26
|
Popov AB, Stolić I, Krstulović L, Taylor MC, Kelly JM, Tomić S, Tumir L, Bajić M, Raić-Malić S. Novel symmetric bis-benzimidazoles: Synthesis, DNA/RNA binding and antitrypanosomal activity. Eur J Med Chem 2019; 173:63-75. [PMID: 30986572 DOI: 10.1016/j.ejmech.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/22/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
The novel benzimidazol-2-yl-fur-5-yl-(1,2,3)-triazolyl dimeric series with aliphatic and aromatic central linkers was successfully prepared with the aim of assessing binding affinity to DNA/RNA and antitrypanosomal activity. UV-Visible spectroscopy, thermal denaturation showed interaction of heterocyclic bis-amidines with ctDNA. Circular dichroism studies indicated uniform orientation of heterocyclic bis-amidines along the chiral double helix axis, revealing minor groove binding as the dominant binding mode. The amidino fragment and 1,4-bis(oxymethylene)phenyl spacer were the main determinants of activity against Trypanosoma brucei. The bis-benzimidazole imidazoline 15c, which had antitrypanosomal potency in the submicromolar range and DNA interacting properties, emerged as a candidate for further structural optimization to obtain more effective agents to combat trypanosome infections.
Collapse
|
27
|
Georgiadis MO, Kourbeli V, Ioannidou V, Karakitsios E, Papanastasiou I, Tsotinis A, Komiotis D, Vocat A, Cole ST, Taylor MC, Kelly JM. Synthesis of diphenoxyadamantane alkylamines with pharmacological interest. Bioorg Med Chem Lett 2019; 29:1278-1281. [PMID: 30981579 DOI: 10.1016/j.bmcl.2019.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 01/31/2023]
Abstract
In this work, the synthesis and the pharmacological evaluation of diphenoxyadamantane alkylamines Ia-f and IIa-f is described. The new diphenoxy-substituted adamantanes share structural features present in trypanocidal and antitubercular agents. 1-Methylpiperazine derivative Ia is the most potent against T. brucei compound, whilst its hexylamine congener IIf exhibits a significant antimycobacterial activity.
Collapse
|
28
|
Karpe AV, Dunn MS, Taylor MC, Nguyen T, Ong C, Karla T, Rockman S, Beale DJ. Nitrogen deprivation in Fusarium oxysporum promotes mycotoxin production via intermediates in the Krebs cycle and unreported methylmalonyl-CoA mutase activity. Metabolomics 2018; 14:160. [PMID: 30830469 DOI: 10.1007/s11306-018-1459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Fusarium oxysporum has a high affinity for lignin and cellulose-based substrates and is known to grow in a wide range of environments. It is these properties and its ability to produce mycotoxins that have contributed to its pathogenicity in cereal crops that can affect human and animal health when ingested. OBJECTIVES Identify the mechanisms of mycotoxin production and map the functional output of F. oxysporum under varying growth conditions. METHODS Liquid and gas-based chromatography coupled with mass spectrometry was used to identify and map the untargeted metabolic pathway of F. oxysporum grown using nitrogen limited and organic/inorganic nitrogen supplemented media. RESULTS Over 1300 metabolites were identified, relating to 42 metabolic pathways. Of these, 520 metabolites merged at pyruvate (glycolysis), succinate (Krebs cycle) and aspartate-glutamate metabolic pathways. CoA depletion at the growth stage triggered the initiation of fatty acid and branched amino acid degradation. This in turn activated propionyl CoA carnitine acetyltransferase enzymes, resulting in nitrogen preservation (urea, putrescine and organic acids end-products). CoA then transferred into the TCA cycle via previously unreported β-alanine and propionyl CoA metabolic pathways, the latter likely being a novel methylmalonyl-CoA mutase activity for F. oxysporum. CONCLUSIONS The lower supplementation of inorganic nitrogen compounds (≤ 50 mM) and the elimination of nitrates/organic nitrogen sources resulted in TCA autophagy events that boosted mycotoxin-based metabolism and decreased overall F. oxysporum growth. Such knowledge of functional mycotoxin production can be used to supplement agricultural crops and reduce the risk of mycotoxin contamination in human and animal food supplies.
Collapse
|
29
|
Bistrović A, Krstulović L, Stolić I, Drenjančević D, Talapko J, Taylor MC, Kelly JM, Bajić M, Raić-Malić S. Synthesis, anti-bacterial and anti-protozoal activities of amidinobenzimidazole derivatives and their interactions with DNA and RNA. J Enzyme Inhib Med Chem 2018; 33:1323-1334. [PMID: 30165753 PMCID: PMC6127852 DOI: 10.1080/14756366.2018.1484733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 02/09/2023] Open
Abstract
Amidinobenzimidazole derivatives connected to 1-aryl-substituted 1,2,3-triazole through phenoxymethylene linkers 7a-7e, 8a-8e, and 9a-9e were designed and synthesised with the aim of evaluating their anti-bacterial and anti-trypanosomal activities and DNA/RNA binding affinity. Results from anti-bacterial evaluations of antibiotic-resistant pathogenic bacteria revealed that both o-chlorophenyl-1,2,3-triazole and N-isopropylamidine moieties in 8c led to strong inhibitory activity against resistant Gram-positive bacteria, particularly the MRSA strain. Furthermore, the non-substituted amidine and phenyl ring in 7a induced a marked anti-bacterial effect, with potency against ESBL-producing Gram-negative E. coli better than those of the antibiotics ceftazidime and ciprofloxacin. UV-Vis and CD spectroscopy, as well as thermal denaturation assays, indicated that compounds 7a and 8c showed also binding affinities towards ctDNA. Anti-trypanosomal evaluations showed that the p-methoxyphenyl-1,2,3-triazole moiety in 7b and 9b enhanced inhibitory activity against T. brucei, with 8b being more potent than nifurtimox, and having minimal toxicity towards mammalian cells.
Collapse
|
30
|
|
31
|
Dahal LN, Huang CY, Stopforth RJ, Mead A, Chan K, Bowater JX, Taylor MC, Narang P, Chan HTC, Kim JH, Vaughan AT, Forconi F, Beers SA. Shaving Is an Epiphenomenon of Type I and II Anti-CD20-Mediated Phagocytosis, whereas Antigenic Modulation Limits Type I Monoclonal Antibody Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1211-1221. [PMID: 29997125 PMCID: PMC6082343 DOI: 10.4049/jimmunol.1701122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 06/10/2018] [Indexed: 01/09/2023]
Abstract
Rituximab is an anti-CD20 mAb used in the treatment of B cell malignancies. Loss of surface CD20 Ag from the surface of target cells is thought to be one mechanism governing resistance to rituximab, but how this occurs is not completely understood. Two explanations for this have been proposed: antigenic modulation whereby mAb:CD20 complexes are internalized in a B cell intrinsic process and shaving, in which mAb:CD20 complexes undergo trogocytic removal by effector cells, such as macrophages. However, there is conflicting evidence as to which predominates in clinical scenarios and hence the best strategies to overcome resistance. In this study, we investigated the relative importance of modulation and shaving in the downregulation of surface mAb:CD20. We used both murine and human systems and treated ex vivo macrophages with varying concentrations of non-FcγR-interacting beads to achieve differential macrophage saturation states, hence controllably suppressing further phagocytosis of target cells. We then monitored the level and localization of mAb:CD20 using a quenching assay. Suppression of phagocytosis with bead treatment decreased shaving and increased modulation, suggesting that the two compete for surface rituximab:CD20. Under all conditions tested, modulation predominated in rituximab loss, whereas shaving represented an epiphenomenon to phagocytosis. We also demonstrate that the nonmodulating, glycoengineered, type II mAb obinutuzumab caused a modest but significant increase in shaving compared with type II BHH2 human IgG1 wild-type mAb. Therefore, shaving may represent an important mechanism of resistance when modulation is curtailed, and glycoengineering mAb to increase affinity for FcγR may enhance resistance because of shaving.
Collapse
|
32
|
Lewis MD, Francisco AF, Jayawardhana S, Langston H, Taylor MC, Kelly JM. Imaging the development of chronic Chagas disease after oral transmission. Sci Rep 2018; 8:11292. [PMID: 30050153 PMCID: PMC6062536 DOI: 10.1038/s41598-018-29564-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease is a zoonosis caused by the protozoan parasite Trypanosoma cruzi. Transmission cycles are maintained by haematophagous triatomine bug vectors that carry infective T. cruzi in their faeces. Most human infections are acquired by contamination of mucosal membranes with triatomine faeces after being bitten, however, T. cruzi can be transmitted by several other routes. Oral transmission is an increasingly important aspect of Chagas disease epidemiology, typically involving food or drink products contaminated with triatomines. This has recently caused numerous outbreaks and been linked to unusually severe acute infections. The long-term impact of oral transmission on infection dynamics and disease pathogenesis is unclear. We used highly sensitive bioluminescence imaging and quantitative histopathology to study orally transmitted T. cruzi infections in mice. Both metacyclic and bloodform trypomastigotes were infectious via the oral cavity, but only metacyclics led to established infections by intra-gastric gavage. Mice displayed only mild acute symptoms but later developed significantly increased myocardial collagen content (p = 0.017), indicative of fibrosis. Gastrointestinal tissues and skin were the principal chronic infection reservoirs. Chronic phase parasite load profiles, tissue distribution and myocardial fibrosis severity were comparable to needle-injected controls. Thus, the oral route neither exacerbates nor ameliorates experimental Chagas disease.
Collapse
|
33
|
Olmo F, Costa FC, Mann GS, Taylor MC, Kelly JM. Optimising genetic transformation of Trypanosoma cruzi using hydroxyurea-induced cell-cycle synchronisation. Mol Biochem Parasitol 2018; 226:34-36. [PMID: 29990513 PMCID: PMC6254250 DOI: 10.1016/j.molbiopara.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/29/2022]
Abstract
A straightforward method for optimising Trypanosoma cruzi transfection efficiency. Facilitated by hydroxyurea-induced cell-cycle synchronization. Applicable to both episomal and integrative-mediated transformation. Reduces the time required to generate genetically modified cell lines. Increases the number of stably transformed clones.
The limited flexibility and time-consuming nature of the genetic manipulation procedures applicable to Trypanosoma cruzi continue to restrict the functional dissection of this parasite. We hypothesised that transformation efficiency could be enhanced if electroporation was timed to coincide with DNA replication. To test this, we generated epimastigote cultures enriched at the G1/S boundary using hydroxyurea-induced cell-cycle synchronisation, and then electroporated parasites at various time points after release from the cell-cycle block. We found a significant increase in transformation efficiency, with both episomal and integrative constructs, when cultures were electroporated 1 h after hydroxyurea removal. It was possible to generate genetically modified populations in less than 2 weeks, compared to the normal 4–6 weeks, with a 5 to 8-fold increase in the number of stably transformed clones. This straightforward optimisation step can be widely applied and should help streamline functional studies in T. cruzi.
Collapse
|
34
|
Artigas A, Sola I, Taylor MC, Clos MV, Perez B, Kelly JM, Munoz-Torrero D. Synthesis and Biological Evaluation of Heteroarylnonanenitriles as Potential Antitrypanosomal Agents: Serendipitous Discovery of Novel Anticholinesterase Hits. LETT ORG CHEM 2018. [DOI: 10.2174/1570178615666171219164459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Zoidis G, Tsotinis A, Tsatsaroni A, Taylor MC, Kelly JM, Efstathiou A, Smirlis D, Fytas G. Lipophilic conformationally constrained spiro carbocyclic 2,6-diketopiperazine-1-acetohydroxamic acid analogues as trypanocidal and leishmanicidal agents: An extended SAR study. Chem Biol Drug Des 2017; 91:408-421. [PMID: 28834291 DOI: 10.1111/cbdd.13088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/18/2017] [Accepted: 08/09/2017] [Indexed: 01/13/2023]
Abstract
We have previously described a number of lipophilic conformationally constrained spiro carbocyclic 2,6-diketopiperazine (2,6-DKP)-1-acetohydroxamic acids as potent antitrypanosomal agents. In this report, we extend the SAR analysis in this class of compounds with respect to in vitro growth inhibition of Trypanosoma and Leishmania parasites. Introduction of bulky hydrophobic substituents at the vicinal position of the basic nitrogen atom in the spiro carbocyclic 2,6-DKP ring system can provide analogues which are potently active against bloodstream form Trypanosoma brucei and exhibit significant activities toward Trypanosoma cruzi epimastogotes and Leishmania infantum promastigotes and intracellular amastigotes. In particular, compounds possessing a benzyl or 4-chlorobenzyl substituent were found to be the most active growth inhibitors, with activities in the low nanomolar and low micromolar ranges for T. brucei and L. infantum, respectively. The benzyl-substituted (S)-enantiomer was the most potent derivative against T. brucei (IC50 = 6.8 nm), T. cruzi (IC50 = 0.21 μm), and L. infantum promastigotes (IC50 = 2.67 μm) and intracellular amastigotes (IC50 = 2.60 μm). Moreover, the (R)-chiral benzyl-substituted derivative and its racemic counterpart displayed significant activities against L. donovani. Importantly, the active compounds show high selectivity in comparison with two mammalian cell lines.
Collapse
|
36
|
Geoghegan PH, Laffra AM, Hoogendorp NK, Taylor MC, Jermy MC. Experimental measurement of breath exit velocity and expirated bloodstain patterns produced under different exhalation mechanisms. Int J Legal Med 2017; 131:1193-1201. [PMID: 28154922 DOI: 10.1007/s00414-017-1545-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/19/2017] [Indexed: 11/24/2022]
Abstract
In an attempt to obtain a deeper understanding of the factors which determine the characteristics of expirated bloodstain patterns, the mechanism of formation of airborne droplets was studied. Hot wire anemometry measured air velocity, 25 mm from the lips, for 31 individuals spitting, coughing and blowing. Expirated stains were produced by the same mechanisms performed by one individual with different volumes of a synthetic blood substitute in their mouth. The atomization of the liquid at the lips was captured with high-speed video, and the resulting stain patterns were captured on paper targets. Peak air velocities varied for blowing (6 to 64 m/s), spitting (1 to 64 m/s) and coughing (1 to 47 m/s), with mean values of 12 m/s (blowing), 7 m/s (spitting) and 4 m/s (coughing). There was a large (55-65%) variation between individuals in air velocity produced, as well as variation between trials for a single individual (25-35%). Spitting and blowing involved similar lip shapes. Blowing had a longer duration of airflow, though it is not the duration but the peak velocity at the beginning of the air motion which appears to control the atomization of blood in the mouth and thus stain formation. Spitting could project quantities of drops at least 1600 mm. Coughing had a shorter range of near 500 mm, with a few droplets travelling further. All mechanisms could spread drops over an angle >45°. Spitting was the most effective for projecting drops of blood from the mouth, due to its combination of chest motion and mouth shape producing strong air velocities. No unique method was found of inferring the physical action (spitting, coughing or blowing) from characteristics of the pattern, except possibly distance travelled. Diameter range in expirated bloodstains varied from very small (<1 mm) in a dense formation to several millimetres. No unique method was found of discriminating expirated patterns from gunshot or impact patterns on stain shape alone. Only 20% of the expirated patterns produced in this study contained identifiable bubble rings or beaded stains.
Collapse
|
37
|
Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics shape a link between Trypanosoma cruzi infection dynamics and chronic cardiomyopathy. Cell Microbiol 2016; 18:1429-43. [PMID: 26918803 PMCID: PMC5031194 DOI: 10.1111/cmi.12584] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/21/2016] [Indexed: 12/15/2022]
Abstract
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue-specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end-point frequency of heart-specific infections ranged from 0% in TcVI-CLBR-infected C57BL/6 to 88% in TcI-JR-infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model-dependent frequency of dissemination outside the gut and inferred cumulative heart-specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.
Collapse
|
38
|
Sola I, Artigas A, Taylor MC, Pérez-Areales FJ, Viayna E, Clos MV, Pérez B, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and biological evaluation of N-cyanoalkyl-, N-aminoalkyl-, and N-guanidinoalkyl-substituted 4-aminoquinoline derivatives as potent, selective, brain permeable antitrypanosomal agents. Bioorg Med Chem 2016; 24:5162-5171. [PMID: 27591008 PMCID: PMC5080452 DOI: 10.1016/j.bmc.2016.08.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 11/30/2022]
Abstract
Current drugs against human African trypanosomiasis (HAT) suffer from several serious drawbacks. The search for novel, effective, brain permeable, safe, and inexpensive antitrypanosomal compounds is therefore an urgent need. We have recently reported that the 4-aminoquinoline derivative huprine Y, developed in our group as an anticholinesterasic agent, exhibits a submicromolar potency against Trypanosoma brucei and that its homo- and hetero-dimerization can result in to up to three-fold increased potency and selectivity. As an alternative strategy towards more potent smaller molecule anti-HAT agents, we have explored the introduction of ω-cyanoalkyl, ω-aminoalkyl, or ω-guanidinoalkyl chains at the primary amino group of huprine or the simplified 4-aminoquinoline analogue tacrine. Here, we describe the evaluation of a small in-house library and a second generation of newly synthesized derivatives, which has led to the identification of 13 side chain modified 4-aminoquinoline derivatives with submicromolar potencies against T. brucei. Among these compounds, the guanidinononyltacrine analogue 15e exhibits a 5-fold increased antitrypanosomal potency, 10-fold increased selectivity, and 100-fold decreased anticholinesterasic activity relative to the parent huprine Y. Its biological profile, lower molecular weight relative to dimeric compounds, reduced lipophilicity, and ease of synthesis, make it an interesting anti-HAT lead, amenable to further optimization to eliminate its remaining anticholinesterasic activity.
Collapse
|
39
|
Foscolos AS, Papanastasiou I, Foscolos GB, Tsotinis A, Kellici TF, Mavromoustakos T, Taylor MC, Kelly JM. New hydrazones of 5-nitro-2-furaldehyde with adamantanealkanohydrazides: synthesis and in vitro trypanocidal activity. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00035e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of hydrazones of 5-nitro-2-furaldehyde with adamantane alkanohydrazides was synthesized and their trypanocidal activity was evaluated.
Collapse
|
40
|
Di Pietro O, Vicente-García E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Muñoz-Torrero D. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105:120-37. [PMID: 26479031 PMCID: PMC4638191 DOI: 10.1016/j.ejmech.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2–4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells. Novel classes of tricyclic heterofused quinolines have been synthesized. Their 2–4-step syntheses involve a multicomponent Povarov reaction as the key step. Some compounds exhibit single digit micromolar potencies against 2 trypanosomatids. All compounds with multi-trypanosomatid activity can cross the blood–brain barrier. Most compounds with multi-trypanosomatid activity have drug like properties.
Collapse
|
41
|
Radford GE, Taylor MC, Kieser JA, Waddell JN, Walsh KAJ, Schofield JC, Das R, Chakravorty E. Simulating backspatter of blood from cranial gunshot wounds using pig models. Int J Legal Med 2015; 130:985-994. [PMID: 26156450 DOI: 10.1007/s00414-015-1219-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/22/2015] [Indexed: 11/29/2022]
Abstract
Few studies have examined the biomechanical basis for backspatter from cranial gunshot wounds. Backspatter is material which travels against the direction of fire following ejection from a gunshot entrance wound. Our paper focuses on the use of animals for reconstructing this phenomenon. Five live pigs and several slaughtered pigs were shot using either 9 × 19 mm, 115 grain, full metal jacketed ammunition or .22 long rifle, 40 grain, lead, round-nose ammunition. A high-speed camera was used to record the entrance wound formation and backspatter. A small amount of backspattered material was produced with all targets, and blood backspatter was seen in a few cases. However, we conclude that our model provides an understanding of the phenomenon of backspatter and the physical mechanisms associated with it. The various components of the mechanism of backspatter formation are complex and overlap. The principle mechanism observed in pig cranial gunshots was the high-speed impact response of the skin overlying the skull bone. This study has also produced evidence supporting the view that backspatter can result from the splashing of superficial blood if it is already present on the skin. Subcutaneous gas effects have been demonstrated for backspatter from contact shots. There has been no clear evidence of the role of the collapse of a temporary cavity within the brain.
Collapse
|
42
|
Taylor MC, Lewis MD, Francisco AF, Wilkinson SR, Kelly JM. The Trypanosoma cruzi vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant of virulence. PLoS Negl Trop Dis 2015; 9:e0003707. [PMID: 25875298 PMCID: PMC4395405 DOI: 10.1371/journal.pntd.0003707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The neglected parasitic infection Chagas disease is rapidly becoming a globalised public health issue due to migration. There are only two anti-parasitic drugs available to treat this disease, benznidazole and nifurtimox. Thus it is important to identify and validate new drug targets in Trypanosoma cruzi, the causative agent. T. cruzi expresses an ER-localised ascorbate-dependent peroxidase (TcAPx). This parasite-specific enzyme has attracted interest from the perspective of targeted chemotherapy. METHODOLOGY/PRINCIPAL FINDINGS To assess the importance of TcAPx in protecting T. cruzi from oxidative stress and to determine if it is essential for virulence, we generated null mutants by targeted gene disruption. Loss of activity was associated with increased sensitivity to exogenous hydrogen peroxide, but had no effect on susceptibility to the front-line Chagas disease drug benznidazole. This suggests that increased oxidative stress in the ER does not play a significant role in its mechanism of action. Homozygous knockouts could proceed through the entire life-cycle in vitro, although they exhibited a significant decrease in their ability to infect mammalian cells. To investigate virulence, we exploited a highly sensitive bioluminescence imaging system which allows parasites to be monitored in real-time in the chronic stage of murine infections. This showed that depletion of enzyme activity had no effect on T. cruzi replication, dissemination or tissue tropism in vivo. CONCLUSIONS/SIGNIFICANCE TcAPx is not essential for parasite viability within the mammalian host, does not have a significant role in establishment or maintenance of chronic infections, and should therefore not be considered a priority for drug design.
Collapse
|
43
|
Sola I, Castellà S, Viayna E, Galdeano C, Taylor MC, Gbedema SY, Pérez B, Clos MV, Jones DC, Fairlamb AH, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis, biological profiling and mechanistic studies of 4-aminoquinoline-based heterodimeric compounds with dual trypanocidal-antiplasmodial activity. Bioorg Med Chem 2015; 23:5156-67. [PMID: 25678015 DOI: 10.1016/j.bmc.2015.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/16/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
Dual submicromolar trypanocidal-antiplasmodial compounds have been identified by screening and chemical synthesis of 4-aminoquinoline-based heterodimeric compounds of three different structural classes. In Trypanosoma brucei, inhibition of the enzyme trypanothione reductase seems to be involved in the potent trypanocidal activity of these heterodimers, although it is probably not the main biological target. Regarding antiplasmodial activity, the heterodimers seem to share the mode of action of the antimalarial drug chloroquine, which involves inhibition of the haem detoxification process. Interestingly, all of these heterodimers display good brain permeabilities, thereby being potentially useful for late stage human African trypanosomiasis. Future optimization of these compounds should focus mainly on decreasing cytotoxicity and acetylcholinesterase inhibitory activity.
Collapse
|
44
|
Sola I, Artigas A, Taylor MC, Gbedema SY, Pérez B, Clos MV, Wright CW, Kelly JM, Muñoz-Torrero D. Synthesis and antiprotozoal activity of oligomethylene- and p-phenylene-bis(methylene)-linked bis(+)-huprines. Bioorg Med Chem Lett 2014; 24:5435-8. [DOI: 10.1016/j.bmcl.2014.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 01/24/2023]
|
45
|
Shameer S, Logan-Klumpler FJ, Vinson F, Cottret L, Merlet B, Achcar F, Boshart M, Berriman M, Breitling R, Bringaud F, Bütikofer P, Cattanach AM, Bannerman-Chukualim B, Creek DJ, Crouch K, de Koning HP, Denise H, Ebikeme C, Fairlamb AH, Ferguson MAJ, Ginger ML, Hertz-Fowler C, Kerkhoven EJ, Mäser P, Michels PAM, Nayak A, Nes DW, Nolan DP, Olsen C, Silva-Franco F, Smith TK, Taylor MC, Tielens AGM, Urbaniak MD, van Hellemond JJ, Vincent IM, Wilkinson SR, Wyllie S, Opperdoes FR, Barrett MP, Jourdan F. TrypanoCyc: a community-led biochemical pathways database for Trypanosoma brucei. Nucleic Acids Res 2014; 43:D637-44. [PMID: 25300491 PMCID: PMC4384016 DOI: 10.1093/nar/gku944] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.
Collapse
|
46
|
Lewis MD, Francisco AF, Taylor MC, Kelly JM. A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. ACTA ACUST UNITED AC 2014; 20:36-43. [PMID: 25296657 PMCID: PMC4361455 DOI: 10.1177/1087057114552623] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, one of the world’s major neglected infections. Although development of improved antiparasitic drugs is considered a priority, there have been no significant treatment advances in the past 40 years. Factors that have limited progress include an incomplete understanding of pathogenesis, tissue tropism, and disease progression. In addition, in vivo models, which allow parasite burdens to be tracked throughout the chronic stage of infection, have been lacking. To address these issues, we have developed a highly sensitive in vivo imaging system based on bioluminescent T. cruzi, which express a red-shifted luciferase that emits light in the tissue-penetrating orange-red region of the spectrum. The exquisite sensitivity of this noninvasive murine model has been exploited to monitor parasite burden in real time throughout the chronic stage, has allowed the identification of the gastrointestinal tract as the major niche of long-term infection, and has demonstrated that chagasic heart disease can develop in the absence of locally persistent parasites. Here, we review the parameters of the imaging system and describe how this experimental model can be incorporated into drug development programs as a valuable tool for assessing efficacy against both acute and chronic T. cruzi infections.
Collapse
|
47
|
Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM. Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue-specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 2014; 16:1285-300. [PMID: 24712539 PMCID: PMC4190689 DOI: 10.1111/cmi.12297] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
Summary Chronic Trypanosoma cruzi infections lead to cardiomyopathy in 20–30% of cases. A causal link between cardiac infection and pathology has been difficult to establish because of a lack of robust methods to detect scarce, focally distributed parasites within tissues. We developed a highly sensitive bioluminescence imaging system based on T. cruzi expressing a novel luciferase that emits tissue-penetrating orange-red light. This enabled long-term serial evaluation of parasite burdens in individual mice with an in vivo limit of detection of significantly less than 1000 parasites. Parasite distributions during chronic infections were highly focal and spatiotemporally dynamic, but did not localize to the heart. End-point ex vivo bioluminescence imaging allowed tissue-specific quantification of parasite loads with minimal sampling bias. During chronic infections, the gastro-intestinal tract, specifically the colon and stomach, was the only site where T. cruzi infection was consistently observed. Quantitative PCR-inferred parasite loads correlated with ex vivo bioluminescence and confirmed the gut as the parasite reservoir. Chronically infected mice developed myocarditis and cardiac fibrosis, despite the absence of locally persistent parasites. These data identify the gut as a permissive niche for long-term T. cruzi infection and show that canonical features of Chagas disease can occur without continual myocardium-specific infection.
Collapse
|
48
|
Taylor MC, Kelly JM. Optimizing bioluminescence imaging to study protozoan parasite infections. Trends Parasitol 2014; 30:161-2. [PMID: 24485045 DOI: 10.1016/j.pt.2014.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/28/2022]
Abstract
Bioluminescence imaging is a non-invasive technique which can be used to monitor infections in real-time. However, its utility is restricted by difficulties in detecting pathogens in deep tissue. 'Red-shifted' luciferases, which emit light of longer wavelength than standard bioluminescence-generating proteins, greatly enhance sensitivity, and have wide applicability for studying parasite infections.
Collapse
|
49
|
Campos MCO, Leon LL, Taylor MC, Kelly JM. Benznidazole-resistance in Trypanosoma cruzi: evidence that distinct mechanisms can act in concert. Mol Biochem Parasitol 2014; 193:17-9. [PMID: 24462750 PMCID: PMC3988956 DOI: 10.1016/j.molbiopara.2014.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
Abstract
Drug-resistance in T. cruzi can arise independently within a single population. Distinct mechanisms can contribute to benznidazole-resistance in T. cruzi. Stop-codon generating mutations in the TcNTR gene linked to benznidazole-resistance.
Benznidazole is the main drug used to treat Trypanosoma cruzi infections. However, frequent instances of treatment failure have been reported. To better understand potential resistance mechanisms, we analysed three clones isolated from a single parasite population that had undergone benznidazole-selection. These clones exhibited differing levels of benznidazole-resistance (varying between 9 and 26-fold), and displayed cross-resistance to nifurtimox (2 to 4-fold). Each clone had acquired a stop-codon-generating mutation in the gene which encodes the nitroreductase (TcNTR) that is responsible for activating nitroheterocyclic pro-drugs. In addition, one clone had lost a copy of the chromosome containing TcNTR. However, these processes alone are insufficient to account for the extent and diversity of benznidazole-resistance. It is implicit from our results that additional mechanisms must also operate and that T. cruzi has an intrinsic ability to develop drug-resistance by independent sequential steps, even within a single population. This has important implications for drug development strategies.
Collapse
|
50
|
McLatchie AP, Burrell-Saward H, Myburgh E, Lewis MD, Ward TH, Mottram JC, Croft SL, Kelly JM, Taylor MC. Highly sensitive in vivo imaging of Trypanosoma brucei expressing "red-shifted" luciferase. PLoS Negl Trop Dis 2013; 7:e2571. [PMID: 24278497 PMCID: PMC3836995 DOI: 10.1371/journal.pntd.0002571] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022] Open
Abstract
Background Human African trypanosomiasis is caused by infection with parasites of the Trypanosoma brucei species complex, and threatens over 70 million people in sub-Saharan Africa. Development of new drugs is hampered by the limitations of current rodent models, particularly for stage II infections, which occur once parasites have accessed the CNS. Bioluminescence imaging of pathogens expressing firefly luciferase (emission maximum 562 nm) has been adopted in a number of in vivo models of disease to monitor dissemination, drug-treatment and the role of immune responses. However, lack of sensitivity in detecting deep tissue bioluminescence at wavelengths below 600 nm has restricted the wide-spread use of in vivo imaging to investigate infections with T. brucei and other trypanosomatids. Methodology/Principal findings Here, we report a system that allows the detection of fewer than 100 bioluminescent T. brucei parasites in a murine model. As a reporter, we used a codon-optimised red-shifted Photinus pyralis luciferase (PpyRE9H) with a peak emission of 617 nm. Maximal expression was obtained following targeted integration of the gene, flanked by an upstream 5′-variant surface glycoprotein untranslated region (UTR) and a downstream 3′-tubulin UTR, into a T. brucei ribosomal DNA locus. Expression was stable in the absence of selective drug for at least 3 months and was not associated with detectable phenotypic changes. Parasite dissemination and drug efficacy could be monitored in real time, and brain infections were readily detectable. The level of sensitivity in vivo was significantly greater than achievable with a yellow firefly luciferase reporter. Conclusions/Significance The optimised bioluminescent reporter line described here will significantly enhance the application of in vivo imaging to study stage II African trypanosomiasis in murine models. The greatly increased sensitivity provides a new framework for investigating host-parasite relationships, particularly in the context of CNS infections. It should be ideally suited to drug evaluation programmes. Parasites of the Trypanosoma brucei species complex are the causative agents of human African trypanosomiasis. There is an urgent need for new drugs to treat this debilitating and potentially fatal infection, especially in its late stage, when parasites have entered the central nervous system. Factors which hamper drug development include the limitations of the current murine models for stage II disease. In vivo bioluminescence imaging is a non-invasive technique that can be used to monitor infections in real time and is a powerful new approach for studying drug effectiveness. However, application of this imaging technology to trypanosome infections has been restricted because of lack of sensitivity. In this paper, we have taken a major step to resolve this problem. The enhanced sensitivity in infected mice is based on the high level expression in trypanosomes of a “red-shifted” luciferase variant that greatly improves bioluminescence detection in deep tissue. The system which we have developed should be a widely applicable tool for providing new insights into the infection biology of T. brucei.
Collapse
|