In this study, we applied a probabilistic mathematical model to long-term follow-up studies of postresection patients to investigate the factors involved in mediating breast cancer dormancy. Our results suggest that long-term dormancy is maintained most often by just one growth-restricted dangerous micrometastasis. Analysis of the empirical data by Approximate Bayesian Computation indicated that patients in dormancy have between 1 and 5 micrometastases at 10 years postresection, when they escape growth restriction with a half-life of <69 years and are >0.4 mm in diameter. Before resection, primary tumors seed at most an average of 6 dangerous micrometastases that escape from growth restriction with a half-life of at least 12 years. Our findings suggest that effective preventive treatments will need to eliminate these small numbers of micrometastases, which may be preangiogenic and nonvascularized until they switch to growth due to one oncogenic mutation or tumor suppressor gene inactivation. In summary, breast cancer dormancy seems to be maintained by small numbers of sizeable micrometastases that escape from growth restriction with a half-life exceeding 12 years.
Collapse
|
47
|
Niittymäki I, Kaasinen E, Tuupanen S, Karhu A, Järvinen H, Mecklin JP, Tomlinson IPM, Di Bernardo MC, Houlston RS, Aaltonen LA. Low-penetrance susceptibility variants in familial colorectal cancer. Cancer Epidemiol Biomarkers Prev 2010; 19:1478-83. [PMID: 20501757 DOI: 10.1158/1055-9965.epi-09-1320] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genomewide association studies have identified 10 low-penetrance loci that confer modestly increased risk for colorectal cancer (CRC). Although they underlie a significant proportion of CRC in the general population, their impact on the familial risk for CRC has yet to be formally enumerated. The aim of this study was to examine the combined contribution of the 10 variants, rs6983267, rs4779584, rs4939827, rs16892766, rs10795668, rs3802842, rs4444235, rs9929218, rs10411210, and rs961253, on familial CRC. METHODS The population-based series of CRC samples included in this study consisted of 97 familial cases and 691 sporadic cases. Genotypes in the 10 loci and clinical data, including family history of cancer verified from the Finnish Cancer Registry, were available. The overall number of risk alleles (0-20) was determined, and its association with familial CRC was analyzed. Excess familial risk was estimated using cancer incidence data from the first-degree relatives of the cases. RESULTS A linear association between the number of risk alleles and familial CRC was observed (P = 0.006). With each risk-allele addition, the odds of having an affected first-degree relative increased by 1.16 (95% confidence interval, 1.04-1.30). The 10 low-penetrance loci collectively explain approximately 9% of the variance in familial risk for CRC. CONCLUSIONS This study provides evidence to support the previous indirect estimations that these low-penetrance variants account for a relatively small proportion of the familial aggregation of CRC. IMPACT Our results emphasize the need to characterize the remaining molecular basis of familial CRC, which should eventually yield in individualized targeting of preventive interventions.
Collapse
|
48
|
Elsaba TMA, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IPM, Ilyas M. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 2010; 5:e10714. [PMID: 20502714 PMCID: PMC2873293 DOI: 10.1371/journal.pone.0010714] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/27/2010] [Indexed: 01/28/2023] Open
Abstract
CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133-expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause "off-target" effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133- populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133- populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133- population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133- population of SW480. Prolonged culture of a pure CD133- population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features.
Collapse
|
49
|
Ahmed MAH, Jackson D, Seth R, Robins A, Lobo DN, Tomlinson IPM, Ilyas M. CD24 is upregulated in inflammatory bowel disease and stimulates cell motility and colony formation. Inflamm Bowel Dis 2010; 16:795-803. [PMID: 19998456 DOI: 10.1002/ibd.21134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND We investigated whether CD24 (reportedly a stem cell marker and adhesion molecule) was expressed in regenerative mucosa in inflammatory bowel disease (IBD) and whether it could be functionally relevant. METHODS CD24 expression was examined in 10 cases of IBD and the relationship of CD24 with Wnt signaling was tested using dominant negative (DN)-TCF4 expression. For functional evaluation, CD24 was 1) cloned and forcibly expressed in HCT116 (which expresses very low levels of CD24) and 2) knocked-down by RNA interference in HT29 (which expresses high levels of CD24). The effect of altered CD24 expression on proliferation/apoptosis, staurosporine-induced apoptosis, colony formation in soft agar, migration, and invasion was examined. RESULTS CD24 was not expressed in normal tissue, while 10/10 cases of IBD showed CD24 upregulation. Inhibition of Wnt signaling with DN-TCF4 caused CD24 downregulation. Forced expression of CD24 did not influence cell proliferation, apoptosis, or staurosporine-induced apoptosis but it did significantly enhance colony forming efficiency (P < 0.01). Furthermore, there was increased transwell migration (P < 0.001) and invasion (P < 0.03) and there was increased cell migration in wounding assays. Conversely, knockdown of CD24 reduced transwell migration (P < 0.01) and invasion (P < 0.01) and reduced cell motility in wounding assays. CD24 knockdown did not influence proliferation, apoptosis resistance, or staurosporine-induced apoptosis. CONCLUSIONS This is the first study to report upregulation of CD24 in regenerating tissue in IBD. This may be regulated by Wnt signaling and can confer enhanced colony forming ability and enhanced cell motility-features that may be important in tissue healing in the colon.
Collapse
|
50
|
Thirlwell C, Will OCC, Domingo E, Graham TA, McDonald SAC, Oukrif D, Jeffrey R, Gorman M, Rodriguez-Justo M, Chin-Aleong J, Clark SK, Novelli MR, Jankowski JA, Wright NA, Tomlinson IPM, Leedham SJ. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 2010; 138:1441-54, 1454.e1-7. [PMID: 20102718 DOI: 10.1053/j.gastro.2010.01.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 11/24/2009] [Accepted: 01/07/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS According to the somatic mutation theory, monoclonal colorectal lesions arise from sequential mutations in the progeny of a single stem cell. However, studies in a sex chromosome mixoploid mosaic (XO/XY) patient indicated that colorectal adenomas were polyclonal. We assessed adenoma clonality on an individual crypt basis and completed a genetic dependency analysis in carcinomas-in-adenomas to assess mutation order and timing. METHODS Polyp samples were analyzed from the XO/XY individual, patients with familial adenomatous polyposis and attenuated familial adenomatous polyposis, patients with small sporadic adenomas, and patients with sporadic carcinoma-in-adenomas. Clonality was analyzed using X/Y chromosome fluorescence in situ hybridization, analysis of 5q loss of heterozygosity in XO/XY tissue, and sequencing of adenomatous polyposis coli. Individual crypts and different phenotypic areas of carcinoma-in-adenoma lesions were analyzed for mutations in adenomatous polyposis coli, p53, and K-RAS; loss of heterozygosity at 5q, 17p, and 18q; and aneuploidy. Phylogenetic trees were constructed. RESULTS All familial adenomatous polyposis-associated adenomas and some sporadic lesions had polyclonal genetic defects. Some independent clones appeared to be maintained in advanced adenomas. No clear obligate order of genetic events was established. Top-down growth of dysplastic tissue into neighboring crypts was a possible mechanism of clonal competition. CONCLUSIONS Human colorectal microadenomas are polyclonal and may arise from a combination of host genetic features, mucosal exposures, and active crypt interactions. Analyses of tumor phylogenies show that most lesions undergo intermittent genetic homogenization, but heterotypic mutation patterns indicate that independent clonal evolution can occur throughout adenoma development. Based on observations of clonal ordering the requirement and timing of genetic events during neoplastic progression may be more variable than previously thought.
Collapse
|