26
|
Prowse AH, Manek S, Varma R, Liu J, Godwin AK, Maher ER, Tomlinson IPM, Kennedy SH. Molecular genetic evidence that endometriosis is a precursor of ovarian cancer. Int J Cancer 2006; 119:556-62. [PMID: 16506222 DOI: 10.1002/ijc.21845] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Histopathology and epidemiology studies have consistently demonstrated a strong link between endometriosis and endometriosis-associated ovarian cancers (EAOCs)--in particular, the endometrioid and clear cell subtypes. However, it is still unclear whether endometriosis is a precursor to EAOCs, or whether there is an indirect link because similar factors predispose to both diseases. In order to search for evidence of clonal progression, we analyzed 10 EAOCs (endometrioid=4; clear cell=6) with coexisting endometriosis for common molecular genetic alterations in both the carcinoma and corresponding endometriosis. We used 82 microsatellite markers spanning the genome to examine loss of heterozygosity (LOH) in the coexisting carcinoma and endometriosis samples. A total of 63 LOH events were detected in the carcinoma samples; twenty two of these were also detected in the corresponding endometriosis samples. In each case, the same allele was lost in the endometriosis and cancer samples. Interestingly, no marker showed LOH in the endometriosis alone. These data provide evidence that endometriosis is a precursor to EAOCs.
Collapse
|
|
19 |
114 |
27
|
Volikos E, Robinson J, Aittomäki K, Mecklin JP, Järvinen H, Westerman AM, de Rooji FWM, Vogel T, Moeslein G, Launonen V, Tomlinson IPM, Silver ARJ, Aaltonen LA. LKB1 exonic and whole gene deletions are a common cause of Peutz-Jeghers syndrome. J Med Genet 2006; 43:e18. [PMID: 16648371 PMCID: PMC2564523 DOI: 10.1136/jmg.2005.039875] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND LKB1/STK11 germline mutations cause Peutz-Jeghers syndrome (PJS). The existence of a second PJS locus is controversial, the evidence in its favour being families unlinked to LKB1 and the low frequency of LKB1 mutations found using conventional methods in several studies. Exonic and whole gene deletion or duplication events cannot be detected by routine mutation screening methods. OBJECTIVE To seek evidence for LKB1 germline deletions or duplications by screening patients meeting clinical criteria for PJS but without detected mutations on conventional screening. METHODS From an original cohort of 76 patients, 48 were found to have a germline mutation by direct sequencing; the remaining 28 were examined using multiplex ligation dependent probe amplification (MLPA) analysis to detect LKB1 copy number changes. RESULTS Deletions were found in 11 of the 28 patients (39%)--that is, 14% of all PJS patients (11/76). Five patients had whole gene deletions, two had the promoter and exon 1 deleted, and in one patient exon 8 was deleted. Other deletions events involved: loss of exons 2-10; deletion of the promoter and exons 1-3; and loss of part of the promoter. No duplications were detected. Nine samples with deletions were sequenced at reported single nucleotide polymorphisms to exclude heterozygosity; homozygosity was found in all cases. No MLPA copy number changes were detected in 22 healthy individuals. CONCLUSIONS These results lessen the possibility of a second PJS locus, as the detection rate of germline mutations in PJS patients was about 80% (59/76). It is suggested that MLPA, or a suitable alternative, should be used for routine genetic testing of PJS patients in clinical practice.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
112 |
28
|
Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, Day F, Tsui C, Lipton L, Desai J, Jones IT, McLaughlin S, Ward RL, Hawkins NJ, Ruszkiewicz AR, Moore J, Burgess AW, Busam D, Zhao Q, Strausberg RL, Simpson AJ, Tomlinson IPM, Gibbs P, Sieber OM. Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/β-catenin signalling thresholds for tumourigenesis. Oncogene 2013; 32:4675-82. [PMID: 23085758 PMCID: PMC3787794 DOI: 10.1038/onc.2012.486] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/20/2012] [Accepted: 09/04/2012] [Indexed: 01/05/2023]
Abstract
Biallelic protein-truncating mutations in the adenomatous polyposis coli (APC) gene are prevalent in sporadic colorectal cancer (CRC). Mutations may not be fully inactivating, instead producing WNT/β-catenin signalling levels 'just-right' for tumourigenesis. However, the spectrum of optimal APC genotypes accounting for both hits, and the influence of clinicopathological features on genotype selection remain undefined. We analysed 630 sporadic CRCs for APC mutations and loss of heterozygosity (LOH) using sequencing and single-nucleotide polymorphism microarrays, respectively. Truncating APC mutations and/or LOH were detected in 75% of CRCs. Most truncating mutations occurred within a mutation cluster region (MCR; codons 1282-1581) leaving 1-3 intact 20 amino-acid repeats (20AARs) and abolishing all Ser-Ala-Met-Pro (SAMP) repeats. Cancers commonly had one MCR mutation plus either LOH or another mutation 5' to the MCR. LOH was associated with mutations leaving 1 intact 20AAR. MCR mutations leaving 1 vs 2-3 intact 20AARs were associated with 5' mutations disrupting or leaving intact the armadillo-repeat domain, respectively. Cancers with three hits had an over-representation of mutations upstream of codon 184, in the alternatively spliced region of exon 9, and 3' to the MCR. Microsatellite unstable cancers showed hyper-mutation at MCR mono- and di-nucleotide repeats, leaving 2-3 intact 20AARs. Proximal and distal cancers exhibited different preferred APC genotypes, leaving a total of 2 or 3 and 0 to 2 intact 20AARs, respectively. In conclusion, APC genotypes in sporadic CRCs demonstrate 'fine-tuned' interdependence of hits by type and location, consistent with selection for particular residual levels of WNT/β-catenin signalling, with different 'optimal' thresholds for proximal and distal cancers.
Collapse
|
Comparative Study |
12 |
111 |
29
|
Sturt NJH, Gallagher MC, Bassett P, Philp CR, Neale KF, Tomlinson IPM, Silver ARJ, Phillips RKS. Evidence for genetic predisposition to desmoid tumours in familial adenomatous polyposis independent of the germline APC mutation. Gut 2004; 53:1832-6. [PMID: 15542524 PMCID: PMC1774338 DOI: 10.1136/gut.2004.042705] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many patients with familial adenomatous polyposis (FAP) die from desmoid tumours which can arise spontaneously but often appear to be surgically induced by prophylactic colectomy. FAP results from germline adenomatous polyposis coli (APC) gene mutations and desmoids arise following biallelic APC mutation, with one change usually occurring distal to the second beta-catenin binding/degradation repeat of the gene (3' to codon 1399). We have suggested that because families with germline mutations in this region already have the requisite change, they are more likely to develop desmoids. However, there are families with 5' germline mutations where desmoids are common. PATIENTS AND METHODS We examined desmoid risk dependent on germline APC mutation, sex, history of abdominal surgery, and family history in FAP patients from the St Mark's Hospital Polyposis Registry. RESULTS Overall desmoid prevalence was 15%. Desmoids tended to cluster in susceptible individuals, irrespective of the germline APC mutation. Independent predictors of increased desmoid risk were: germline mutation distal to codon 1399; any family history of disease; and a strong family history of desmoids. A family history of multiple desmoids (>1) increased an individual's own risk of multiplicity. Females had twice the odds of developing desmoids compared with males. There was no significant interaction between any of the three explanatory variables. CONCLUSIONS Our results indicate the influence of unknown genetic factors independent of APC in susceptibility to desmoid tumours in FAP. The data have implications in terms of clinical management of FAP patients and assessing the balance between chemoprevention and prophylactic colectomy.
Collapse
|
research-article |
21 |
109 |
30
|
Pollard PJ, Wortham NC, Tomlinson IPM. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med 2003; 35:632-9. [PMID: 14708972 DOI: 10.1080/07853890310018458] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
It is well documented that disturbances in mitochondrial function are associated with rare childhood disorders and possibly with many common diseases of ageing, such as Parkinson's disease and dementia. There has also been increasing evidence linking mitochondrial dysfunction with tumorigenesis. Recently, heterozygous germline mutations in two enzymes of the Krebs tricarboxylic acid cycle (TCA cycle) have been shown to predispose individuals to tumours. The two enzymes, fumarate hydratase (FH) and succinate dehydrogenase (SDH), are ubiquitously expressed, playing a vital role in adenosine triphosphate (ATP) production through the mitochondrial respiratory chain. Germline mutations in FH are associated with leiomyomatosis and renal cell carcinoma, whilst SDH mutations are associated with predisposition to paraganglioma (PGL) and phaeochromocytoma (PCC). At present, there are few data to explain the pathway(s) involved in this predisposition to neoplasia through TCA cycle defects. We shall review the mechanisms by which mutations in FH and SDH might play a role in tumorigenesis. These include pseudo-hypoxia, mitochondrial dysfunction and impaired apoptosis, oxidative stress and anabolic drive. All of these mechanisms are currently poorly defined. To date, FH and SDH mutations have not been reported in non-familial leiomyomata, renal cancers, PCCs or PGLs. It remains entirely possible, however, that the underlying mechanisms of tumorigenesis in these sporadic tumours are the same as those in the Mendelian syndromes.
Collapse
|
Review |
22 |
108 |
31
|
Mouradov D, Domingo E, Gibbs P, Jorissen RN, Li S, Soo PY, Lipton L, Desai J, Danielsen HE, Oukrif D, Novelli M, Yau C, Holmes CC, Jones IT, McLaughlin S, Molloy P, Hawkins NJ, Ward R, Midgely R, Kerr D, Tomlinson IPM, Sieber OM. Survival in stage II/III colorectal cancer is independently predicted by chromosomal and microsatellite instability, but not by specific driver mutations. Am J Gastroenterol 2013; 108:1785-93. [PMID: 24042191 DOI: 10.1038/ajg.2013.292] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 08/05/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Microsatellite instability (MSI) is an established marker of good prognosis in colorectal cancer (CRC). Chromosomal instability (CIN) is strongly negatively associated with MSI and has been shown to be a marker of poor prognosis in a small number of studies. However, a substantial group of "double-negative" (MSI-/CIN-) CRCs exists. The prognosis of these patients is unclear. Furthermore, MSI and CIN are each associated with specific molecular changes, such as mutations in KRAS and BRAF, that have been associated with prognosis. It is not known which of MSI, CIN, and the specific gene mutations are primary predictors of survival. METHODS We evaluated the prognostic value (disease-free survival, DFS) of CIN, MSI, mutations in KRAS, NRAS, BRAF, PIK3CA, FBXW7, and TP53, and chromosome 18q loss-of-heterozygosity (LOH) in 822 patients from the VICTOR trial of stage II/III CRC. We followed up promising associations in an Australian community-based cohort (N=375). RESULTS In the VICTOR patients, no specific mutation was associated with DFS, but individually MSI and CIN showed significant associations after adjusting for stage, age, gender, tumor location, and therapy. A combined analysis of the VICTOR and community-based cohorts showed that MSI and CIN were independent predictors of DFS (for MSI, hazard ratio (HR)=0.58, 95% confidence interval (CI) 0.36-0.93, and P=0.021; for CIN, HR=1.54, 95% CI 1.14-2.08, and P=0.005), and joint CIN/MSI testing significantly improved the prognostic prediction of MSI alone (P=0.028). Higher levels of CIN were monotonically associated with progressively poorer DFS, and a semi-quantitative measure of CIN was a better predictor of outcome than a simple CIN+/- variable. All measures of CIN predicted DFS better than the recently described Watanabe LOH ratio. CONCLUSIONS MSI and CIN are independent predictors of DFS for stage II/III CRC. Prognostic molecular tests for CRC relapse should currently use MSI and a quantitative measure of CIN rather than specific gene mutations.
Collapse
|
|
12 |
106 |
32
|
Halford SER, Rowan AJ, Lipton L, Sieber OM, Pack K, Thomas HJW, Hodgson SV, Bodmer WF, Tomlinson IPM. Germline mutations but not somatic changes at the MYH locus contribute to the pathogenesis of unselected colorectal cancers. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:1545-8. [PMID: 12707038 PMCID: PMC1851182 DOI: 10.1016/s0002-9440(10)64288-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MYH-associated polyposis is a recently described, autosomal recessive condition comprising multiple colorectal adenomas and cancer. This disease is caused by germline mutations in the base excision repair (BER) gene MYH. Genes involved in the BER pathway are thus good candidates for involvement in the pathogenesis of sporadic tumors of the large bowel. We have screened a set of 75 sporadic colorectal cancers for mutations in MYH, MTH1, and OGG1. Allelic loss at MYH was also assessed. Selected samples were screened for mutations and allele loss at APC and mutations in p53, K-ras, and beta-catenin. A panel of 35 colorectal cancer cell lines was screened for MYH mRNA and protein expression. One of 75 cancers had bi-allelic germline mutations in MYH and on retrospective analysis of medical records this patient was found to have synchronous multiple small adenomas in addition to carcinoma. No somatic MYH mutations were found and mRNA and protein were expressed in all of our cell lines. There were no clearly pathogenic mutations in MTH1 or OGG1 in any tumor. Bi-allelic germline MYH mutations cause approximately 1 to 3% of unselected colorectal cancers, but appear always to be associated with multiple adenomas. Somatic inactivation of the DNA glycosylases involved in the BER pathway however does not appear to be involved in colorectal tumorigenesis.
Collapse
|
research-article |
22 |
98 |
33
|
Thirlwell C, Will OCC, Domingo E, Graham TA, McDonald SAC, Oukrif D, Jeffrey R, Gorman M, Rodriguez-Justo M, Chin-Aleong J, Clark SK, Novelli MR, Jankowski JA, Wright NA, Tomlinson IPM, Leedham SJ. Clonality assessment and clonal ordering of individual neoplastic crypts shows polyclonality of colorectal adenomas. Gastroenterology 2010; 138:1441-54, 1454.e1-7. [PMID: 20102718 DOI: 10.1053/j.gastro.2010.01.033] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 11/24/2009] [Accepted: 01/07/2010] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS According to the somatic mutation theory, monoclonal colorectal lesions arise from sequential mutations in the progeny of a single stem cell. However, studies in a sex chromosome mixoploid mosaic (XO/XY) patient indicated that colorectal adenomas were polyclonal. We assessed adenoma clonality on an individual crypt basis and completed a genetic dependency analysis in carcinomas-in-adenomas to assess mutation order and timing. METHODS Polyp samples were analyzed from the XO/XY individual, patients with familial adenomatous polyposis and attenuated familial adenomatous polyposis, patients with small sporadic adenomas, and patients with sporadic carcinoma-in-adenomas. Clonality was analyzed using X/Y chromosome fluorescence in situ hybridization, analysis of 5q loss of heterozygosity in XO/XY tissue, and sequencing of adenomatous polyposis coli. Individual crypts and different phenotypic areas of carcinoma-in-adenoma lesions were analyzed for mutations in adenomatous polyposis coli, p53, and K-RAS; loss of heterozygosity at 5q, 17p, and 18q; and aneuploidy. Phylogenetic trees were constructed. RESULTS All familial adenomatous polyposis-associated adenomas and some sporadic lesions had polyclonal genetic defects. Some independent clones appeared to be maintained in advanced adenomas. No clear obligate order of genetic events was established. Top-down growth of dysplastic tissue into neighboring crypts was a possible mechanism of clonal competition. CONCLUSIONS Human colorectal microadenomas are polyclonal and may arise from a combination of host genetic features, mucosal exposures, and active crypt interactions. Analyses of tumor phylogenies show that most lesions undergo intermittent genetic homogenization, but heterotypic mutation patterns indicate that independent clonal evolution can occur throughout adenoma development. Based on observations of clonal ordering the requirement and timing of genetic events during neoplastic progression may be more variable than previously thought.
Collapse
|
|
15 |
97 |
34
|
Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I, Truninger K, Martin J, Jass J, Houlston R, Atkin W, Tomlinson IPM, Silver ARJ. Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 2005; 54:264-7. [PMID: 15647192 PMCID: PMC1774848 DOI: 10.1136/gut.2004.048132] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Activating beta-catenin mutations in exon 3 have been implicated in colorectal tumorigenesis. Although reports to the contrary exist, it has been suggested that beta-catenin mutations occur more often in microsatellite unstable (MSI+) colorectal carcinomas, including hereditary non-polyposis colorectal cancer (HNPCC), as a consequence of defective DNA mismatch repair. We have analysed 337 colorectal carcinomas and adenomas, from both sporadic cases and HNPCC families, to provide an accurate assessment of beta-catenin mutation frequency in each tumour type. METHODS Direct sequencing of exon 3 of beta-catenin. RESULTS Mutations were rare in sporadic (1/83, 1.2%) and HNPCC adenomas (1/37, 2.7%). Most of the sporadic adenomas analysed (80%) were small (<1 cm), and our data therefore differ from a previous report of a much higher mutation frequency in small adenomas. No oncogenic beta-catenin mutations were identified in 34 MSI+ and 78 microsatellite stable (MSI-) sporadic colorectal cancers but a raised mutation frequency (8/44, 18.2%) was found in HNPCC cancers; this frequency was significantly higher than that in HNPCC adenomas (p=0.035) and in both MSI- (p<0.0001) and MSI+ (p=0.008) sporadic cancers. Mutations were more common in higher stage (Dukes' stages C and D) cancers (p=0.001). CONCLUSION Exon 3 beta-catenin mutations are associated specifically with malignant colorectal tumours in HNPCC; mutations appear not to result directly from deficient mismatch repair. Our data provide evidence that the genetic pathways of sporadic MSI+ and HNPCC cancers may be divergent, and indicate that mutations in the HNPCC pathway of colorectal tumorigenesis may be determined by selection, not simply by hypermutation.
Collapse
|
research-article |
20 |
96 |
35
|
Sieber OM, Lamlum H, Crabtree MD, Rowan AJ, Barclay E, Lipton L, Hodgson S, Thomas HJW, Neale K, Phillips RKS, Farrington SM, Dunlop MG, Mueller HJ, Bisgaard ML, Bulow S, Fidalgo P, Albuquerque C, Scarano MI, Bodmer W, Tomlinson IPM, Heinimann K. Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or "multiple" colorectal adenomas. Proc Natl Acad Sci U S A 2002; 99:2954-8. [PMID: 11867715 PMCID: PMC122454 DOI: 10.1073/pnas.042699199] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Familial adenomatous polyposis (FAP) is a dominantly inherited colorectal tumor predisposition that results from germ-line mutations in the APC gene (chromosome 5q21). FAP shows substantial phenotypic variability: classical polyposis patients develop more than 100 colorectal adenomas, whereas those with attenuated polyposis (AAPC) have fewer than 100 adenomas. A further group of individuals, so-called "multiple" adenoma patients, have a phenotype like AAPC, with 3-99 polyps throughout the colorectum, but mostly have no demonstrable germ-line APC mutation. Routine mutation detection techniques fail to detect a pathogenic APC germ-line mutation in approximately 30% of patients with classical polyposis and 90% of those with AAPC/multiple adenomas. We have developed a real-time quantitative multiplex PCR assay to detect APC exon 14 deletions. When this technique was applied to a set of 60 classical polyposis and 143 AAPC/multiple adenoma patients with no apparent APC germ-line mutation, deletions were found exclusively in individuals with classical polyposis (7 of 60, 12%). Fine-mapping of the region suggested that the majority (6 of 7) of these deletions encompassed the entire APC locus, confirming that haploinsufficiency can result in a classical polyposis phenotype. Screening for germ-line deletions in APC mutation-negative individuals with classical polyposis seems warranted.
Collapse
|
research-article |
23 |
95 |
36
|
Baker AM, Cross W, Curtius K, Al Bakir I, Choi CHR, Davis HL, Temko D, Biswas S, Martinez P, Williams MJ, Lindsay JO, Feakins R, Vega R, Hayes SJ, Tomlinson IPM, McDonald SAC, Moorghen M, Silver A, East JE, Wright NA, Wang LM, Rodriguez-Justo M, Jansen M, Hart AL, Leedham SJ, Graham TA. Evolutionary history of human colitis-associated colorectal cancer. Gut 2019; 68:985-995. [PMID: 29991641 PMCID: PMC6580738 DOI: 10.1136/gutjnl-2018-316191] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE IBD confers an increased lifetime risk of developing colorectal cancer (CRC), and colitis-associated CRC (CA-CRC) is molecularly distinct from sporadic CRC (S-CRC). Here we have dissected the evolutionary history of CA-CRC using multiregion sequencing. DESIGN Exome sequencing was performed on fresh-frozen multiple regions of carcinoma, adjacent non-cancerous mucosa and blood from 12 patients with CA-CRC (n=55 exomes), and key variants were validated with orthogonal methods. Genome-wide copy number profiling was performed using single nucleotide polymorphism arrays and low-pass whole genome sequencing on archival non-dysplastic mucosa (n=9), low-grade dysplasia (LGD; n=30), high-grade dysplasia (HGD; n=13), mixed LGD/HGD (n=7) and CA-CRC (n=19). Phylogenetic trees were reconstructed, and evolutionary analysis used to reveal the temporal sequence of events leading to CA-CRC. RESULTS 10/12 tumours were microsatellite stable with a median mutation burden of 3.0 single nucleotide alterations (SNA) per Mb, ~20% higher than S-CRC (2.5 SNAs/Mb), and consistent with elevated ageing-associated mutational processes. Non-dysplastic mucosa had considerable mutation burden (median 47 SNAs), including mutations shared with the neighbouring CA-CRC, indicating a precancer mutational field. CA-CRCs were often near triploid (40%) or near tetraploid (20%) and phylogenetic analysis revealed that copy number alterations (CNAs) began to accrue in non-dysplastic bowel, but the LGD/HGD transition often involved a punctuated 'catastrophic' CNA increase. CONCLUSIONS Evolutionary genomic analysis revealed precancer clones bearing extensive SNAs and CNAs, with progression to cancer involving a dramatic accrual of CNAs at HGD. Detection of the cancerised field is an encouraging prospect for surveillance, but punctuated evolution may limit the window for early detection.
Collapse
|
research-article |
6 |
91 |
37
|
Jones AM, Beggs AD, Carvajal-Carmona L, Farrington S, Tenesa A, Walker M, Howarth K, Ballereau S, Hodgson SV, Zauber A, Bertagnolli M, Midgley R, Campbell H, Kerr D, Dunlop MG, Tomlinson IPM. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 2012; 61:248-54. [PMID: 21708826 PMCID: PMC3245900 DOI: 10.1136/gut.2011.239772] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 05/04/2011] [Accepted: 05/29/2011] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Shorter telomeres have been associated with increased risk of malignancy, including colorectal cancer (CRC). Telomere length is heritable and may be an intermediate phenotype linked to genetic susceptibility to CRC. METHODS In a large sample, the study investigated whether candidate single nucleotide polymorphisms (SNP) in 'telomere biology' genes were associated with telomere length in leucocytes. SNP associated with an increased risk of CRC were searched for separately. RESULTS Carriers of the common allele at SNP rs10936599, near the telomerase RNA component (TERC) locus, had significantly longer telomeres. It was independently found that the same rs10936599 allele was associated with increased risk of both CRC and colorectal adenomas. Neither telomere length nor CRC risk was associated with variation near telomerase reverse transcriptase or other telomere biology genes. In silico analysis showed that SNP rs2293607 was strongly correlated with rs10936599, mapped within TERC transcripts, had a predicted effect on messenger RNA folding and lay at a reported transcription factor binding site. TERC mRNA were expressed, differing only at the alleles of rs2293607, in CRC cell line HCT116. The long-telomere/CRC-risk allele was associated with higher levels of TERC mRNA and the formation of longer telomeres. CONCLUSIONS Common genetic variation at TERC is associated with both longer telomeres and an increased risk of CRC, a potential mechanism being reduced levels of cell senescence or death. This finding is somewhat paradoxical, given retrospective studies reporting that CRC cases have shorter telomeres than controls. One possibility is that that association actually results from poorer survival in patients with longer telomeres.
Collapse
|
research-article |
13 |
88 |
38
|
Cross W, Kovac M, Mustonen V, Temko D, Davis H, Baker AM, Biswas S, Arnold R, Chegwidden L, Gatenbee C, Anderson AR, Koelzer VH, Martinez P, Jiang X, Domingo E, Woodcock DJ, Feng Y, Kovacova M, Maughan T, Jansen M, Rodriguez-Justo M, Ashraf S, Guy R, Cunningham C, East JE, Wedge DC, Wang LM, Palles C, Heinimann K, Sottoriva A, Leedham SJ, Graham TA, Tomlinson IPM. The evolutionary landscape of colorectal tumorigenesis. Nat Ecol Evol 2018; 2:1661-1672. [PMID: 30177804 PMCID: PMC6152905 DOI: 10.1038/s41559-018-0642-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 01/19/2023]
Abstract
The evolutionary events that cause colorectal adenomas (benign) to progress to carcinomas (malignant) remain largely undetermined. Using multi-region genome and exome sequencing of 24 benign and malignant colorectal tumours, we investigate the evolutionary fitness landscape occupied by these neoplasms. Unlike carcinomas, advanced adenomas frequently harbour sub-clonal driver mutations-considered to be functionally important in the carcinogenic process-that have not swept to fixation, and have relatively high genetic heterogeneity. Carcinomas are distinguished from adenomas by widespread aneusomies that are usually clonal and often accrue in a 'punctuated' fashion. We conclude that adenomas evolve across an undulating fitness landscape, whereas carcinomas occupy a sharper fitness peak, probably owing to stabilizing selection.
Collapse
|
research-article |
7 |
85 |
39
|
Carvajal-Carmona LG, Alam NA, Pollard PJ, Jones AM, Barclay E, Wortham N, Pignatelli M, Freeman A, Pomplun S, Ellis I, Poulsom R, El-Bahrawy MA, Berney DM, Tomlinson IPM. Adult leydig cell tumors of the testis caused by germline fumarate hydratase mutations. J Clin Endocrinol Metab 2006; 91:3071-5. [PMID: 16757530 DOI: 10.1210/jc.2006-0183] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leydig cell tumors (LCTs) are the most common non-germ-cell neoplasms of the testis. LCTs are often hormonally active and can result in precocious virilization or in adult feminization. We identified an LCT in an affected individual from a kindred with hereditary leiomyomatosis and renal cell cancer (HLRCC) and a germline fumarate hydratase (FH) mutation (N64T). OBJECTIVE Our objective was to investigate the role of FH mutations in predisposition to LCTs. DESIGN We tested for pathogenic effects of the N64T mutation and screened an additional 29 unselected adult LCTs for FH alterations. We also tested these LCTs for mutations in two genes, the LH/choriogonadotropin receptor (LHCGR) and the guanine nucleotide-binding protein alpha (GNAS) that had been implicated in LCT tumorigenesis. RESULTS No mutations were found in GNAS, and one tumor had a LHCGR somatic substitution. In addition to the HLRCC case with the N64T germline FH mutation, we identified one other LCT with a previously unreported FH mutation (M411I). Both LCTs from these patients showed loss of the wild-type FH allele. Immunohistochemical and in situ hybridization analyses demonstrated activation of the hypoxia/angiogenesis pathway not only in the tumors belonging to the FH mutation carriers but also in several other mutation-negative LCTs. CONCLUSIONS Our study shows that some LCTs are caused by FH mutations and represents one of the first reports of germline mutations in any type of adult testicular tumor.
Collapse
|
|
19 |
84 |
40
|
Sawyer EJ, Hanby AM, Rowan AJ, Gillett CE, Thomas RE, Poulsom R, Lakhani SR, Ellis IO, Ellis P, Tomlinson IPM. The Wnt pathway, epithelial-stromal interactions, and malignant progression in phyllodes tumours. J Pathol 2002; 196:437-44. [PMID: 11920740 DOI: 10.1002/path.1067] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In a previous study of phyllodes tumours, it has been shown that both the stroma and the epithelium can exhibit distinct molecular changes, suggesting that both are part of the neoplastic process. In view of this finding, it was decided to study stromal-epithelial interactions in these tumours by examining the Wnt-APC-beta-catenin pathway. Beta-catenin and cyclin D1 immunohistochemistry was performed on 119 phyllodes tumours. Eighty-six (72%) showed stromal nuclear beta-catenin localization and in 57% the staining was moderate or strong; however, of the eight malignant tumours in the series, seven showed absent or weak nuclear staining (p<0.025). In no tumour was nuclear beta-catenin staining seen in the epithelial component. Moderate or strong stromal cyclin D1 staining correlated with nuclear stromal beta-catenin staining (p<0.05). Forty-five of the tumours, including two malignant lesions, were screened for beta-catenin exon 3 mutations using SSCP and sequencing, but none was found. Loss of heterozygosity (LOH) of the marker D5S346 was used to infer APC mutation, but only one (benign) tumour showed LOH. Wnt2 and Wnt5a mRNA was localized by in situ hybridization in 13 cases (three malignant) chosen to reflect the different beta-catenin staining patterns. There was an association between strong nuclear beta-catenin staining of stromal cells and epithelial Wnt5a expression (p<0.0015). These data suggest that stromal proliferation in benign phyllodes tumours relies on abnormalities in the Wnt pathway which result not from mutation, but from Wnt5a expression in the epithelium. In the progression to malignancy, the stromal proliferation appears to become independent of the Wnt pathway and, presumably, of the epithelial component of these tumours.
Collapse
|
|
23 |
83 |
41
|
Mäkinen N, Heinonen HR, Moore S, Tomlinson IPM, van der Spuy ZM, Aaltonen LA. MED12 exon 2 mutations are common in uterine leiomyomas from South African patients. Oncotarget 2012; 2:966-9. [PMID: 22182697 PMCID: PMC3282101 DOI: 10.18632/oncotarget.370] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Uterine leiomyomas, or fibroids, are extremely common tumors. Regardless of their benign nature, fibroids can cause considerable morbidity. Women with African ancestry have a threefold increased risk of developing uterine leiomyomas with a greater symptom severity when compared to white women. Recently, we demonstrated that exon 2 of the MED12 gene is somatically altered in up to 70 per cent of uterine leiomyomas in a series of Finnish (Caucasian) patients. To validate these results in other populations, we sequenced a set of 28 uterine leiomyomas for MED12 exon 2 mutations from 18 different Black African or Coloured South African patients. We observed 14 mutation positive lesions (50%). When corrected by tumor size, these results are very similar to those derived in the Finnish material. This study confirms a major role of MED12 in the genesis of leiomyomas, regardless of ethnicity.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
82 |
42
|
Crabtree M, Sieber OM, Lipton L, Hodgson SV, Lamlum H, Thomas HJW, Neale K, Phillips RKS, Heinimann K, Tomlinson IPM. Refining the relation between 'first hits' and 'second hits' at the APC locus: the 'loose fit' model and evidence for differences in somatic mutation spectra among patients. Oncogene 2003; 22:4257-65. [PMID: 12833148 DOI: 10.1038/sj.onc.1206471] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The site of the 'first hit' in the APC tumour suppressor gene determines the type of the 'second hit', both in familial adenomatous polyposis (FAP) and sporadic colorectal tumours. Mutations near codon 1300 are associated with loss of heterozygosity (LOH) of the wild-type allele; other tumours tend to have two protein-truncating mutations. In this study, we have confirmed and refined the LOH-associated region in colorectal FAP: allelic loss in adenomatous polyps tended to occur when the germline mutation lay in the region of the APC gene between the first and second beta-catenin degradation repeats (codons 1285-1378). LOH generally occurred by mitotic recombination, leaving two identical alleles, each encoding a protein with one remaining beta-catenin degradation repeat. For patients with germline mutations that truncated the protein before the first repeat (codon 1264), LOH was very rare and tumours generally acquired a somatic mutation which left two, or less often one, repeats remaining in the protein. In our sample set, patients with germline mutations after the second beta-catenin degradation repeat tended to have undetectable, presumably cryptic, somatic mutations in their polyps. Exceptions to these rules were, however, not uncommon. Although the site of the germline mutation was the strongest determinant of the somatic mutation in FAP tumours and most patients showed no clear tendency to acquire specific types of truncating 'second hit', a minority of patients did have unusual somatic mutation spectra in their polyps. Thus, some individuals may be predisposed to particular types of 'second hit' (for example, frameshift rather than nonsense changes). Overall, disease severity (polyp number) did not vary with individuals' spectrum of somatic APC mutations, providing no clear evidence for modifier genes that influence disease severity in this fashion. Our data are consistent with the hypothesis that there exists an optimal level of beta-catenin signalling in colorectal tumours and that the APC mutation spectrum principally reflects this fact. The association between 'first hits' and 'second hits' at APC is not, however, so strong as to suggest that tumorigenesis only occurs if the genotype is optimum; we suggest 'relaxed' terminology, the 'loose fit' model, to describe this situation.
Collapse
|
|
22 |
80 |
43
|
Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, Roylance RR, Carter NP, Tomlinson IPM. Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 2005; 24:118-29. [PMID: 15531920 DOI: 10.1038/sj.onc.1208194] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microsatellite-stable, near-diploid (MSI-CIN-) colorectal carcinomas have been reported, but it is not clear as to whether these tumours form a discrete group or represent one end of the distribution of MSI-CIN+ cancers. In order to address this question, we screened 23 MSI-CIN- colorectal cancers for gains and losses using array-based comparative genomic hybridization (aCGH) based on large-insert clones at about 1 Mb density. We compared our findings with those from a small set of MSI+CIN+ cancers, and with our reported data from MSI-CIN+ and MSI+CIN- cancers. We found no evidence of any form of genomic instability in MSI-CIN- cancers. At the level of the chromosome arm, the MSI-CIN- cancers had significantly fewer gains and losses than MSI-CIN+ tumours, but more than the MSI+CIN- and MSI+CIN+ lesions. The chromosomal-scale changes found in MSI-CIN- cancers generally involved the same sites as those in MSI-CIN+ tumours, and in both cancer groups, the best predictor of a specific change was the total number of such changes in that tumour. A few chromosomal-scale changes did, however, differ between the MSI-CIN- and MSI-CIN+ pathways. MSI-CIN- cancers showed: low frequencies of gain of 9p and 19p; infrequent loss of 5q and a high frequency of 20p gain. Overall, our data suggested that the MSI-CIN- group is heterogeneous, one type of MSI-CIN- cancer having few (< or =6) chromosomal-scale changes and the other with more (> or =10) changes resembling MSI-CIN+ cancers. At the level of individual clones, frequent and/or discrete gains or losses were generally located within regions of chromosomal-scale changes in both MSI-CIN- and MSI-CIN+ cancers, and fewer losses and gains were present in MSI-CIN- than MSI-CIN+ tumours. No changes by clone, which were specific to the MSI-CIN- cancers, were found. In addition to indicating differences among the cancer groups, our results also detected over 50 sites (amplifications, potential homozygous deletion and gains or losses which extended over only a few megabases) which might harbour uncharacterized oncogenes or tumour suppressor loci. In conclusion, our data support the suggestion that some MSI-CIN- carcinomas form a qualitatively different group from the other cancer types, and also suggest that the MSI-CIN- group is itself heterogeneous.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
78 |
44
|
Jaeger EEM, Woodford-Richens KL, Lockett M, Rowan AJ, Sawyer EJ, Heinimann K, Rozen P, Murday VA, Whitelaw SC, Ginsberg A, Atkin WS, Lynch HT, Southey MC, Debinski H, Eng C, Bodmer WF, Talbot IC, Hodgson SV, Thomas HJW, Tomlinson IPM. An ancestral Ashkenazi haplotype at the HMPS/CRAC1 locus on 15q13-q14 is associated with hereditary mixed polyposis syndrome. Am J Hum Genet 2003; 72:1261-7. [PMID: 12696020 PMCID: PMC1180277 DOI: 10.1086/375144] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 03/03/2003] [Indexed: 02/04/2023] Open
Abstract
The putative locus for hereditary mixed polyposis syndrome (HMPS) in a large family of Ashkenazi descent (SM96) was previously reported to map to chromosome sub-bands 6q16-q21. However, new clinical data, together with molecular data from additional family members, have shown 6q linkage to be incorrect. A high-density genomewide screen for the HMPS gene was therefore performed on SM96, using stringent criteria for assignment of affection status to minimize phenocopy rates. Significant evidence of linkage was found only on a region on chromosome 15q13-q14. Since this region encompassed CRAC1, a locus involved in inherited susceptibility to colorectal adenomas and carcinomas in another Ashkenazi family (SM1311), we determined whether HMPS and CRAC1 might be the same. We found that affected individuals from both families shared a haplotype between D15S1031 and D15S118; the haplotype was rare in the general Ashkenazi population. A third informative family, SM2952, showed linkage of disease to HMPS/CRAC1 and shared the putative ancestral haplotype, as did a further two families, SMU and RF. Although there are probably multiple causes of the multiple colorectal adenoma and cancer phenotype in Ashkenazim, an important one is the HMPS/CRAC1 locus on 15q13-q14.
Collapse
|
research-article |
22 |
78 |
45
|
Jorissen RN, Lipton L, Gibbs P, Chapman M, Desai J, Jones IT, Yeatman TJ, East P, Tomlinson IPM, Verspaget HW, Aaltonen LA, Kruhøffer M, Orntoft TF, Andersen CL, Sieber OM. DNA copy-number alterations underlie gene expression differences between microsatellite stable and unstable colorectal cancers. Clin Cancer Res 2009; 14:8061-9. [PMID: 19088021 DOI: 10.1158/1078-0432.ccr-08-1431] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE About 15% of colorectal cancers harbor microsatellite instability (MSI). MSI-associated gene expression changes have been identified in colorectal cancers, but little overlap exists between signatures hindering an assessment of overall consistency. Little is known about the causes and downstream effects of differential gene expression. EXPERIMENTAL DESIGN DNA microarray data on 89 MSI and 140 microsatellite-stable (MSS) colorectal cancers from this study and 58 MSI and 77 MSS cases from three published reports were randomly divided into test and training sets. MSI-associated gene expression changes were assessed for cross-study consistency using training samples and validated as MSI classifier using test samples. Differences in biological pathways were identified by functional category analysis. Causation of differential gene expression was investigated by comparison to DNA copy-number data. RESULTS MSI-associated gene expression changes in colorectal cancers were found to be highly consistent across multiple studies of primary tumors and cancer cell lines from patients of different ethnicities (P < 0.001). Clustering based on consistent changes separated additional test cases by MSI status, and classification of individual samples predicted MSI status with a sensitivity of 96% and specificity of 85%. Genes associated with immune response were up-regulated in MSI cancers, whereas genes associated with cell-cell adhesion, ion binding, and regulation of metabolism were down-regulated. Differential gene expression was shown to reflect systematic differences in DNA copy-number aberrations between MSI and MSS tumors (P < 0.001). CONCLUSIONS Our results show cross-study consistency of MSI-associated gene expression changes in colorectal cancers. DNA copy-number alterations partly cause the differences in gene expression between MSI and MSS cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
77 |
46
|
Jones AM, Mitter R, Springall R, Graham T, Winter E, Gillett C, Hanby AM, Tomlinson IPM, Sawyer EJ. A comprehensive genetic profile of phyllodes tumours of the breast detects important mutations, intra-tumoral genetic heterogeneity and new genetic changes on recurrence. J Pathol 2008; 214:533-44. [DOI: 10.1002/path.2320] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
|
17 |
77 |
47
|
Gaasenbeek M, Howarth K, Rowan AJ, Gorman PA, Jones A, Chaplin T, Liu Y, Bicknell D, Davison EJ, Fiegler H, Carter NP, Roylance RR, Tomlinson IPM. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers. Cancer Res 2006; 66:3471-9. [PMID: 16585170 DOI: 10.1158/0008-5472.can-05-3285] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization (CGH) for copy number changes and single-copy number polymorphism (SNP) microarrays for allelic loss (LOH). Many array-based CGH changes were not found by LOH because they did not cause true reduction-to-homozygosity. Conversely, many regions of SNP-LOH occurred in the absence of copy number change, comprising an average per cell line of 2 chromosomes with complete LOH; 1-2 terminal regions of LOH (mitotic recombination); and 1 interstitial region of LOH. SNP-LOH detected many novel changes, representing possible locations of uncharacterized tumor suppressor loci. Microsatellite unstable (MSI+) lines infrequently showed gains/deletions or whole-chromosome LOH, but their near-diploid karyotypes concealed mitotic recombination frequencies similar to those of MSI- lines. We analyzed p53 and chromosome 18q (SMAD4) in detail, including mutation screening. Almost all MSI- lines showed LOH and/or deletion of p53 and 18q; some near-triploid lines had acquired three independent changes at these loci. We found consistent results in primary colorectal cancers. Overall, the distributions of mitotic recombination and whole-chromosome LOH in the MSI- cell lines differed significantly from random, with some lines having much higher than expected levels of these changes. Moreover, lines with more LOH changes had significantly fewer copy number changes. These data suggest that CIN is not synonymous with copy number change and some cancers have a specific tendency to whole-chromosome deletion and regain or to mitotic recombination.
Collapse
|
Journal Article |
19 |
76 |
48
|
Carvajal-Carmona LG, Howarth KM, Lockett M, Polanco-Echeverry GM, Volikos E, Gorman M, Barclay E, Martin L, Jones AM, Saunders B, Guenther T, Donaldson A, Paterson J, Frayling I, Novelli MR, Phillips R, Thomas HJW, Silver A, Atkin W, Tomlinson IPM. Molecular classification and genetic pathways in hyperplastic polyposis syndrome. J Pathol 2007; 212:378-85. [PMID: 17503413 DOI: 10.1002/path.2187] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hyperplastic Polyposis (HPPS) is a poorly characterized syndrome that increases colorectal cancer (CRC) risk. We aimed to provide a molecular classification of HPPS. We obtained 282 tumours from 32 putative HPPS patients with >or= 10 hyperplastic polyps (HPs); some patients also had adenomas and CRCs. We found no good evidence of microsatellite instability (MSI) in our samples. The epithelium of HPs was monoclonal. Somatic BRAF mutations occurred in two-thirds of our patients' HPs, and KRAS2 mutations in 10%; both mutations were more common in younger cases. The respective mutation frequencies in a set of 'sporadic' HPs were 18% and 10%. Importantly, the putative HPPS patients generally fell into two readily defined groups, one set whose polyps had BRAF mutations, and another set whose polyps had KRAS2 mutations. The most plausible explanation for this observation is that there exist different forms of inherited predisposition to HPPS, and that these determine whether polyps follow a BRAF or KRAS2 pathway. Most adenomas and CRCs from our putative HPPS patients had 'classical' morphology and few of these lesions had BRAF or KRAS2 mutations. These findings suggest that tumourigenesis in HPPS does not necessarily follow the 'serrated' pathway. Although current definitions of HPPS are sub-optimal, we suggest that diagnosis could benefit from molecular analysis. Specifically, testing BRAF and KRAS2 mutations, and perhaps MSI, in multiple polyps could help to distinguish HPPS from sporadic HPs. We propose a specific model which would have diagnosed five more of our cases as HPPS compared with the WHO clinical criteria.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
74 |
49
|
Leedham SJ, Rodenas-Cuadrado P, Howarth K, Lewis A, Mallappa S, Segditsas S, Davis H, Jeffery R, Rodriguez-Justo M, Keshav S, Travis SPL, Graham TA, East J, Clark S, Tomlinson IPM. A basal gradient of Wnt and stem-cell number influences regional tumour distribution in human and mouse intestinal tracts. Gut 2013; 62:83-93. [PMID: 22287596 PMCID: PMC3551213 DOI: 10.1136/gutjnl-2011-301601] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2011] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Wnt signalling is critical for normal intestinal development and homeostasis. Wnt dysregulation occurs in almost all human and murine intestinal tumours and an optimal but not excessive level of Wnt activation is considered favourable for tumourigenesis. The authors assessed effects of pan-intestinal Wnt activation on tissue homeostasis, taking into account underlying physiological Wnt activity and stem-cell number in each region of the bowel. DESIGN The authors generated mice that expressed temporally controlled, stabilised β-catenin along the crypt-villus axis throughout the intestines. Physiological Wnt target gene activity was assessed in different regions of normal mouse and human tissue. Human intestinal tumour mutation spectra were analysed. RESULTS In the mouse, β-catenin stabilisation resulted in a graduated neoplastic response, ranging from dysplastic transformation of the entire epithelium in the proximal small bowel to slightly enlarged crypts of non-dysplastic morphology in the colorectum. In contrast, stem and proliferating cell numbers were increased in all intestinal regions. In the normal mouse and human intestines, stem-cell and Wnt gradients were non-identical, but higher in the small bowel than large bowel in both species. There was also variation in the expression of some Wnt modulators. Human tumour analysis confirmed that different APC mutation spectra are selected in different regions of the bowel. CONCLUSIONS There are variable gradients in stem-cell number, physiological Wnt activity and response to pathologically increased Wnt signalling along the crypt-villus axis and throughout the length of the intestinal tract. The authors propose that this variation influences regional mutation spectra, tumour susceptibility and lesion distribution in mice and humans.
Collapse
|
research-article |
12 |
73 |
50
|
Elsaba TMA, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, McCart A, Silver AR, Tomlinson IPM, Ilyas M. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PLoS One 2010; 5:e10714. [PMID: 20502714 PMCID: PMC2873293 DOI: 10.1371/journal.pone.0010714] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 04/27/2010] [Indexed: 01/28/2023] Open
Abstract
CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133-expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause "off-target" effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133- populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133- populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133- population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133- population of SW480. Prolonged culture of a pure CD133- population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
73 |