26
|
Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 1992; 14:327-32. [PMID: 1438172 DOI: 10.1002/prot.340140302] [Citation(s) in RCA: 292] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystallographic studies of neuraminidase-sialic acid complexes indicate that sialic acid is distorted on binding the enzyme. Three arginine residues on the enzyme interact with the carboxylate group of the sugar which is observed to be equatorial to the saccharide ring as a consequence of its distorted geometry. The glycosidic oxygen is positioned within hydrogen-bonding distance of Asp-151, implicating this residue in catalysis.
Collapse
|
27
|
Tulip WR, Varghese JN, Laver WG, Webster RG, Colman PM. Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex. J Mol Biol 1992; 227:122-48. [PMID: 1381757 DOI: 10.1016/0022-2836(92)90687-f] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The crystal structure of the complex between neuraminidase from influenza virus (subtype N9 and isolated from an avian source) and the antigen-binding fragment (Fab) of monoclonal antibody NC41 has been refined by both least-squares and simulated annealing methods to an R-factor of 0.191 using 31,846 diffraction data in the resolution range 8.0 to 2.5 A. The resulting model has a root-mean-square deviation from ideal bond-length of 0.016 A. One fourth of the tetrameric complex comprises the crystallographic model, which has 6577 non-hydrogen atoms and consists of 389 protein residues and eight carbohydrate residues in the neuraminidase, 214 residues in the Fab light chain, and 221 residues in the heavy chain. One putative Ca ion buried in the neuraminidase, and 73 water molecules, are also included. A remarkable shape complementarity exists between the interacting surfaces of the antigen and the antibody, although the packing density of atoms at the interface is somewhat looser than in the interior of a protein. Similarly, there is a high degree of chemical complementarity between the antigen and antibody, mediated by one buried salt-link, two solvated salt-links and 12 hydrogen bonds. The antibody-binding site on neuraminidase is discontinuous and comprises five chain segments and 19 residues in contact, whilst 33 neuraminidase residues in eight segments have 899 A2 of surface area buried by the interaction (to a 1.7 A probe), including two hexose units. Seventeen residues in NC41 Fab lying in five of the six complementarity determining regions (CDRs) make contact with the neuraminidase and 36 antibody residues in seven segments have 916 A2 of buried surface area. The interface is more extensive than those of the three lysozyme-Fab complexes whose crystal structures have been determined, as judged by buried surface area and numbers of contact residues. There are only small differences (less than 1.5 A) between the complexed and uncomplexed neuraminidase structures and, at this resolution and accuracy, those differences are not unequivocal. The main-chain conformations of five of the CDRs follow the predicted canonical structures. The interface between the variable domains of the light and heavy chains is not as extensive as in other Fabs, due to less CDR-CDR interaction in NC41. The first CDR on the NC41 Fab light chain is positioned so that it could sterically hinder the approach of small as well as large substrates to the neuraminidase active-site pocket, suggesting a possible mechanism for the observed inhibition of enzyme activity by the antibody.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
28
|
Tulip WR, Varghese JN, Webster RG, Laver WG, Colman PM. Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. J Mol Biol 1992; 227:149-59. [PMID: 1522584 DOI: 10.1016/0022-2836(92)90688-g] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The site on influenza virus N9 neuraminidase recognized by NC41 monoclonal antibody comprises 19 amino acid residues that are in direct contact with 17 residues on the antibody. Single sequence changes in some of the neuraminidase residues in the site markedly reduce antibody binding. However, two mutants have been found within the site, Ile368 to Arg and Asn329 to Asp selected by antibodies other than NC41, and these mutants bind NC41 antibody with only slightly reduced affinity. The three-dimensional structures of the two mutant N9-NC41 antibody complexes as derived from the wild-type complex are presented. Both structures show that some amino acid substitutions can be accommodated within an antigen-antibody interface by local structural rearrangements around the mutation site. In the Ile368 to Arg mutant complex, the side-chain of Arg368 is shifted by 2.9 A from its position in the uncomplexed mutant and a shift of 1.3 A in the position of the light chain residue HisL55 with respect to the wild-type complex is also observed. In the other mutant, the side-chain of Asp329 appears rotated by 150 degrees around C alpha-C beta with respect to the uncomplexed mutant, so that the carboxylate group is moved to the periphery of the antigen-antibody interface. The results provide a basis for understanding some of the potential structural effects of somatic hypermutation on antigen-antibody binding in those cases where the mutation in the antibody occurs at antigen-contacting residues, and demonstrate again the importance of structural context in evaluating the effect of amino acid substitutions on protein structure and function.
Collapse
|
29
|
Varghese JN, Colman PM. Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol 1991; 221:473-86. [PMID: 1920428 DOI: 10.1016/0022-2836(91)80068-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An atomic model of the tetrameric surface glycoprotein neuraminidase of influenza virus A/Tokyo/3/67 has been built and refined based on X-ray diffraction data at 2.2 A resolution. The crystallographic residual is 0.21 for data between 6 and 2.2 A resolution and the r.m.s. deviations from ideal geometry are 0.02 A for bond lengths and 3.9 degrees for bond angles. The model includes amino acid residues 83 to 469, four oligosaccharide structures N-linked at asparagine residues 86, 146, 200 and 234, a single putative Ca2+ ion site, and 85 water molecules. One of the oligosaccharides participates in a novel crystal contact. The folding pattern is a beta-sheet propeller as described earlier and details of the intramolecular interactions between the six beta-sheets are presented. Strain-invariant residues are clustered around the propeller axis on the upper surface of the molecule where they line the wall of a cavity into which sialic has been observed to bind. Strain-variable residues implicated in binding to antibodies surround this site.
Collapse
|
30
|
Tulip WR, Varghese JN, Baker AT, van Donkelaar A, Laver WG, Webster RG, Colman PM. Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. J Mol Biol 1991; 221:487-97. [PMID: 1920429 DOI: 10.1016/0022-2836(91)80069-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The crystal structure of the N9 subtype neuraminidase of influenza virus was refined by simulated annealing and conventional techniques to an R-factor of 0.172 for data in the resolution range 6.0 to 2.2 A. The r.m.s. deviation from ideal values of bond lengths is 0.014 A. The structure is similar to that of N2 subtype neuraminidase both in secondary structure elements and in their connections. The three-dimensional structures of several escape mutants of neuraminidase, selected with antineuraminidase monoclonal antibodies, are also reported. In every case, structural changes associated with the point mutation are confined to the mutation site or to residues that are spatially immediately adjacent to it. The failure of antisera to cross-react between N2 and N9 subtypes may be correlated with the absence of conserved, contiguous surface structures of area 700 A2 or more.
Collapse
|
31
|
Lawrence MC, Suzuki E, Varghese JN, Davis PC, Van Donkelaar A, Tulloch PA, Colman PM. The three-dimensional structure of the seed storage protein phaseolin at 3 A resolution. EMBO J 1990; 9:9-15. [PMID: 2295315 PMCID: PMC551622 DOI: 10.1002/j.1460-2075.1990.tb08074.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The polypeptides of the trimeric seed storage protein phaseolin comprise two structurally similar units each made up of a beta-barrel and an alpha-helical domain. The beta-barrel has the 'jelly-roll' folding topology of the viral coat proteins and the alpha-helical domain shows structural similarity to the helix-turn-helix motif found in certain DNA-binding proteins.
Collapse
|
32
|
Colman PM, Tulip WR, Varghese JN, Tulloch PA, Baker AT, Laver WG, Air GM, Webster RG. Three-dimensional structures of influenza virus neuraminidase-antibody complexes. Philos Trans R Soc Lond B Biol Sci 1989; 323:511-8. [PMID: 2569208 DOI: 10.1098/rstb.1989.0028] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
X-ray diffraction analysis of crystals of a monoclonal Fab fragment NC41 bound to a viral antigen, influenza virus neuraminidase, shows an epitope involving five surface loops of the antigen. In addition it reveals an unusual pairing pattern between the domains of light and heavy chains in the variable module of the antibody. We interpret this result to imply that association with antigen can induce changes in the quaternary structure of the Fab, through a sliding of domains at the variable light/variable heavy chains (VL-VH) interface. In addition, Fab binding has altered the conformation of some of the surface loops of the antigen. The structure of the NC10 Fab-neuraminidase complex has now also been solved. It binds an epitope that overlaps the NC41 epitope. In this structure, there is no electron density for the C-module of the Fab fragment, implying it is disordered in the crystal lattice. The implications of these, and other antibody-antigen structures, for immune recognition are discussed.
Collapse
|
33
|
Tulip WR, Varghese JN, Webster RG, Air GM, Laver WG, Colman PM. Crystal structures of neuraminidase-antibody complexes. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1989; 54 Pt 1:257-63. [PMID: 2484162 DOI: 10.1101/sqb.1989.054.01.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Varghese JN, Webster RG, Laver WG, Colman PM. Structure of an escape mutant of glycoprotein N2 neuraminidase of influenza virus A/Tokyo/3/67 at 3 A. J Mol Biol 1988; 200:201-3. [PMID: 3379640 DOI: 10.1016/0022-2836(88)90344-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The three-dimensional structure of the membrane glycoprotein neuraminidase of an escape mutant of the influenza virus strain A/Tokyo/3/67 has been determined to 3 A (1 A = 0.1 nm) resolution by X-ray diffraction. The mutant virus, selected by growing the virus in the presence of a monoclonal antibody to the neuraminidase, is shown to have undergone a single amino acid change of lysine to glutamic acid at residue 368. The three-dimensional structure of the neuraminidase is identical with that reported for A/Tokyo/3/67, except for a purely local adjustment of the structure at position 368.
Collapse
|
35
|
Webster RG, Air GM, Metzger DW, Colman PM, Varghese JN, Baker AT, Laver WG. Antigenic structure and variation in an influenza virus N9 neuraminidase. J Virol 1987; 61:2910-6. [PMID: 3612957 PMCID: PMC255818 DOI: 10.1128/jvi.61.9.2910-2916.1987] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We previously determined, by X-ray crystallography, the three-dimensional structure of a complex between influenza virus N9 neuraminidase (NA) and the Fab fragments of monoclonal antibody NC-41 [P. M. Colman, W. G. Laver, J. N. Varghese, A. T. Baker, P. A. Tulloch, G. M. Air, and R. G. Webster, Nature (London) 326:358-363, 1987]. This antibody binds to an epitope on the upper surface of the NA which is made up of four polypeptide loops over an area of approximately 600 A2 (60 nm2). We now describe properties of NC-41 and other monoclonal antibodies to N9 NA and the properties of variants selected with these antibodies (escape mutants). All except one of the escape mutants had single amino acid sequence changes which affected the binding of NC-41 and which therefore are located within the NC-41 epitope. The other one had a change outside the epitope which did not affect the binding of any of the other antibodies. All the antibodies which selected variants inhibited enzyme activity with fetuin (molecular weight, 50,000) as the substrate, but only five, including NC-41, also inhibited enzyme activity with the small substrate N-acetylneuramin-lactose (molecular weight, 600). These five probably inhibited enzyme activity by distorting the catalytic site of the NA. Isolated, intact N9 NA molecules form rosettes in the absence of detergent, and these possess high levels of hemagglutinin activity (W.G. Laver, P.M. Colman, R.G. Webster, V.S. Hinshaw, and G.M. Air, Virology 137:314-323, 1984). The enzyme activity of N9 NA was inhibited efficiently by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, whereas hemagglutinin activity was unaffected. The NAs of several variants with sequence changes in the NC-41 epitope lost hemagglutinin activity without any loss of enzyme activity, suggesting that the two activities are associated with separate sites on the N9 NA head.
Collapse
|
36
|
Baker AT, Varghese JN, Laver WG, Air GM, Webster RG, Colman PM. The three-dimensional structure of neuraminidase of subtype N9. Acta Crystallogr A 1987. [DOI: 10.1107/s0108767387084952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Colman PM, Varghese JN, Baker AT, Tulloch PA, Laver WG, Air GM, Webster RG. The structure of a complex between influenza virus neuraminidase and an antibody. Acta Crystallogr A 1987. [DOI: 10.1107/s0108767387084538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
38
|
Varghese JN, Colman PM, Laver WG, Webster RG. The structure of the neuraminidase glycoprotein of influenza virus (Tokyo/3/67) at 2.4 Å resolution. Acta Crystallogr A 1987. [DOI: 10.1107/s0108767387084964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Colman PM, Laver WG, Varghese JN, Baker AT, Tulloch PA, Air GM, Webster RG. Three-dimensional structure of a complex of antibody with influenza virus neuraminidase. Nature 1987; 326:358-63. [PMID: 2436051 DOI: 10.1038/326358a0] [Citation(s) in RCA: 475] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structure of a complex between influenza virus neuraminidase and an antibody displays features inconsistent with the inflexible 'lock and key' model of antigen-antibody binding. The structure of the antigen changes on binding, and that of the antibody may also change; the interaction therefore has some of the character of a handshake.
Collapse
|
40
|
Baker AT, Varghese JN, Laver WG, Air GM, Colman PM. Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins 1987; 2:111-7. [PMID: 3447170 DOI: 10.1002/prot.340020205] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neuraminidases from different subtypes of influenza virus are characterized by the absence of serological cross-reactivity and an amino acid sequence homology of approximately 50%. The three-dimensional structure of the neuraminidase antigen of subtype N9 from an avian influenza virus (A/tern/Australia/G70c/75) has been determined by X-ray crystallography and shown to be folded similarly to neuraminidase of subtype N2 isolated from a human influenza virus. This result demonstrates that absence of immunological cross-reactivity is no measure of dissimilarity of polypeptide chain folding. Small differences in the way in which the subunits are organized around the molecular fourfold axis are observed. Insertions and deletions with respect to subtype N2 neuraminidase occur in four regions, only one of which is located within the major antigenic determinants around the enzyme active site.
Collapse
|
41
|
Varghese JN, Maslen EN. Electron density in non-ideal metal complexes. I. Copper sulphate pentahydrate. ACTA CRYSTALLOGRAPHICA SECTION B: STRUCTURAL SCIENCE 1985. [DOI: 10.1107/s0108768185001914] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Colman PM, Varghese JN, Laver WG. The structure of neuraminidase. Acta Crystallogr A 1984. [DOI: 10.1107/s0108767384099128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Wilkins SW, Varghese JN, Lehmann MS. Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory: erratum. Acta Crystallogr A 1983. [DOI: 10.1107/s0108767383001130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Varghese JN, Laver WG, Colman PM. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 1983; 303:35-40. [PMID: 6843658 DOI: 10.1038/303035a0] [Citation(s) in RCA: 618] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The influenza virus neuraminidase glycoprotein is a tetramer with a box-shaped head, 100 X 100 X 60 A, attached to a slender stalk. The three-dimensional structure of neuraminidase heads shows that each monomer is composed of six topologically identical beta-sheets arranged in a propeller formation. The tetrameric enzyme has circular 4-fold symmetry stabilized in part by metal ions bound on the symmetry axis. Sugar residues are attached to four of the five potential glycosylation sequences, and in one case contribute to the interaction between subunits in the tetramer.
Collapse
|
45
|
Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983; 303:41-4. [PMID: 6188957 DOI: 10.1038/303041a0] [Citation(s) in RCA: 557] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The catalytic sites of influenza virus neuraminidase are located on the upper corners of the box-shaped tetramer that forms the head of the molecule. Antigenic determinants form a nearly-continuous surface across the top of the monomer encircling the catalytic site. Approximately the same number of amino acid sequence changes occurred in these determinants between the years 1968 and 1975 as occurred in the antigenic sites of influenza virus haemagglutinin in the same period.
Collapse
|
46
|
Suzuki E, Van Donkelaar A, Varghese JN, Lilley GG, Blagrove RJ, Colman PM. Crystallization of phaseolin from Phaseolus vulgaris. J Biol Chem 1983; 258:2634-6. [PMID: 6822576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Three different types of crystals were grown from phaseolin, the major storage body protein from French bean. Type I crystals are cubes with space group symmetry P432, a = 67 A. Type II crystals are bipyramids with a rounded basal plane and belong to space group P2(1)2(1)2, a = 128 A, b = 136 A, and c = 162 A. Type III crystals are rhombs grown from phytic acid-free protein. The space group symmetry is P2(1)2(1)2(1), a = 113 A, b = 136 A, and c = 89 A. Both Type II and III crystals are suitable for high resolution x-ray study.
Collapse
|
47
|
Suzuki E, Van Donkelaar A, Varghese JN, Lilley GG, Blagrove RJ, Colman PM. Crystallization of phaseolin from Phaseolus vulgaris. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32973-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Wilkins SW, Varghese JN, Lehmann MS. Statistical geometry. I. A self-consistent approach to the crystallographic inversion problem based on information theory. Acta Crystallogr A 1983. [DOI: 10.1107/s0108767383000082] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Chandler GS, Spackman MA, Varghese JN. Pseudoatom expansions of the H2 electron density. ACTA ACUST UNITED AC 1980. [DOI: 10.1107/s0567739480001350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Varghese JN, O'Connell AM, Maslen EN. The X-ray and neutron crystal structure of 2,4,6-triamino-1,3,5-triazine (melamine). ACTA ACUST UNITED AC 1977. [DOI: 10.1107/s0567740877007821] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|