26
|
Chang J, Lim J, Chung JW, Sohn YH, Jang MJ, Kim S. Status of Pre-analytical Quality Management of Laboratory Tests at Primary Clinics in Korea. Ann Lab Med 2023; 43:493-502. [PMID: 37080751 PMCID: PMC10151268 DOI: 10.3343/alm.2023.43.5.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
Background The quality of laboratory test results is crucial for accurate clinical diagnosis and treatment. Pre-analytical errors account for approximately 60%-70% of all laboratory test errors. Laboratory test results may be largely impacted by pre-analytical phase management. However, primary care clinics currently do not have pre-analytical quality management audit systems. We aimed to understand the current status of pre-analytical quality management in laboratory medicine in Korean primary care clinics. Methods Questionnaires were designed to focus on essential components of the pre-analytical process of primary care clinics. An online survey platform was used to administer the survey to internal medicine or family medicine physicians in primary care clinics. Results A total of 141 physicians provided a complete response to the questionnaire. In 65.2% of the clinics, patient information was hand-labeled rather than barcoded on the specimen bottles; 14.2% of clinics displayed only one piece of patient information (name or identification number), and 19.9% of clinics displayed two pieces of information. Centrifuges were not available in 29.1% of the clinics. Institutions carrying out the National Health Screening Program (NHSP) used more barcode system and had more centrifuges than institutions that did not carrying out the NHSP. Conclusions Pre-analytical quality management is inadequate in many primary clinics. We suggest implementation of a mandatory management system, allowing for a pre-analytical quality management to be carried out in primary care clinics.
Collapse
|
27
|
Kim SK, Chung JW, Lim J, Jeong TD, Chang J, Seo M, Lim HS, Kim S. Interpreting changes in consecutive laboratory results: clinician's perspectives on clinically significant change. Clin Chim Acta 2023; 548:117462. [PMID: 37390943 DOI: 10.1016/j.cca.2023.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Clinical laboratory tests are inevitably affected by various factors. Therefore, when comparing consecutive test results, it is crucial to consider the inherent uncertainty of the test. Clinical laboratories use reference change value (RCV) to determine a significant change between 2 results. Whereas the criteria for the interpretation of consecutive results by clinicians are not well known. We investigated the clinician's interpretation of a clinically significant change in consecutive laboratory test results and compared them to RCV. METHODS We performed a questionnaire survey on clinicians, which comprised 2 scenarios with 22 laboratory test items suggesting initial test results. Clinicians were asked to choose a result showing clinically significant change. RCV of the analytes from EFLM database were collected. RESULTS We received 290 valid questionnaire responses. Clinicians' opinions on clinically significant change was inconsistent between clinicians and scenarios, and was generally larger than RCV. Clinicians commented that they were not familiar with the variability of the laboratory tests. CONCLUSIONS Clinicians' opinions on clinically significant changes were more prominent than RCV. Meanwhile, they tended to neglect the analytical and biological variation. Laboratories should properly guide clinicians on the RCV of tests for better decision-making on patients' clinical states.
Collapse
|
28
|
Shi S, Wen G, Lei C, Chang J, Yin X, Liu X, Huang S. A DNA Replication Stress-Based Prognostic Model for Lung Adenocarcinoma. Acta Naturae 2023; 15:100-110. [PMID: 37908773 PMCID: PMC10615186 DOI: 10.32607/actanaturae.25112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Tumor cells endure continuous DNA replication stress, which opens the way to cancer development. Despite previous research, the prognostic implications of DNA replication stress on lung adenocarcinoma (LUAD) have yet to be investigated. Here, we aimed to investigate the potential of DNA replication stress-related genes (DNARSs) in predicting the prognosis of individuals with LUAD. Differentially expressed genes (DEGs) originated from the TCGA-LUAD dataset, and we constructed a 10-gene LUAD prognostic model based on DNARSs-related DEGs (DRSDs) using Cox regression analysis. The receiver operating characteristic (ROC) curve demonstrated excellent predictive capability for the LUAD prognostic model, while the Kaplan-Meier survival curve indicated a poorer prognosis in a high-risk (HR) group. Combined with clinical data, the Riskscore was found to be an independent predictor of LUAD prognosis. By incorporating Riskscore and clinical data, we developed a nomogram that demonstrated a capacity to predict overall survival and exhibited clinical utility, which was validated through the calibration curve, ROC curve, and decision curve analysis curve tests, confirming its effectiveness in prognostic evaluation. Immune analysis revealed that individuals belonging to the low-risk (LR) group exhibited a greater abundance of immune cell infiltration and higher levels of immune function. We calculated the immunopheno score and TIDE scores and tested them on the IMvigor210 and GSE78220 cohorts and found that individuals categorized in the LR group exhibited a higher likelihood of deriving therapeutic benefits from immunotherapy intervention. Additionally, we predicted that patients classified in the HR group would demonstrate enhanced sensitivity to Docetaxel using anti-tumor drugs. To summarize, we successfully developed and validated a prognostic model for LUAD by incorporating DNA replication stress as a key factor.
Collapse
|
29
|
Sutera PA, Shetty AC, Hakansson A, Van der Eecken K, Song Y, Liu Y, Chang J, Fonteyne V, Mendes AA, Lumen N, Delrue L, Verbeke S, De Man K, Rana Z, Hodges T, Hamid A, Roberts N, Song DY, Pienta K, Ross AE, Feng F, Joniau S, Spratt D, Gillessen S, Attard G, James ND, Lotan T, Davicioni E, Sweeney C, Tran PT, Deek MP, Ost P. Transcriptomic and clinical heterogeneity of metastatic disease timing within metastatic castration-sensitive prostate cancer. Ann Oncol 2023; 34:605-614. [PMID: 37164128 PMCID: PMC10330666 DOI: 10.1016/j.annonc.2023.04.515] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Metastatic castration-sensitive prostate cancer (mCSPC) is commonly classified into high- and low-volume subgroups which have demonstrated differential biology, prognosis, and response to therapy. Timing of metastasis has similarly demonstrated differences in clinical outcomes; however, less is known about any underlying biologic differences between these disease states. Herein, we aim to compare transcriptomic differences between synchronous and metachronous mCSPC and identify any differential responses to therapy. PATIENTS AND METHODS We performed an international multi-institutional retrospective review of men with mCSPC who completed RNA expression profiling evaluation of their primary tumor. Patients were stratified according to disease timing (synchronous versus metachronous). The primary endpoint was to identify differences in transcriptomic profiles between disease timing. The median transcriptomic scores between groups were compared with the Mann-Whitney U test. Secondary analyses included determining clinical and transcriptomic variables associated with overall survival (OS) from the time of metastasis. Survival analysis was carried out with the Kaplan-Meier method and multivariable Cox regression. RESULTS A total of 252 patients were included with a median follow-up of 39.6 months. Patients with synchronous disease experienced worse 5-year OS (39% versus 79%; P < 0.01) and demonstrated lower median androgen receptor (AR) activity (11.78 versus 12.64; P < 0.01) and hallmark androgen response (HAR; 3.15 versus 3.32; P < 0.01). Multivariable Cox regression identified only high-volume disease [hazard ratio (HR) = 4.97, 95% confidence interval (CI) 2.71-9.10; P < 0.01] and HAR score (HR = 0.51, 95% CI 0.28-0.88; P = 0.02) significantly associated with OS. Finally, patients with synchronous (HR = 0.47, 95% CI 0.30-0.72; P < 0.01) but not metachronous (HR = 1.37, 95% CI 0.50-3.92; P = 0.56) disease were found to have better OS with AR and non-AR combination therapy as compared with monotherapy (P value for interaction = 0.05). CONCLUSIONS We have demonstrated a potential biologic difference between metastatic timing of mCSPC. Specifically, for patients with low-volume disease, those with metachronous low-volume disease have a more hormone-dependent transcriptional profile and exhibit a better prognosis than synchronous low-volume disease.
Collapse
|
30
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang JS, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhang B, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng JH, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst. Science 2023:eadg9328. [PMID: 37289911 DOI: 10.1126/science.adg9328] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory of the bright GRB 221009A, which serendipitously occurred within the instrument field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger, then rose to a peak about 10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.
Collapse
|
31
|
Wang H, Chang J, Zhang W, Fang Y, Li S, Fan Y, Jiang S, Yao Y, Deng K, Lu L, Bao X, Feng F, Wang R, Feng M. Radiomics model and clinical scale for the preoperative diagnosis of silent corticotroph adenomas. J Endocrinol Invest 2023:10.1007/s40618-023-02042-2. [PMID: 37020103 DOI: 10.1007/s40618-023-02042-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/12/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE Silent corticotroph adenomas (SCAs) are a subtype of nonfunctioning pituitary adenomas that exhibit more aggressive behavior. However, rapid and accurate preoperative diagnostic methods are currently lacking. DESIGN The purpose of this study was to examine the differences between SCA and non-SCA features and to establish radiomics models and a clinical scale for rapid and accurate prediction. METHODS A total of 260 patients (72 SCAs vs. 188 NSCAs) with nonfunctioning adenomas from Peking Union Medical College Hospital were enrolled in the study as the internal dataset. Thirty-five patients (6 SCAs vs. 29 NSCAs) from Fuzhou General Hospital were enrolled as the external dataset. Radiomics models and an SCA scale to preoperatively diagnose SCAs were established based on MR images and clinical features. RESULTS There were more female patients (internal dataset: p < 0.001; external dataset: p = 0.028) and more multiple microcystic changes (internal dataset: p < 0.001; external dataset: p = 0.012) in the SCA group. MRI showed more invasiveness (higher Knosp grades, p ≤ 0.001). The radiomics model achieved AUCs of 0.931 and 0.937 in the internal and external datasets, respectively. The clinical scale achieved an AUC of 0.877 and a sensitivity of 0.952 in the internal dataset and an AUC of 0.899 and a sensitivity of 1.0 in the external dataset. CONCLUSIONS Based on clinical information and imaging characteristics, the constructed radiomics model achieved high preoperative diagnostic ability. The SCA scale achieved the purpose of rapidity and practicality while ensuring sensitivity, which is conducive to simplifying clinical work.
Collapse
|
32
|
Mackova M, Gauthier P, Chang J, Snell G, Westall G, Juvet S, Havlin J, Halloran P, Halloran K. Molecular Features Associated with Baseline Lung Allograft Dysfunction. J Heart Lung Transplant 2023. [DOI: 10.1016/j.healun.2023.02.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
33
|
Putra NE, Leeflang MA, Klimopoulou M, Dong J, Taheri P, Huan Z, Fratila-Apachitei LE, Mol JMC, Chang J, Zhou J, Zadpoor AA. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes. Acta Biomater 2023; 162:182-198. [PMID: 36972809 DOI: 10.1016/j.actbio.2023.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite composite scaffolds fabricated by extrusion-based 3D printing to address the unmet clinical needs associated with Fe-based biomaterials for bone regeneration, including low biodegradation rate, MRI-incompatibility, mechanical properties, and limited bioactivity. In this research, we developed inks containing Fe, 35 wt% Mn, and 20 or 30 vol% akermanite powder mixtures. 3D printing was optimized together with the debinding and sintering steps to obtain scaffolds with interconnected porosity of 69%. The Fe-matrix in the composites contained the γ-FeMn phase as well as nesosilicate phases. The former made the composites paramagnetic and, thus, MRI-friendly. The in vitro biodegradation rates of the composites with 20 and 30 vol% akermanite were respectively 0.24 and 0.27 mm/y, falling within the ideal range of biodegradation rates for bone substitution. The yield strengths of the porous composites stayed within the range of the values of the trabecular bone, despite in vitro biodegradation for 28 d. All the composite scaffolds favored the adhesion, proliferation, and osteogenic differentiation of preosteoblasts, as revealed by Runx2 assay. Moreover, osteopontin was detected in the extracellular matrix of cells on the scaffolds. Altogether, these results demonstrate the remarkable potential of these composites in fulfilling the requirements of porous biodegradable bone substitutes, motivating future in vivo research. STATEMENT OF SIGNIFICANCE: We developed FeMn-akermanite composite scaffolds by taking advantage of the multi-material capacity of extrusion-based 3D printing. Our results demonstrated that the FeMn-akermanite scaffolds showed an exceptional performance in fulfilling all the requirements for bone substitution in vitro, i.e., a sufficient biodegradation rate, having mechanical properties in the range of trabecular bone even after 4 weeks biodegradation, paramagnetic, cytocompatible and most importantly osteogenic. Our results encourage further research on Fe-based bone implants in in vivo.
Collapse
|
34
|
Chen M, Yang S, Chang J, Kris M, Drilon A. 74P Tumor agnostic comparison of immunohistochemistry and next-generation sequencing in detecting ALK fusions and assessment of ALK tyrosine kinase inhibitor efficacy. ESMO Open 2023. [DOI: 10.1016/j.esmoop.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
35
|
Parker S, Chang J, Joshi V, Sathanandam SK, Philip R. Cardiopulmonary and echocardiographic metrics for functional assessment of pectus excavatum. Am J Med Sci 2023. [DOI: 10.1016/s0002-9629(23)00368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Song JE, Kim S, Kwak YG, Shin S, Um TH, Cho CR, Chang J. A 20-year trend of prevalence and susceptibility to trimethoprim/sulfamethoxazole of Stenotrophomonas maltophilia in a single secondary care hospital in Korea. Medicine (Baltimore) 2023; 102:e32704. [PMID: 36705390 PMCID: PMC9875982 DOI: 10.1097/md.0000000000032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can cause serious infection. We aimed to analyze the prevalence and susceptibility rates to trimethoprim/sulfamethoxazole of S. maltophilia. We conducted a retrospective study of S. maltophilia isolates from a university hospital from 2001 to 2020. Clinical information, the numbers of isolates and susceptibility rates were analyzed by year. Susceptibility rates and changes in respiratory and non-respiratory samples were compared. 1805 S. maltophilia isolates were identified, of which 81.4% (1469/1805) were from respiratory samples. There was a male predominance and 52% of the isolates were from general wards. The average susceptibility rate was 87.7% and there was no significant annual trend (P = .519). The susceptibility rate was 88.7% in respiratory samples and 84.1% in non-respiratory samples (P = .018). Susceptibility analyses using clinical data over long periods can guide the choice of antimicrobials especially for pathogen whose treatment options are limited.
Collapse
|
37
|
von Arx K, Wang Q, Mustafi S, Mazzone DG, Horio M, Mukkattukavil DJ, Pomjakushina E, Pyon S, Takayama T, Takagi H, Kurosawa T, Momono N, Oda M, Brookes NB, Betto D, Zhang W, Asmara TC, Tseng Y, Schmitt T, Sassa Y, Chang J. Fate of charge order in overdoped La-based cuprates. NPJ QUANTUM MATERIALS 2023; 8:7. [PMID: 38666240 PMCID: PMC11041719 DOI: 10.1038/s41535-023-00539-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 01/09/2023] [Indexed: 04/28/2024]
Abstract
In high-temperature cuprate superconductors, stripe order refers broadly to a coupled spin and charge modulation with a commensuration of eight and four lattice units, respectively. How this stripe order evolves across optimal doping remains a controversial question. Here we present a systematic resonant inelastic x-ray scattering study of weak charge correlations in La2-xSrxCuO4 and La1.8-xEu0.2SrxCuO4. Ultra high energy resolution experiments demonstrate the importance of the separation of inelastic and elastic scattering processes. Long-range temperature-dependent stripe order is only found below optimal doping. At higher doping, short-range temperature-independent correlations are present up to the highest doping measured. This transformation is distinct from and preempts the pseudogap critical doping. We argue that the doping and temperature-independent short-range correlations originate from unresolved electron-phonon coupling that broadly peaks at the stripe ordering vector. In La2-xSrxCuO4, long-range static stripe order vanishes around optimal doping and we discuss both quantum critical and crossover scenarios.
Collapse
|
38
|
Simutis G, Bollhalder A, Zolliker M, Küspert J, Wang Q, Das D, Van Leeuwen F, Ivashko O, Gutowski O, Philippe J, Kracht T, Glaevecke P, Adachi T, V Zimmermann M, Van Petegem S, Luetkens H, Guguchia Z, Chang J, Sassa Y, Bartkowiak M, Janoschek M. In situ uniaxial pressure cell for x-ray and neutron scattering experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:013906. [PMID: 36725613 DOI: 10.1063/5.0114892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/24/2022] [Indexed: 06/18/2023]
Abstract
We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes.
Collapse
|
39
|
Gadi S, Chang J, Videnovic A, Kuo B, Pasricha T. Upper and Lower Gastrointestinal Symptom Association and Duration Preceding Parkinson's Disease. GASTRO HEP ADVANCES 2022; 2:343-345. [PMID: 39132656 PMCID: PMC11307935 DOI: 10.1016/j.gastha.2022.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/22/2022] [Indexed: 08/13/2024]
|
40
|
Cao Z, Aharonian F, An Q, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Ando S, Chianese M, Fiorillo DFG, Miele G, Ng KCY. Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations. PHYSICAL REVIEW LETTERS 2022; 129:261103. [PMID: 36608208 DOI: 10.1103/physrevlett.129.261103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
Collapse
|
41
|
Hahn T, Daymont C, Beukelman T, Groh B, Hays K, Bingham CA, Scalzi L, Abel N, Abulaban K, Adams A, Adams M, Agbayani R, Aiello J, Akoghlanian S, Alejandro C, Allenspach E, Alperin R, Alpizar M, Amarilyo G, Ambler W, Anderson E, Ardoin S, Armendariz S, Baker E, Balboni I, Balevic S, Ballenger L, Ballinger S, Balmuri N, Barbar-Smiley F, Barillas-Arias L, Basiaga M, Baszis K, Becker M, Bell-Brunson H, Beltz E, Benham H, Benseler S, Bernal W, Beukelman T, Bigley T, Binstadt B, Black C, Blakley M, Bohnsack J, Boland J, Boneparth A, Bowman S, Bracaglia C, Brooks E, Brothers M, Brown A, Brunner H, Buckley M, Buckley M, Bukulmez H, Bullock D, Cameron B, Canna S, Cannon L, Carper P, Cartwright V, Cassidy E, Cerracchio L, Chalom E, Chang J, Chang-Hoftman A, Chauhan V, Chira P, Chinn T, Chundru K, Clairman H, Co D, Confair A, Conlon H, Connor R, Cooper A, Cooper J, Cooper S, Correll C, Corvalan R, Costanzo D, Cron R, Curiel-Duran L, Curington T, Curry M, Dalrymple A, Davis A, Davis C, Davis C, Davis T, De Benedetti F, De Ranieri D, Dean J, Dedeoglu F, DeGuzman M, Delnay N, Dempsey V, DeSantis E, Dickson T, Dingle J, Donaldson B, Dorsey E, Dover S, Dowling J, Drew J, Driest K, Du Q, Duarte K, Durkee D, Duverger E, Dvergsten J, Eberhard A, Eckert M, Ede K, Edelheit B, Edens C, Edens C, Edgerly Y, Elder M, Ervin B, Fadrhonc S, Failing C, Fair D, Falcon M, Favier L, Federici S, Feldman B, Fennell J, Ferguson I, Ferguson P, Ferreira B, Ferrucho R, Fields K, Finkel T, Fitzgerald M, Fleming C, Flynn O, Fogel L, Fox E, Fox M, Franco L, Freeman M, Fritz K, Froese S, Fuhlbrigge R, Fuller J, George N, Gerhold K, Gerstbacher D, Gilbert M, Gillispie-Taylor M, Giverc E, Godiwala C, Goh I, Goheer H, Goldsmith D, Gotschlich E, Gotte A, Gottlieb B, Gracia C, Graham T, Grevich S, Griffin T, Griswold J, Grom A, Guevara M, Guittar P, Guzman M, Hager M, Hahn T, Halyabar O, Hammelev E, Hance M, Hanson A, Harel L, Haro S, Harris J, Harry O, Hartigan E, Hausmann J, Hay A, Hayward K, Heiart J, Hekl K, Henderson L, Henrickson M, Hersh A, Hickey K, Hill P, Hillyer S, Hiraki L, Hiskey M, Hobday P, Hoffart C, Holland M, Hollander M, Hong S, Horwitz M, Hsu J, Huber A, Huggins J, Hui-Yuen J, Hung C, Huntington J, Huttenlocher A, Ibarra M, Imundo L, Inman C, Insalaco A, Jackson A, Jackson S, James K, Janow G, Jaquith J, Jared S, Johnson N, Jones J, Jones J, Jones J, Jones K, Jones S, Joshi S, Jung L, Justice C, Justiniano A, Karan N, Kaufman K, Kemp A, Kessler E, Khalsa U, Kienzle B, Kim S, Kimura Y, Kingsbury D, Kitcharoensakkul M, Klausmeier T, Klein K, Klein-Gitelman M, Kompelien B, Kosikowski A, Kovalick L, Kracker J, Kramer S, Kremer C, Lai J, Lam J, Lang B, Lapidus S, Lapin B, Lasky A, Latham D, Lawson E, Laxer R, Lee P, Lee P, Lee T, Lentini L, Lerman M, Levy D, Li S, Lieberman S, Lim L, Lin C, Ling N, Lingis M, Lo M, Lovell D, Lowman D, Luca N, Lvovich S, Madison C, Madison J, Manzoni SM, Malla B, Maller J, Malloy M, Mannion M, Manos C, Marques L, Martyniuk A, Mason T, Mathus S, McAllister L, McCarthy K, McConnell K, McCormick E, McCurdy D, Stokes PMC, McGuire S, McHale I, McMonagle A, McMullen-Jackson C, Meidan E, Mellins E, Mendoza E, Mercado R, Merritt A, Michalowski L, Miettunen P, Miller M, Milojevic D, Mirizio E, Misajon E, Mitchell M, Modica R, Mohan S, Moore K, Moorthy L, Morgan S, Dewitt EM, Moss C, Moussa T, Mruk V, Murphy A, Muscal E, Nadler R, Nahal B, Nanda K, Nasah N, Nassi L, Nativ S, Natter M, Neely J, Nelson B, Newhall L, Ng L, Nicholas J, Nicolai R, Nigrovic P, Nocton J, Nolan B, Oberle E, Obispo B, O’Brien B, O’Brien T, Okeke O, Oliver M, Olson J, O’Neil K, Onel K, Orandi A, Orlando M, Osei-Onomah S, Oz R, Pagano E, Paller A, Pan N, Panupattanapong S, Pardeo M, Paredes J, Parsons A, Patel J, Pentakota K, Pepmueller P, Pfeiffer T, Phillippi K, Marafon DP, Phillippi K, Ponder L, Pooni R, Prahalad S, Pratt S, Protopapas S, Puplava B, Quach J, Quinlan-Waters M, Rabinovich C, Radhakrishna S, Rafko J, Raisian J, Rakestraw A, Ramirez C, Ramsay E, Ramsey S, Randell R, Reed A, Reed A, Reed A, Reid H, Remmel K, Repp A, Reyes A, Richmond A, Riebschleger M, Ringold S, Riordan M, Riskalla M, Ritter M, Rivas-Chacon R, Robinson A, Rodela E, Rodriquez M, Rojas K, Ronis T, Rosenkranz M, Rosolowski B, Rothermel H, Rothman D, Roth-Wojcicki E, Rouster-Stevens K, Rubinstein T, Ruth N, Saad N, Sabbagh S, Sacco E, Sadun R, Sandborg C, Sanni A, Santiago L, Sarkissian A, Savani S, Scalzi L, Schanberg L, Scharnhorst S, Schikler K, Schlefman A, Schmeling H, Schmidt K, Schmitt E, Schneider R, Schollaert-Fitch K, Schulert G, Seay T, Seper C, Shalen J, Sheets R, Shelly A, Shenoi S, Shergill K, Shirley J, Shishov M, Shivers C, Silverman E, Singer N, Sivaraman V, Sletten J, Smith A, Smith C, Smith J, Smith J, Smitherman E, Soep J, Son M, Spence S, Spiegel L, Spitznagle J, Sran R, Srinivasalu H, Stapp H, Steigerwald K, Rakovchik YS, Stern S, Stevens A, Stevens B, Stevenson R, Stewart K, Stingl C, Stokes J, Stoll M, Stringer E, Sule S, Sumner J, Sundel R, Sutter M, Syed R, Syverson G, Szymanski A, Taber S, Tal R, Tambralli A, Taneja A, Tanner T, Tapani S, Tarshish G, Tarvin S, Tate L, Taxter A, Taylor J, Terry M, Tesher M, Thatayatikom A, Thomas B, Tiffany K, Ting T, Tipp A, Toib D, Torok K, Toruner C, Tory H, Toth M, Tse S, Tubwell V, Twilt M, Uriguen S, Valcarcel T, Van Mater H, Vannoy L, Varghese C, Vasquez N, Vazzana K, Vehe R, Veiga K, Velez J, Verbsky J, Vilar G, Volpe N, von Scheven E, Vora S, Wagner J, Wagner-Weiner L, Wahezi D, Waite H, Walker J, Walters H, Muskardin TW, Waqar L, Waterfield M, Watson M, Watts A, Weiser P, Weiss J, Weiss P, Wershba E, White A, Williams C, Wise A, Woo J, Woolnough L, Wright T, Wu E, Yalcindag A, Yee M, Yen E, Yeung R, Yomogida K, Yu Q, Zapata R, Zartoshti A, Zeft A, Zeft R, Zhang Y, Zhao Y, Zhu A, Zic C. Intraarticular steroids as DMARD-sparing agents for juvenile idiopathic arthritis flares: Analysis of the Childhood Arthritis and Rheumatology Research Alliance Registry. Pediatr Rheumatol Online J 2022; 20:107. [PMID: 36434731 PMCID: PMC9701017 DOI: 10.1186/s12969-022-00770-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Children with juvenile idiopathic arthritis (JIA) who achieve a drug free remission often experience a flare of their disease requiring either intraarticular steroids (IAS) or systemic treatment with disease modifying anti-rheumatic drugs (DMARDs). IAS offer an opportunity to recapture disease control and avoid exposure to side effects from systemic immunosuppression. We examined a cohort of patients treated with IAS after drug free remission and report the probability of restarting systemic treatment within 12 months. METHODS We analyzed a cohort of patients from the Childhood Arthritis and Rheumatology Research Alliance (CARRA) Registry who received IAS for a flare after a period of drug free remission. Historical factors and clinical characteristics and of the patients including data obtained at the time of treatment were analyzed. RESULTS We identified 46 patients who met the inclusion criteria. Of those with follow up data available 49% had restarted systemic treatment 6 months after IAS injection and 70% had restarted systemic treatment at 12 months. The proportion of patients with prior use of a biologic DMARD was the only factor that differed between patients who restarted systemic treatment those who did not, both at 6 months (79% vs 35%, p < 0.01) and 12 months (81% vs 33%, p < 0.05). CONCLUSION While IAS are an option for all patients who flare after drug free remission, it may not prevent the need to restart systemic treatment. Prior use of a biologic DMARD may predict lack of success for IAS. Those who previously received methotrexate only, on the other hand, are excellent candidates for IAS.
Collapse
|
42
|
Koffler D, Sidiqi B, Keohane M, Viswanatha S, Calugaru E, Chang J, Schulder M, Goenka A. Changes in the Symptomatic Burden of High Koos Grade Vestibular Schwannomas Following Definitive and Adjuvant Stereotactic Radiosurgery. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
43
|
Chang X, Huang L, Liu J, Cao Y, Chang J. Using EBT3 Films and Monte Carlo Simulations to Determine the Percent Depth Dose of a New Y-90 Disc Source for Episcleral Brachytherapy. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
44
|
Zhang J, Baker J, Cao Y, Chang J. Patient Specific Quality Assurance Automation with Scripting on HID Devices. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Hotca A, Sindhu K, Lehrer E, Hartsell W, Vargas C, Chon B, Chang J, Apisarnthanarax S, Ashman J, Nichols R, Chhabra A, Hasan S, Press R, Lazarev S, Hajj C, Kabarriti R, Simone C, Choi I. Reirradiation with Proton Therapy for Recurrent Malignancies of the Esophagus and Gastroesophageal Junction: Results of the Proton Collaborative Group Multi-Institutional Prospective Registry Trial. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.1030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Garcia B, Calugaru E, Chitti B, Delacruz B, Goenka A, Chang J. Investigation of Dosimetric Outcomes for Arteriovenous Malformations with Linac-Based SRS vs. Non-invasive Stereotactic Radiosurgery Planning. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Zhou C, Lu Y, Kim SW, Baisamut (Reungwetwattana) T, Zhou J, Zhang Y, He J, Yang J, Cheng Y, Lee SH, Chang J, Fang J, Liu Z, Bu L, Qian L, Xu T, Archer V, Hilton M, Zhou M, Zhang L. LBA11 Alectinib (ALC) vs crizotinib (CRZ) in Asian patients (pts) with treatment-naïve advanced ALK+ non-small cell lung cancer (NSCLC): 5-year update from the phase III ALESIA study. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.10.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
48
|
Drake T, Tan E, Georgakopoulou A, May S, Mueller M, Horrigan S, Holloway K, Chang J, Aras R, Bird T. The TBL1 inhibitor, Tegavivint, suppresses tumour growth and enhances T-cell infiltration in preclinical murine β-Catenin mutant hepatocellular carcinoma. Eur J Cancer 2022. [DOI: 10.1016/s0959-8049(22)00852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D’Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X. Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA. RADIATION DETECTION TECHNOLOGY AND METHODS 2022. [DOI: 10.1007/s41605-022-00342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Yoon S, Choi R, Cho S, Kim H, Lee J, Kim E, Chang J, Kim S, Kim H, Lee J, Kang S. OS10.6.A What is the initial cell in the subventricular zone for human glioblastoma genesis? Neuro Oncol 2022. [DOI: 10.1093/neuonc/noac174.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
We all have a fundamental question about why glioblastoma (GBM) develops. In order to find the answer to this fundamental question, if you find out what the first cell is, you will get closer to the answer. GBM arises from the subventricular zone (SVZ). GBM is one of the most devastating tumour of human brain as the most optimal treatment barely prolongs the survival, and it does not cure the disease. As the majority of GBM tissues show copy number variations (CNV) of co-altered chromosomal 7 gain and 10 loss, we hypothesized the origin cell (Oc) of SVZ may be traced back with these markers. The cellular identity of the Oc is still unknown and it is different from the tumour-derived progenitor-like cells. We aimed to define these cells from the SVZ that have a potential to get activated into GBM.
Material and Methods
We compared bulk RNA sequencing (RNAseq) data of IDHwt GBM tumor tissue (n=122), tumor free SVZ from GBM patients (n=40), tumor-free control SVZ of non-glial tumor (n=9). Pared single nucleus RNAseq (snRNAseq) or single cell RNAseq (scRNAseq) samples of tumor free SVZ (n=11) and GBM tumor (n=8), were done to see cell specific CNVs. We developed genetically engineered mouse models for GBM genesis introducing three driver mutations (TP53, PTEN, and EGFRviii) into SVZ to isolate mouse Oc (mOc) and mouse cancer cells (mCc). The biological characteristics of separated mOc and mCc were compared. Bulk RNAseq and scRNAseq were performed on these cells (mOc, mCc), and their cellular state was compared with the human gene set.
Results
In this work, we found two types of the Oc in the RNA sequencing of 60 human tumour free-SVZ samples. Furthermore, single-cell level analysis revealed that two Oc types in SVZ harbor ongoing patterns of CNV co-alterations from Oc1 to Oc2, and finally to GBM. The Oc1 type cells contained the CNV signature of Oc2 ancestor with neural progenitor cell (NPC) signature. Oc2 type cells expressed a high level of EGFR than other cells with astrocyte-like cell signature. Both of these cells expressed oligodendrocyte progenitor cell (OPC)-like signatures in the SVZ. We validated the human-based findings by using the P53/PTEN/EGFR-mutant mouse model with EGFR/tdTomato overexpression and P53/PTEN knockout in the SVZ cells. As a result, non-tumourigenic and highly motile Oc-like cell-states are found in the mouse models, supporting the firework-like migration pattern from the SVZ.
Conclusion
Our results demonstrate how members of Oc preoccupy the SVZ, known as the stem cell niche and give rise to the tumour. We anticipate that a new therapy may emerge by targeting the Oc in the SVZ.
Collapse
|