26
|
McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018; 359:359/6378/eaao6047. [DOI: 10.1126/science.aao6047] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
|
27
|
Chatfield SM, Grebe K, Whitehead LW, Rogers KL, Nebl T, Murphy JM, Wicks IP. Monosodium Urate Crystals Generate Nuclease-Resistant Neutrophil Extracellular Traps via a Distinct Molecular Pathway. THE JOURNAL OF IMMUNOLOGY 2018; 200:1802-1816. [PMID: 29367211 DOI: 10.4049/jimmunol.1701382] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
Abstract
Neutrophil extracellular traps (NETs) and the cell death associated with it (NETosis) have been implicated in numerous diseases. Mechanistic studies of NETosis have typically relied on nonphysiological stimuli, such as PMA. The human disease of gout is caused by monosodium urate (MSU) crystals. We observed that DNA consistent with NETs is present in fluid from acutely inflamed joints of gout patients. NETs also coat the crystals found in uninflamed tophi of chronic gout patients. We developed a quantitative, live cell imaging assay, which measures the key features of NETosis, namely, cell death and chromatin decondensation. We show that MSU and other physiologically relevant crystals induce NETosis through a molecular pathway that is distinct from PMA and Candida hyphae. Crystals interact with lysosomes to induce NADPH oxidase-independent cell death, with postmortem chromatin decondensation mediated by neutrophil elastase. The resulting MSU-induced NETs are enriched for actin and are resistant to serum and DNase degradation. These findings demonstrate a distinct physiological NETosis pathway in response to MSU crystals, which coats MSU crystals in DNA that persists in tissues as gouty tophi.
Collapse
|
28
|
Yang ASP, O'Neill MT, Jennison C, Lopaticki S, Allison CC, Armistead JS, Erickson SM, Rogers KL, Ellisdon AM, Whisstock JC, Tweedell RE, Dinglasan RR, Douglas DN, Kneteman NM, Boddey JA. Cell Traversal Activity Is Important for Plasmodium falciparum Liver Infection in Humanized Mice. Cell Rep 2017; 18:3105-3116. [PMID: 28355563 DOI: 10.1016/j.celrep.2017.03.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/06/2017] [Accepted: 03/02/2017] [Indexed: 01/29/2023] Open
Abstract
Malaria sporozoites are deposited into the skin by mosquitoes and infect hepatocytes. The molecular basis of how Plasmodium falciparum sporozoites migrate through host cells is poorly understood, and direct evidence of its importance in vivo is lacking. Here, we generated traversal-deficient sporozoites by genetic disruption of sporozoite microneme protein essential for cell traversal (PfSPECT) or perforin-like protein 1 (PfPLP1). Loss of either gene did not affect P. falciparum growth in erythrocytes, in contrast with a previous report that PfPLP1 is essential for merozoite egress. However, although traversal-deficient sporozoites could invade hepatocytes in vitro, they could not establish normal liver infection in humanized mice. This is in contrast with NF54 sporozoites, which infected the humanized mice and developed into exoerythrocytic forms. This study demonstrates that SPECT and perforin-like protein 1 (PLP1) are critical for transcellular migration by P. falciparum sporozoites and demonstrates the importance of cell traversal for liver infection by this human pathogen.
Collapse
|
29
|
Whitehead LW, McArthur K, Geoghegan ND, Rogers KL. The reinvention of twentieth century microscopy for three‐dimensional imaging. Immunol Cell Biol 2017; 95:520-524. [DOI: 10.1038/icb.2017.36] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 12/30/2022]
|
30
|
Stewart RJ, Whitehead L, Nijagal B, Sleebs BE, Lessene G, McConville MJ, Rogers KL, Tonkin CJ. Analysis of Ca 2+ mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules. Cell Microbiol 2017; 19. [PMID: 27781359 DOI: 10.1111/cmi.12685] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
Abstract
Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.
Collapse
|
31
|
Riglar DT, Whitehead L, Cowman AF, Rogers KL, Baum J. Localisation-based imaging of malarial antigens during erythrocyte entry reaffirms a role for AMA1 but not MTRAP in invasion. J Cell Sci 2015; 129:228-42. [PMID: 26604223 PMCID: PMC4732298 DOI: 10.1242/jcs.177741] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/16/2015] [Indexed: 01/17/2023] Open
Abstract
Microscopy-based localisation of proteins during malaria parasite (Plasmodium) invasion of the erythrocyte is widely used for tentative assignment of protein function. To date, however, imaging has been limited by the rarity of invasion events and the poor resolution available, given the micron size of the parasite, which leads to a lack of quantitative measures for definitive localisation. Here, using computational image analysis we have attempted to assign relative protein localisation during invasion using wide-field deconvolution microscopy. By incorporating three-dimensional information we present a detailed assessment of known parasite effectors predicted to function during entry but as yet untested or for which data are equivocal. Our method, termed longitudinal intensity profiling, resolves confusion surrounding the localisation of apical membrane antigen 1 (AMA1) at the merozoite–erythrocyte junction and predicts that the merozoite thrombospondin-related anonymous protein (MTRAP) is unlikely to play a direct role in the mechanics of entry, an observation supported with additional biochemical evidence. This approach sets a benchmark for imaging of complex micron-scale events and cautions against simplistic interpretations of small numbers of representative images for the assignment of protein function or prioritisation of candidates as therapeutic targets. Highlighted Article: Here we develop a high-definition imaging approach to dissect and assign function to proteins involved in the rapid process of malaria parasite invasion of the human erythrocyte.
Collapse
|
32
|
Dragavon J, Sinow C, Holland AD, Rekiki A, Theodorou I, Samson C, Blazquez S, Rogers KL, Tournebize R, Shorte SL. A step beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL). J Vis Exp 2014. [PMID: 24894759 PMCID: PMC4207116 DOI: 10.3791/51549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging.
Collapse
|
33
|
Kan A, Tan YH, Angrisano F, Hanssen E, Rogers KL, Whitehead L, Mollard VP, Cozijnsen A, Delves MJ, Crawford S, Sinden RE, McFadden GI, Leckie C, Bailey J, Baum J. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility. Cell Microbiol 2014; 16:734-50. [PMID: 24612056 PMCID: PMC4286792 DOI: 10.1111/cmi.12283] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/22/2014] [Accepted: 02/13/2014] [Indexed: 11/28/2022]
Abstract
Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission.
Collapse
|
34
|
Deris ZZ, Swarbrick JD, Roberts KD, Azad MAK, Akter J, Horne AS, Nation RL, Rogers KL, Thompson PE, Velkov T, Li J. Probing the penetration of antimicrobial polymyxin lipopeptides into gram-negative bacteria. Bioconjug Chem 2014; 25:750-60. [PMID: 24635310 PMCID: PMC3993906 DOI: 10.1021/bc500094d] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The dry antibiotic development pipeline
coupled with the emergence
of multidrug resistant Gram-negative ‘superbugs’ has
driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin
resistance implies a total lack of antibiotics for the treatment of
life-threatening infections. The lack of molecular imaging probes
that possess native polymyxin-like antibacterial activity is a barrier
to understanding the resistance mechanisms and the development of
a new generation of polymyxin lipopeptides. Here we report the regioselective
modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe
that mimics polymyxin B pharmacologically. Time-lapse laser scanning
confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially
accumulates in the outer membrane and subsequently penetrates into
the inner membrane and finally the cytoplasm. The implementation of
this polymyxin-mimetic probe will advance the development of platforms
for the discovery of novel polymyxin lipopeptides with efficacy against
polymyxin-resistant strains.
Collapse
|
35
|
Dragavon J, Rekiki A, Theodorou I, Samson C, Blazquez S, Rogers KL, Tournebize R, Shorte S. In vitro and in vivo demonstrations of Fluorescence by Unbound Excitation from Luminescence (FUEL). Methods Mol Biol 2014; 1098:259-270. [PMID: 24166383 DOI: 10.1007/978-1-62703-718-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bioluminescence imaging is a powerful technique that allows for deep-tissue analysis in living, intact organisms. However, in vivo optical imaging is compounded by difficulties due to light scattering and absorption. While light scattering is relatively difficult to overcome and compensate, light absorption by biological tissue is strongly dependent upon wavelength. For example, light absorption by mammalian tissue is highest in the blue-yellow part of the visible energy spectrum. Many natural bioluminescent molecules emit photonic energy in this range, thus in vivo optical detection of these molecules is primarily limited by absorption. This has driven efforts for probe development aimed to enhance photonic emission of red light that is absorbed much less by mammalian tissue using either direct genetic manipulation, and/or resonance energy transfer methods. Here we describe a recently identified alternative approach termed Fluorescence by Unbound Excitation from Luminescence (FUEL), where bioluminescent molecules are able to induce a fluorescent response from fluorescent nanoparticles through an epifluorescence mechanism, thereby significantly increasing both the total number of detectable photons as well as the number of red photons produced.
Collapse
|
36
|
Zuccala ES, Gout AM, Dekiwadia C, Marapana DS, Angrisano F, Turnbull L, Riglar DT, Rogers KL, Whitchurch CB, Ralph SA, Speed TP, Baum J. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite. PLoS One 2012; 7:e46160. [PMID: 23049965 PMCID: PMC3458004 DOI: 10.1371/journal.pone.0046160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.
Collapse
|
37
|
Pase L, Layton JE, Wittmann C, Ellett F, Nowell CJ, Reyes-Aldasoro CC, Varma S, Rogers KL, Hall CJ, Keightley MC, Crosier PS, Grabher C, Heath JK, Renshaw SA, Lieschke GJ. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol 2012; 22:1818-24. [PMID: 22940471 DOI: 10.1016/j.cub.2012.07.060] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 07/05/2012] [Accepted: 07/27/2012] [Indexed: 01/15/2023]
Abstract
Prompt neutrophil arrival is critical for host defense immediately after injury [1-3]. Following wounding, a hydrogen peroxide (H(2)O(2)) burst generated in injured tissues is the earliest known leukocyte chemoattractant [4]. Generating this tissue-scale H(2)O(2) gradient uses dual oxidase [4] and neutrophils sense H(2)O(2) by a mechanism involving the LYN Src-family kinase [5], but the molecular mechanisms responsible for H(2)O(2) clearance are unknown [6]. Neutrophils carry abundant amounts of myeloperoxidase, an enzyme catalyzing an H(2)O(2)-consuming reaction [7, 8]. We hypothesized that this neutrophil-delivered myeloperoxidase downregulates the high tissue H(2)O(2) concentrations that follow wounding. This was tested in zebrafish using simultaneous fluorophore-based imaging of H(2)O(2) concentrations and leukocytes [4, 9-11] and a new neutrophil-replete but myeloperoxidase-deficient mutant (durif). Leukocyte-depleted zebrafish had an abnormally sustained wound H(2)O(2) burst, indicating that leukocytes themselves were required for H(2)O(2) downregulation. Myeloperoxidase-deficient zebrafish also had abnormally sustained high wound H(2)O(2) concentrations despite similar numbers of arriving neutrophils. A local H(2)O(2)/myeloperoxidase interaction within wound-recruited neutrophils was demonstrated. These data demonstrate that leukocyte-delivered myeloperoxidase cell-autonomously downregulates tissue-generated wound H(2)O(2) gradients in vivo, defining a new requirement for myeloperoxidase during inflammation. Durif provides a new animal model of myeloperoxidase deficiency closely phenocopying the prevalent human disorder [7, 12, 13], offering unique possibilities for investigating its clinical consequences.
Collapse
|
38
|
Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Dowling MR, White MJ, Kruse EA, Lane RM, Ellis S, Nurden P, Mason KD, O'Reilly LA, Roberts AW, Metcalf D, Huang DC, Kile BT. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. J Biophys Biochem Cytol 2011. [DOI: 10.1083/jcb1946oia12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Josefsson EC, James C, Henley KJ, Debrincat MA, Rogers KL, Dowling MR, White MJ, Kruse EA, Lane RM, Ellis S, Nurden P, Mason KD, O'Reilly LA, Roberts AW, Metcalf D, Huang DCS, Kile BT. Megakaryocytes possess a functional intrinsic apoptosis pathway that must be restrained to survive and produce platelets. ACTA ACUST UNITED AC 2011; 208:2017-31. [PMID: 21911424 PMCID: PMC3182050 DOI: 10.1084/jem.20110750] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Deletion of Bak and Bax, the effectors of mitochondrial apoptosis, does not affect platelet production, however, loss of prosurvival Bcl-xL results in megakaryocyte apoptosis and failure of platelet shedding. It is believed that megakaryocytes undergo a specialized form of apoptosis to shed platelets. Conversely, a range of pathophysiological insults, including chemotherapy, are thought to cause thrombocytopenia by inducing the apoptotic death of megakaryocytes and their progenitors. To resolve this paradox, we generated mice with hematopoietic- or megakaryocyte-specific deletions of the essential mediators of apoptosis, Bak and Bax. We found that platelet production was unperturbed. In stark contrast, deletion of the prosurvival protein Bcl-xL resulted in megakaryocyte apoptosis and a failure of platelet shedding. This could be rescued by deletion of Bak and Bax. We examined the effect on megakaryocytes of three agents that activate the intrinsic apoptosis pathway in other cell types: etoposide, staurosporine, and the BH3 mimetic ABT-737. All three triggered mitochondrial damage, caspase activation, and cell death. Deletion of Bak and Bax rendered megakaryocytes resistant to etoposide and ABT-737. In vivo, mice with a Bak−/− Bax−/− hematopoietic system were protected against thrombocytopenia induced by the chemotherapeutic agent carboplatin. Thus, megakaryocytes do not activate the intrinsic pathway to generate platelets; rather, the opposite is true: they must restrain it to survive and progress safely through proplatelet formation and platelet shedding.
Collapse
|
40
|
Short KR, Diavatopoulos DA, Reading PC, Brown LE, Rogers KL, Strugnell RA, Wijburg OLC. Using bioluminescent imaging to investigate synergism between Streptococcus pneumoniae and influenza A virus in infant mice. J Vis Exp 2011:2357. [PMID: 21525841 DOI: 10.3791/2357] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During the 1918 influenza virus pandemic, which killed approximately 50 million people worldwide, the majority of fatalities were not the result of infection with influenza virus alone. Instead, most individuals are thought to have succumbed to a secondary bacterial infection, predominately caused by the bacterium Streptococcus pneumoniae (the pneumococcus). The synergistic relationship between infections caused by influenza virus and the pneumococcus has subsequently been observed during the 1957 Asian influenza virus pandemic, as well as during seasonal outbreaks of the virus (reviewed in (1, 2)). Here, we describe a protocol used to investigate the mechanism(s) that may be involved in increased morbidity as a result of concurrent influenza A virus and S. pneumoniae infection. We have developed an infant murine model to reliably and reproducibly demonstrate the effects of influenza virus infection of mice colonised with S. pneumoniae. Using this protocol, we have provided the first insight into the kinetics of pneumococcal transmission between co-housed, neonatal mice using in vivo imaging.
Collapse
|
41
|
Grice ID, Rogers KL, Griffiths LR. Isolation of Bioactive Compounds That Relate to the Anti-Platelet Activity of Cymbopogon ambiguus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:467134. [PMID: 20047890 PMCID: PMC3135635 DOI: 10.1093/ecam/nep213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
Abstract
Infusions and decoctions of Cymbopogon ambiguus have been used traditionally in Australia for the treatment of headache, chest infections and muscle cramps. The aim of the present study was to screen and identify bioactive compounds from C. ambiguus that could explain this plant's anti-headache activity. A dichloromethane extract of C. ambiguus was identified as having activity in adenosine-diphosphate-induced human platelet aggregation and serotonin-release inhibition bioassays. Subsequent fractionation of this extract led to the isolation of four phenylpropenoids, eugenol, elemicin, eugenol methylether and trans-isoelemicin. While both eugenol and elemicin exhibited dose-dependent inhibition of ADP-induced human platelet serotonin release, only eugenol displayed potent inhibitory activity with an IC50 value of 46.6 μM, in comparison to aspirin, with an IC50 value of 46.1 μM. These findings provide evidence to support the therapeutic efficacy of C. ambiguus in the non-conventional treatment of headache and inflammatory conditions.
Collapse
|
42
|
Webb SE, Rogers KL, Karplus E, Miller AL. The use of aequorins to record and visualize Ca(2+) dynamics: from subcellular microdomains to whole organisms. Methods Cell Biol 2010; 99:263-300. [PMID: 21035690 DOI: 10.1016/b978-0-12-374841-6.00010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this chapter, we describe the practical aspects of measuring [Ca(2+)] transients that are generated in a particular cytoplasmic domain, or within a specific organelle or its periorganellar environment, using bioluminescent, genetically encoded and targeted Ca(2+) reporters, especially those based on apoaequorin. We also list examples of the organisms, tissues, and cells that have been transfected with apoaequorin or an apoaequorin-BRET complex, as well as of the organelles and subcellular domains that have been specifically targeted with these bioluminescent Ca(2+) reporters. In addition, we summarize the various techniques used to load the apoaequorin cofactor, coelenterazine, and its analogs into cells, tissues, and intact organisms, and we describe recent advances in the detection and imaging technologies that are currently being used to measure and visualize the luminescence generated by the aequorin-Ca(2+) reaction within these various cytoplasmic domains and subcellular compartments.
Collapse
|
43
|
Roncali E, Savinaud M, Levrey O, Rogers KL, Maitrejean S, Tavitian B. New device for real-time bioluminescence imaging in moving rodents. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054035. [PMID: 19021415 DOI: 10.1117/1.2976426] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bioluminescence imaging (BLI) allows detection of biological functions in genetically modified cells, bacteria, or animals expressing a luciferase (i.e., firefly, Renilla, or aequorin). Given the high sensitivity and minimal toxicity of BLI, in vivo studies on molecular events can be performed noninvasively in living rodents. To date, detection of bioluminescence in living animals has required long exposure times that are incompatible with studies on dynamic signaling pathways or nonanaesthetised freely moving animals. Here we develop an imaging system that allows: 1. bioluminescence to be recorded at a rate of 25 images/s using a third generation intensified charge-coupled device (CCD) camera running in a photon counting mode, and 2. coregistration of a video image from a second CCD camera under infrared lighting. The sensitivity of this instrument permits studies with subsecond temporal resolution in nonanaesthetized and unrestrained mice expressing firefly luciferase and imaging of calcium signaling in transgenic mice expressing green fluorescent protein (GFP) aequorin. This imaging system enables studies on signal transduction, tumor growth, gene expression, or infectious processes in nonanaesthetized and freely moving animals.
Collapse
|
44
|
Rogers KL, Martin JR, Renaud O, Karplus E, Nicola MA, Nguyen M, Picaud S, Shorte SL, Brûlet P. Electron-multiplying charge-coupled detector-based bioluminescence recording of single-cell Ca2+. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:031211. [PMID: 18601535 DOI: 10.1117/1.2937236] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The construction and application of genetically encoded intracellular calcium concentration ([Ca2+]i) indicators has a checkered history. Excitement raised over the creation of new probes is often followed by disappointment when it is found that the initial demonstrations of [Ca2+]i sensing capability cannot be leveraged into real scientific advances. Recombinant apo-aequorin cloned from Aequorea victoria was the first Ca2+ sensitive protein genetically targeted to subcellular compartments. In the jellyfish, bioluminescence resonance energy transfer (BRET) between Ca2+ bound aequorin and green fluorescent protein (GFP) emits green light. Similarly, Ca2+ sensitive bioluminescent reporters undergoing BRET have been constructed between aequorin and GFP, and more recently with other fluorescent protein variants. These hybrid proteins display red-shifted spectrums and have higher light intensities and stability compared to aequorin alone. We report BRET measurement of single-cell [Ca2+]i based on the use of electron-multiplying charge-coupled-detector (EMCCD) imaging camera technology, mounted on either a bioluminescence or conventional microscope. Our results show for the first time how these new technologies make facile long-term monitoring of [Ca2+]i at the single-cell level, obviating the need for expensive, fragile, and sophisticated equipment based on image-photon-detectors (IPD) that were until now the only technical recourse to dynamic BRET experiments of this type.
Collapse
|
45
|
Rogers KL, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brûlet P. Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2007; 2:e974. [PMID: 17912353 PMCID: PMC1991622 DOI: 10.1371/journal.pone.0000974] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/05/2007] [Indexed: 11/19/2022] Open
Abstract
Rapid and transient elevations of Ca(2+) within cellular microdomains play a critical role in the regulation of many signal transduction pathways. Described here is a genetic approach for non-invasive detection of localized Ca(2+) concentration ([Ca(2+)]) rises in live animals using bioluminescence imaging (BLI). Transgenic mice conditionally expressing the Ca(2+)-sensitive bioluminescent reporter GFP-aequorin targeted to the mitochondrial matrix were studied in several experimental paradigms. Rapid [Ca(2+)] rises inside the mitochondrial matrix could be readily detected during single-twitch muscle contractions. Whole body patterns of [Ca(2+)] were monitored in freely moving mice and during epileptic seizures. Furthermore, variations in mitochondrial [Ca(2+)] correlated to behavioral components of the sleep/wake cycle were observed during prolonged whole body recordings of newborn mice. This non-invasive imaging technique opens new avenues for the analysis of Ca(2+) signaling whenever whole body information in freely moving animals is desired, in particular during behavioral and developmental studies.
Collapse
|
46
|
Martin JR, Rogers KL, Chagneau C, Brûlet P. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila. PLoS One 2007; 2:e275. [PMID: 17342209 PMCID: PMC1803028 DOI: 10.1371/journal.pone.0000275] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022] Open
Abstract
Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.
Collapse
|
47
|
Curie T, Rogers KL, Colasante C, Brûlet P. Red-shifted aequorin-based bioluminescent reporters for in vivo imaging of Ca2 signaling. Mol Imaging 2007; 6:30-42. [PMID: 17311763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Real-time visualization of calcium (Ca(2+)) dynamics in the whole animal will enable important advances in understanding the complexities of cellular function. The genetically encoded bioluminescent Ca(2+) reporter green fluorescent protein-aequorin (GA) allows noninvasive detection of intracellular Ca(2+) signaling in freely moving mice. However, the emission spectrum of GA is not optimal for detection of activity from deep tissues in the whole animal. To overcome this limitation, two new reporter genes were constructed by fusing the yellow fluorescent protein (Venus) and the monomeric red fluorescent protein (mRFP1) to aequorin. Transfer of aequorin chemiluminescence energy to Venus (VA) is highly efficient and produces a 58 nm red shift in the peak emission spectrum of aequorin. This substantially improves photon transmission through tissue, such as the skin and thoracic cage. Although the Ca(2+)-induced bioluminescence spectrum of mRFP1-aequorin (RA) is similar to that of aequorin, there is also a small peak above 600 nm corresponding to the peak emission of mRFP1. Small amounts of energy transfer between aequorin and mRFP1 yield an emission spectrum with the highest percentage of total light above 600 nm compared with GA and VA. Accordingly, RA is also detected with higher sensitivity from brain areas. VA and RA will therefore improve optical access to Ca(2+) signaling events in deeper tissues, such as the heart and brain, and offer insight for engineering new hybrid molecules.
Collapse
|
48
|
Curie T, Rogers KL, Colasante C, BrûClet P. Red-Shifted Aequorin-Based Bioluminescent Reporters for in Vivo Imaging of Ca
2+
Signaling. Mol Imaging 2007. [DOI: 10.2310/7290.2006.00033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Rogers KL, Stinnakre J, Agulhon C, Jublot D, Shorte SL, Kremer EJ, Brûlet P. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters. Eur J Neurosci 2005; 21:597-610. [PMID: 15733079 DOI: 10.1111/j.1460-9568.2005.03871.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.
Collapse
|
50
|
Chi L, Rogers KL, Uprichard AC, Gallagher KP. The therapeutic potential of novel anticoagulants. Expert Opin Investig Drugs 2005; 6:1591-605. [PMID: 15989566 DOI: 10.1517/13543784.6.11.1591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Conventional anticoagulant therapy has been based on indirect inhibition of coagulation factors with heparin and warfarin. These agents display liabilities prompting the development of new anticoagulants over the last two decades. The first to be developed was a series of low molecular weight heparins(LMWHs). Their favourable pharmacokinetic profiles and risk/benefit ratios led to widespread use in Europe and, more recently, approval for their use in the USA. Paralleling the development of LMWHs has been the pursuit of a different strategy focused on direct rather than indirect inhibition of enzymes in the coagulation cascade. In contrast to heparin, LMWHs, or other glycosaminoglycans, direct inhibitors exert their effects independent of either antithrombin III (ATIII) or heparin cofactor II (HCII) and more effectively inhibit clot-bound thrombin or FXa. Highly potent, selective (versus other serine proteases)direct thrombin and FXa inhibitors have been identified and isolated from natural sources, such as leeches, ticks and hookworms. The recombinant forms and analogues of the senatural proteins have been produced using molecular biology techniques, i.e., rHirudin, Hirulogs, recombinant tick anticoagulant peptide (rTAP), recombinant antistasin (rATS) and recombinant nematode anticoagulant peptide-5 (rNAP-5). The design of novel structures or the modification of existing chemicals has led to the synthesis of many non-peptide, low molecular weight inhibitors of thrombin and FXa. Some of them are orally active and may be suitable for long-term clinical use. In addition, considerable progress has been made in developing specific TF/VIIa complex inhibitors. The anticoagulation properties of the new agents are being characterised in experimental studies. Some of them have been advanced to large scale clinical trials and their effectiveness, and sometimes relative ineffectiveness,in arterial and venous thromboembolic disorders has been demonstrated. They are being tested for their potential as new antithrombotic agents that act via direct enzyme inhibition. Thus,the clinician should in future be able to target different thrombotic conditions with proven, specific anticoagulant interventions.
Collapse
|