26
|
Manetti M, Tani A, Rosa I, Chellini F, Squecco R, Idrizaj E, Zecchi-Orlandini S, Ibba-Manneschi L, Sassoli C. Morphological evidence for telocytes as stromal cells supporting satellite cell activation in eccentric contraction-induced skeletal muscle injury. Sci Rep 2019; 9:14515. [PMID: 31601891 PMCID: PMC6787026 DOI: 10.1038/s41598-019-51078-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Although telocytes (TCs) have been proposed to play a “nursing” role in resident satellite cell (SC)-mediated skeletal muscle regeneration, currently there is no evidence of TC-SC morpho-functional interaction following tissue injury. Hence, we explored the presence of TCs and their relationship with SCs in an ex vivo model of eccentric contraction (EC)-induced muscle damage. EC-injured muscles showed structural/ultrastructural alterations and changes in electrophysiological sarcolemnic properties. TCs were identified in control and EC-injured muscles by either confocal immunofluorescence (i.e. CD34+CD31− TCs) or transmission electron microscopy (TEM). In EC-injured muscles, an extended interstitial network of CD34+ TCs/telopodes was detected around activated SCs displaying Pax7+ and MyoD+ nuclei. TEM revealed that TCs invaded the SC niche passing with their telopodes through a fragmented basal lamina and contacting the underlying activated SCs. TC-SC interaction after injury was confirmed in vitro by culturing single endomysial sheath-covered myofibers and sprouting TCs and SCs. EC-damaged muscle-derived TCs showed increased expression of the recognized pro-myogenic vascular endothelial growth factor-A, and SCs from the same samples exhibited increased MyoD expression and greater tendency to fuse into myotubes. Here, we provide the essential groundwork for further investigation of TC-SC interactions in the setting of skeletal muscle injury and regenerative medicine.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
37 |
27
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
|
Journal Article |
4 |
35 |
28
|
Manetti M, Guiducci S, Romano E, Bellando-Randone S, Lepri G, Bruni C, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M. Increased plasma levels of the VEGF165b splice variant are associated with the severity of nailfold capillary loss in systemic sclerosis. Ann Rheum Dis 2013; 72:1425-7. [PMID: 23572336 DOI: 10.1136/annrheumdis-2012-203183] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
Letter |
12 |
35 |
29
|
Manetti M, Ibba-Manneschi L, Fatini C, Guiducci S, Cuomo G, Bonino C, Bazzichi L, Liakouli V, Giacomelli R, Abbate R, Bombardieri S, Montecucco C, Valentini G, Matucci-Cerinic M. Association of a functional polymorphism in the matrix metalloproteinase-12 promoter region with systemic sclerosis in an Italian population. J Rheumatol 2010; 37:1852-7. [PMID: 20595276 DOI: 10.3899/jrheum.100237] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the possible implication of the matrix metalloproteinase-12 (MMP-12) gene in the genetic predisposition to systemic sclerosis (SSc) susceptibility and clinical phenotype. METHODS The MMP-12 rs2276109 A/G functional polymorphism was selected as a genetic marker and genotyped by polymerase chain reaction-restriction fragment length polymorphism assay in 513 unrelated subjects of Italian white ancestry: 250 patients with SSc [146 limited cutaneous SSc (lcSSc), 104 diffuse cutaneous SSc (dcSSc)] and 263 healthy individuals. RESULTS A significant difference was observed in MMP-12 rs2276109 genotype distribution between patients with SSc and controls (p = 0.0003), and between lcSSc and dcSSc (p = 0.003). The A allele frequency was significantly higher in patients with SSc than in controls (p = 0.0002), and higher in dcSSc than in lcSSc (p = 0.003). After adjustment for age and sex, the homozygosity for the A allele significantly influenced the predisposition to SSc and to dcSSc (OR 2.44, 95% CI 1.61-3.71, p < 0.0001; OR 4.69, 95% CI 2.36-9.33, p < 0.0001, respectively). A trend toward an association between the AA genotype and lcSSc was observed (p = 0.06). The homozygosity for the A allele was also significantly and independently associated with antitopoisomerase I antibody positivity (OR 6.39, 95% CI 2.18-18.76, p = 0.001) and interstitial lung disease (OR 2.94, 95% CI 1.25-6.95, p = 0.01). CONCLUSION The MMP-12 rs2276109 gene polymorphism may contribute to susceptibility to SSc, and in particular to dcSSc and pulmonary fibrosis.
Collapse
|
Journal Article |
15 |
34 |
30
|
Manetti M, Pratesi S, Romano E, Bellando-Randone S, Rosa I, Guiducci S, Fioretto BS, Ibba-Manneschi L, Maggi E, Matucci-Cerinic M. Angiogenic T cell expansion correlates with severity of peripheral vascular damage in systemic sclerosis. PLoS One 2017; 12:e0183102. [PMID: 28797111 PMCID: PMC5552290 DOI: 10.1371/journal.pone.0183102] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/29/2017] [Indexed: 11/23/2022] Open
Abstract
The mechanisms underlying endothelial cell injury and defective vascular repair in systemic sclerosis (SSc) remain unclear. Since the recently discovered angiogenic T cells (Tang) may have an important role in the repair of damaged endothelium, this study aimed to analyze the Tang population in relation to disease-related peripheral vascular features in SSc patients. Tang (CD3+CD31+CXCR4+) were quantified by flow cytometry in peripheral blood samples from 39 SSc patients and 18 healthy controls (HC). Circulating levels of the CXCR4 ligand stromal cell-derived factor (SDF)-1α and proangiogenic factors were assessed in paired serum samples by immunoassay. Serial skin sections from SSc patients and HC were subjected to CD3/CD31 and CD3/CXCR4 double immunofluorescence. Circulating Tang were significantly increased in SSc patients with digital ulcers (DU) compared either with SSc patients without DU or with HC. Tang levels were significantly higher in SSc patients with late nailfold videocapillaroscopy (NVC) pattern than in those with early/active NVC patterns and in HC. No difference in circulating Tang was found when comparing either SSc patients without DU or patients with early/active NVC patterns and HC. In SSc peripheral blood, Tang percentage was inversely correlated to levels of SDF-1α and CD34+CD133+VEGFR-2+ endothelial progenitor cells (EPC), and positively correlated to levels of vascular endothelial growth factor and matrix metalloproteinase-9. Tang were frequently detected in SSc dermal perivascular inflammatory infiltrates. In summary, our findings demonstrate for the first time that Tang cells are selectively expanded in the circulation of SSc patients displaying severe peripheral vascular complications like DU. In SSc, Tang may represent a potentially useful biomarker reflecting peripheral vascular damage severity. Tang expansion may be an ineffective attempt to compensate the need for increased angiogenesis and EPC function. Further studies are required to clarify the function of Tang cells and investigate the mechanisms responsible for their change in SSc.
Collapse
|
Journal Article |
8 |
34 |
31
|
Manetti M, Allanore Y, Revillod L, Fatini C, Guiducci S, Cuomo G, Bonino C, Riccieri V, Bazzichi L, Liakouli V, Cipriani P, Giacomelli R, Abbate R, Bombardieri S, Valesini G, Montecucco C, Valentini G, Ibba-Manneschi L, Matucci-Cerinic M. A genetic variation located in the promoter region of the UPAR (CD87) gene is associated with the vascular complications of systemic sclerosis. ACTA ACUST UNITED AC 2010; 63:247-56. [DOI: 10.1002/art.30101] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
|
15 |
34 |
32
|
Romano E, Chora I, Manetti M, Mazzotta C, Rosa I, Bellando-Randone S, Blagojevic J, Soares R, Avouac J, Allanore Y, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S. Decreased expression of neuropilin-1 as a novel key factor contributing to peripheral microvasculopathy and defective angiogenesis in systemic sclerosis. Ann Rheum Dis 2016; 75:1541-9. [PMID: 26359450 DOI: 10.1136/annrheumdis-2015-207483] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/20/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVES In systemic sclerosis (SSc), vascular involvement is characterised by vascular endothelial growth factor (VEGF)-A/VEGF receptor (VEGFR) system disturbances. Neuropilin-1 (NRP1), a receptor for both class-3 semaphorins (Sema3s) and VEGF-A, is required for optimal VEGF-A/VEGFR-2 signalling. Here, we investigated the possible involvement of Sema3A/NRP1 axis in SSc. METHODS Circulating Sema3A and soluble NRP1 (sNRP1) were measured in patients with SSc and controls. NRP1 and Sema3A expression in skin biopsies was evaluated by immunofluorescence and western blotting. NRP1 expression was assessed in SSc and healthy dermal microvascular endothelial cells (SSc-MVECs and H-MVECs), and in SSc and control endothelial progenitor cell (EPC)-derived endothelial cells (ECs). The possible impact of transcription factor Friend leukaemia integration 1 (Fli1) deficiency on endothelial NRP1 expression was investigated by gene silencing. The binding of Fli1 to NRP1 gene promoter was evaluated using chromatin immunoprecipitation. Capillary morphogenesis was performed on Matrigel. RESULTS Decreased sNRP1 levels in SSc were associated with active and late nailfold videocapillaroscopy patterns and digital ulcers. No difference in Sema3A was found between patients and controls. NRP1 was significantly decreased in SSc-MVECs both ex vivo and in vitro. NRP1 and Fli1 significantly decreased in H-MVECs challenged with SSc sera, while they were not different in SSc and control EPC-derived ECs. Fli1 occupied the NRP1 gene promoter and Fli1 gene silencing reduced NRP1 expression in H-MVECs. NRP1 gene silencing in H-MVECs resulted in a significantly impaired angiogenic capacity comparable to that of cells treated with SSc sera. CONCLUSION In SSc, NRP1 deficiency may be an additional factor in the perturbed VEGF-A/VEGFR-2 system contributing to peripheral microvasculopathy and defective angiogenesis.
Collapse
|
|
9 |
34 |
33
|
Manetti M, Guiducci S, Romano E, Rosa I, Ceccarelli C, Mello T, Milia AF, Conforti ML, Ibba-Manneschi L, Matucci-Cerinic M. Differential expression of junctional adhesion molecules in different stages of systemic sclerosis. ACTA ACUST UNITED AC 2013; 65:247-57. [PMID: 23001478 DOI: 10.1002/art.37712] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/13/2012] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by early perivascular inflammation, microvascular endothelial cell (MVEC) activation/damage, and defective angiogenesis. Junctional adhesion molecules (JAMs) regulate leukocyte recruitment to sites of inflammation and ischemia-reperfusion injury, vascular permeability, and angiogenesis. This study was undertaken to investigate the possible role of JAMs in SSc pathogenesis. METHODS JAM-A and JAM-C expression levels in skin biopsy samples from 25 SSc patients and 15 healthy subjects were investigated by immunohistochemistry and Western blotting. Subcellular localization of JAMs in cultured healthy dermal MVECs and SSc MVECs was assessed by confocal microscopy. Serum levels of soluble JAM-A (sJAM-A) and sJAM-C in 64 SSc patients and 32 healthy subjects were examined by enzyme-linked immunosorbent assay. RESULTS In control skin, constitutive JAM-A expression was observed in MVECs and fibroblasts. In early-stage SSc skin, JAM-A expression was strongly increased in MVECs, fibroblasts, and perivascular inflammatory cells. In late-stage SSc, JAM-A expression was decreased compared with controls. JAM-C was weakly expressed in control and late-stage SSc skin, while it was strongly expressed in MVECs, fibroblasts, and inflammatory cells in early-stage SSc. Surface expression of JAM-A was higher in early-stage SSc MVECs and increased in healthy MVECs stimulated with early-stage SSc sera. JAM-C was cytoplasmic in resting healthy MVECs, while it was recruited to the cell surface upon challenge with early-stage SSc sera. Early-stage SSc MVECs exhibited constitutive surface JAM-C expression. In SSc, increased levels of sJAM-A and sJAM-C correlated with early disease and measures of vascular damage. CONCLUSION Our findings indicate that JAMs may participate in MVEC activation, inflammatory processes, and impaired angiogenesis in different stages of SSc.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
32 |
34
|
Manetti M, Allanore Y, Saad M, Fatini C, Cohignac V, Guiducci S, Romano E, Airó P, Caramaschi P, Tinazzi I, Riccieri V, Della Rossa A, Abbate R, Caporali R, Cuomo G, Valesini G, Dieudé P, Hachulla E, Cracowski JL, Tiev K, Letenneur L, Amouyel P, Lambert JC, Chiocchia G, Martinez M, Ibba-Manneschi L, Matucci-Cerinic M. Evidence for caveolin-1 as a new susceptibility gene regulating tissue fibrosis in systemic sclerosis. Ann Rheum Dis 2012; 71:1034-41. [PMID: 22402147 DOI: 10.1136/annrheumdis-2011-200986] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Caveolin-1 (CAV1) is an inhibitor of tissue fibrosis and has been implicated in the pathogenesis of systemic sclerosis (SSc). The aim of the study was to analyse the possible association of CAV1 gene single nucleotide polymorphisms (SNP) with SSc. METHODS A total population of 3974 individuals (1355 SSc patients, 2619 controls) was studied. Genotype data for 23 SNP spanning the CAV1-CAV2 gene locus were obtained from a genome-wide scan conducted in a French population (564 SSc patients, 1776 controls). Three CAV1 SNP (rs926198, rs959173, rs9920) displaying the most significant associations with SSc and/or clinical phenotypes were then genotyped in an Italian population (791 SSc patients, 843 controls). CAV1 protein expression in skin biopsies was investigated by immunohistochemistry and western blotting. RESULTS In the French population, the CAV1 rs959173 C minor allele showed a significant protective association with susceptibility to SSc (OR 0.71, 95% CI 0.59 to 0.86, p(adjusted)=0.009), and with the subset of patients with limited cutaneous SSc (OR 0.71, 95% CI 0.56 to 0.89, p(adjusted)=0.018). The association was replicated in the Italian population and strengthened in the combined populations through Cochran-Mantel-Haenszel meta-analysis (SSc: pooled OR 0.81, 95% CI 0.71 to 0.92, p=0.0018; limited cutaneous SSc: pooled OR 0.80, 95% CI 0.69 to 0.93, p=0.0053). Genotype/protein expression correlations revealed that the rs959173 C protective allele was associated with increased CAV1 protein expression. CONCLUSIONS These results add CAV1 to the list of SSc susceptibility genes and provide further evidence for the contribution of this pathway in the fibrotic process that characterises SSc pathogenesis.
Collapse
|
|
13 |
31 |
35
|
Marini M, Ibba-Manneschi L, Manetti M. Cardiac Telocyte-Derived Exosomes and Their Possible Implications in Cardiovascular Pathophysiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:237-254. [PMID: 28936744 DOI: 10.1007/978-981-10-4397-0_16] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among cardiac interstitial cells, the recently described telocytes (TCs) display the unique ability to build a supportive three-dimensional network formed by their very long and thin prolongations named telopodes. Cardiac TCs are increasingly regarded as pivotal regulators in intercellular signaling with multiple cell types, such as cardiomyocytes, stem/progenitor cells, microvessels, nerve endings, fibroblasts and immune cells, thus converting the cardiac stromal compartment into an integrated system that may drive either heart development or maintenance of cardiac homeostasis in post-natal life. Besides direct intercellular communications between TCs and neighboring cells, different types of TC-released extracellular vesicles (EVs), namely exosomes, ectosomes and multivesicular cargos, may act as shuttles for paracrine molecular signal exchange between cardiac TCs and cardiomyocytes or putative cardiomyocyte progenitors. In this review, we summarize the recent research findings on cardiac TCs and their EVs. We first provide an overview of the general features of TCs, including their peculiar morphological traits and immunophenotypes, intercellular signaling mechanisms and possible functional roles. Thereafter, we describe the distribution of TCs in normal and diseased hearts, as well as their role as intercellular communicators via the release of exosomes and other types of EVs. Finally, the involvement of cardiac TCs in cardiovascular diseases and the potential utility of TC transplantation and TC-derived exosomes in cardiac regeneration and repair are discussed.
Collapse
|
Review |
7 |
30 |
36
|
Liakouli V, Manetti M, Pacini A, Tolusso B, Fatini C, Toscano A, Cipriani P, Guiducci S, Bazzichi L, Codullo V, Ruocco L, Dell'orso L, Carubbi F, Marrelli A, Abbate R, Bombardieri S, Ferraccioli G, Montecucco C, Valentini G, Matucci-Cerinic M, Ibba-Manneschi L, Giacomelli R. The -670G>A polymorphism in the FAS gene promoter region influences the susceptibility to systemic sclerosis. Ann Rheum Dis 2009; 68:584-90. [PMID: 18445624 DOI: 10.1136/ard.2008.088989] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To evaluate the role of the single-nucleotide polymorphism (SNP) at position -670 in the FAS gene promoter (FAS-670G>A) in influencing the susceptibility, clinical features and severity of systemic sclerosis (SSc). METHODS 350 white Italian SSc patients (259 with limited cutaneous SSc (lcSSc) and 91 with diffuse cutaneous SSc (dcSSc)) and 232 healthy individuals were studied. Patients were assessed for the presence of autoantibodies (anticentromere, anti-topoisomerase I (anti-Scl-70) antibodies), interstitial lung disease (ILD), pulmonary arterial hypertension and scleroderma renal crisis. FAS-670G>A SNP was genotyped by PCR restriction fragment length polymorphism assay. Serum levels of soluble FAS (sFAS) were analysed by ELISA. RESULTS A significant difference in FAS-670 genotype distribution was observed between SSc patients and healthy individuals (p = 0.001). The frequency of the FAS-670A allele was significantly greater in SSc than in controls (p = 0.001). No significant difference in genotype distribution and allele frequencies was observed between lcSSc and dcSSc, although a greater frequency of the FAS-670A allele was found in dcSSc. The FAS-670AA genotype significantly influenced the predisposition to SSc (OR 1.97, 95% CI 1.35 to 2.88, p = 0.001) and to both lcSSc (OR 1.84, 95% CI 1.23 to 2.75, p = 0.003) and dcSSc (OR 2.37, 95% CI 1.41 to 3.99, p = 0.001). FAS-670A allele frequency was greater, although not significantly, in anti-Scl-70 antibody-positive dcSSc and ILD dcSSc. sFAS was significantly higher in patients and controls carrying the FAS-670AA genotype compared with those carrying the FAS-670GG genotype (p = 0.003 in SSc, p = 0.004 in controls). CONCLUSION The FAS-670A allele is significantly associated with susceptibility to SSc, suggesting a role for a genetic control of apoptosis in the pathogenesis of the disease.
Collapse
|
Comparative Study |
16 |
30 |
37
|
Ibba-Manneschi L, Rosa I, Manetti M. Telocytes in Chronic Inflammatory and Fibrotic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 913:51-76. [PMID: 27796880 DOI: 10.1007/978-981-10-1061-3_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telocytes are a peculiar stromal (interstitial) cell type implicated in tissue homeostasis and development, as well as in the pathophysiology of several disorders. Severe damage and reduction of telocytes have been reported during fibrotic remodeling of multiple organs in various diseases, including scleroderma, Crohn's disease, ulcerative colitis, and liver fibrosis, as well as in chronic inflammatory lesions like those of primary Sjögren's syndrome and psoriasis. Owing to their close relationship with stem cells, telocytes are also supposed to contribute to tissue repair/regeneration. Indeed, telocytes are universally considered as "connecting cells" mostly oriented to intercellular signaling. On the basis of recent promising experimental findings, in the near future, telocyte transplantation might represent a novel therapeutic opportunity to control the evolution of chronic inflammatory and fibrotic diseases. Notably, there is evidence to support that telocytes could help in preventing abnormal activation of immune cells and fibroblasts, as well as in attenuating the altered matrix organization during the fibrotic process. By targeting telocytes alone or in tandem with stem cells, we might be able to promote regeneration and prevent the evolution to irreversible tissue injury. Besides exogenous transplantation, exploring pharmacological or non-pharmacological methods to enhance the growth and/or survival of telocytes could be an additional therapeutic strategy for many disorders.
Collapse
|
Review |
8 |
27 |
38
|
Terenzi R, Romano E, Manetti M, Peruzzi F, Nacci F, Matucci-Cerinic M, Guiducci S. Neuropeptides activate TRPV1 in rheumatoid arthritis fibroblast-like synoviocytes and foster IL-6 and IL-8 production. Ann Rheum Dis 2013; 72:1107-9. [PMID: 23444195 DOI: 10.1136/annrheumdis-2012-202846] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
Letter |
12 |
26 |
39
|
Mazzotta C, Romano E, Bruni C, Manetti M, Lepri G, Bellando-Randone S, Blagojevic J, Ibba-Manneschi L, Matucci-Cerinic M, Guiducci S. Plexin-D1/Semaphorin 3E pathway may contribute to dysregulation of vascular tone control and defective angiogenesis in systemic sclerosis. Arthritis Res Ther 2015; 17:221. [PMID: 26292963 PMCID: PMC4546224 DOI: 10.1186/s13075-015-0749-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 08/10/2015] [Indexed: 01/13/2023] Open
Abstract
Introduction The vascular and nervous systems have several anatomic and molecular mechanism similarities. Emerging evidence suggests that proteins involved in transmitting axonal guidance cues, including members of class III semaphorin (Sema3) family, play a critical role in blood vessel guidance during physiological and pathological vascular development. Sema3E is a natural antiangiogenic molecule that causes filopodial retraction in endothelial cells, inhibiting cell adhesion by disrupting integrin-mediated adhesive structures. The aim of the present study was to investigate whether in systemic sclerosis (SSc) Plexin-D1/Sema3E axis could be involved in the dysregulation of vascular tone control and angiogenesis. Methods Sema3E levels were measured by quantitative colorimetric sandwich ELISA in serum samples from 48 SSc patients, 45 subjects with primary Raynaud's phenomenon (pRP) and 48 age-matched and sex-matched healthy controls. Immunofluorescence staining on skin sections from 14 SSc patients and 12 healthy subjects was performed to evaluate Sema3E and Plexin-D1 expression. Western blotting was used to assess Plexin-D1/Sema3E axis in human SSc and healthy dermal microvascular endothelial cells (SSc-MVECs and H-MVECs, respectively) at basal condition and after stimulation with recombinant human vascular endothelial growth factor (VEGF), SSc and healthy sera. Capillary morphogenesis on Matrigel was performed on H-MVECs treated with healthy, pRP or SSc sera in the presence of Sema3E and Plexin-D1 soluble peptides. Results Serum Sema3E levels were significantly higher both in pRP subjects and SSc patients than in controls. In SSc, Sema3E levels were significantly increased in patients with early nailfold videocapillaroscopy (NVC) pattern compared to active/late patterns and pRP, and in patients without digital ulcers versus those with ulcers. In SSc skin, Sema3E expression was strongly increased in the microvascular endothelium. Cultured SSc-MVECs showed higher levels of phosphorylated Plexin-D1 and Sema3E expression than H-MVECs, and stimulation with SSc sera increased phosphorylated Plexin-D1 and Sema3E in H-MVECs. The addition of Sema3E-binding Plexin-D1 soluble peptide significantly attenuated the antiangiogenic effect of SSc sera on H-MVECs. Conclusions Our findings suggest that Plexin-D1/Sema3E axis is triggered in SSc endothelium and may have a role in the dysregulation of angiogenesis and vascular tone control by inducing neuro-vascular mechanism alterations clinically evident in particular in the early disease phases.
Collapse
|
Journal Article |
10 |
26 |
40
|
Romano E, Rosa I, Fioretto BS, Lucattelli E, Innocenti M, Ibba-Manneschi L, Matucci-Cerinic M, Manetti M. A Two-Step Immunomagnetic Microbead-Based Method for the Isolation of Human Primary Skin Telocytes/CD34+ Stromal Cells. Int J Mol Sci 2020; 21:ijms21165877. [PMID: 32824287 PMCID: PMC7461544 DOI: 10.3390/ijms21165877] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Telocytes (TCs), commonly referred to as TCs/CD34+ stromal cells, are a peculiar type of interstitial cells with distinctive morphologic traits that are supposed to exert several biological functions, including tissue homeostasis regulation, cell-to-cell signaling, immune surveillance, and reparative/regenerative effects. At present, the majority of studies investigating these cells are mainly descriptive and focus only on their morphology, with a consequent paucity of functional data. To gain relevant insight into the possible functions of TCs, in vitro analyses are clearly required, but currently, the protocols for TC isolation are only at the early stages and not fully standardized. In the present in vitro study, we describe a novel methodology for the purification of human primary skin TCs through a two-step immunomagnetic microbead-based cell separation (i.e., negative selection for CD31 followed by positive selection for CD34) capable of discriminating these cells from other connective tissue-resident cells on the basis of their different immunophenotypic features. Our experiments clearly demonstrated that the proposed method allows a selective purification of cells exhibiting the peculiar TC morphology. Isolated TCs displayed very long cytoplasmic extensions with a moniliform silhouette (telopodes) and presented an immunophenotypic profile (CD31−/CD34+/PDGFRα+/vimentin+) that unequivocally differentiates them from endothelial cells (CD31+/CD34+/PDGFRα−/vimentin+) and fibroblasts (CD31−/CD34−/PDGFRα+/vimentin+). This novel methodology for the isolation of TCs lays the groundwork for further research aimed at elucidating their functional properties and possible translational applications, especially in the field of regenerative medicine.
Collapse
|
Journal Article |
5 |
26 |
41
|
Ibba-Manneschi L, Manetti M, Milia AF, Miniati I, Benelli G, Guiducci S, Mecacci F, Mello G, Di Lollo S, Matucci-Cerinic M. Severe fibrotic changes and altered expression of angiogenic factors in maternal scleroderma: placental findings. Ann Rheum Dis 2010; 69:458-61. [PMID: 19336420 DOI: 10.1136/ard.2009.107623] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Pregnant women with systemic sclerosis (SSc; scleroderma) have an increased risk of premature delivery and small full-term infants. During placental development, angiogenesis and vascular remodelling are essential for a successful pregnancy outcome. An analysis was made of the pathological changes and expression of angiogenic factors in SSc placentas. METHODS Placenta biopsies were obtained from three patients with SSc and four healthy uncomplicated pregnancies after delivery at 34-38 weeks of gestation. The sections were stained with Masson's trichrome and phosphotungstic-acid-haematoxylin and immunostained for connective tissue growth factor (CTGF), alpha-smooth muscle actin (alpha-SMA), vascular endothelial growth factor (VEGF), placenta growth factor (PlGF) and receptors VEGFR-1 and VEGFR-2. RESULTS The pathological findings were signs of decidual vasculopathy, increased syncytiotrophoblast knotting, placental infarcts and villous hypoplasia. Severe and diffuse perivascular and stromal fibrosis of decidua and chorionic villi, and extensive deposition of fibrinoid material around decidual vessels and in intervillous spaces were observed. Strong CTGF expression in the vessel wall, decidual cells and fibroblasts and alpha-SMA+ myofibroblasts were found. VEGF and VEGFR-2 expression was stronger in SSc than in healthy placentas, while VEGFR-1 expression was similar to controls. PlGF immunopositivity was weaker in SSc. CONCLUSION In SSc placentas, severe fibrosis and abnormal vascular remodelling were detected. This may result in reduced blood flow leading to deep sufferance of maternal placenta and possible premature delivery.
Collapse
|
|
15 |
25 |
42
|
Marini M, Manetti M, Rosa I, Ibba-Manneschi L, Sgambati E. Telocytes in human fetal skeletal muscle interstitium during early myogenesis. Acta Histochem 2018; 120:397-404. [PMID: 29724455 DOI: 10.1016/j.acthis.2018.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023]
Abstract
A new peculiar stromal cell type called telocyte (TC)/CD34-positive stromal cell (i.e. cell with distinctive prolongations named telopodes) has recently been described in various tissues and organs, including the adult skeletal muscle interstitium of mammals. By forming a resident stromal three-dimensional network, TCs have been suggested to participate in different physiological processes within the skeletal muscle tissue, including homeostasis maintenance, intercellular signaling, tissue regeneration/repair and angiogenesis. Since a continuous interplay between the stromal compartment and skeletal muscle fibers seems to take place from organogenesis to aging, the present study was undertaken to investigate for the first time the presence of TCs in the human skeletal muscle during early myogenesis. In particular, we describe the morphological distribution of TCs in human fetal lower limb skeletal muscle during early stages of myogenesis (9-12 weeks of gestation). TCs were studied on tissue sections subjected to immunoperoxidase-based immunohistochemistry for CD34. Double immunofluorescence was further performed to unequivocally differentiate TCs (CD34-positive/CD31-negative) from vascular endothelial cells (CD34-positive/CD31-positive). Our findings provide evidence that stromal cells with typical morphological features and immunophenotype of TCs are present in the human skeletal muscle during early myogenesis, revealing differences in either CD34 immunopositivity or TC numbers among different gestation ages. Specifically, few TCs weakly positive for CD34 were found between 9 and 9.5 weeks. From 10 to 11.5 weeks, TCs were more numerous and strongly reactive and their telopodes formed a reticular network in close relationship with blood vessels and primary and secondary myotubes undergoing separation. On the contrary, a strong reduction in the number and immunopositivity of TCs was observed in fetal muscle sections from 12 weeks of gestation, where mature myotubes were evident. The muscle stroma showed parallel changes in amount, density and organization from 9 to 12 weeks. Moreover, blood vessels appeared particularly numerous between 10 and 11.5 weeks. Taken together, our findings suggest that TCs might play a fundamental role in the early myogenetic period, possibly guiding tissue organization and compartmentalization, as well as angiogenesis and maturation of myotubes.
Collapse
|
Journal Article |
7 |
24 |
43
|
Manetti M, Liakouli V, Fatini C, Cipriani P, Bonino C, Vettori S, Guiducci S, Montecucco C, Abbate R, Valentini G, Matucci-Cerinic M, Giacomelli R, Ibba-Manneschi L. Association between a stromal cell-derived factor 1 (SDF-1/CXCL12) gene polymorphism and microvascular disease in systemic sclerosis. Ann Rheum Dis 2009; 68:408-11. [PMID: 18930992 DOI: 10.1136/ard.2008.098277] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the possible implication of SDF1-3' polymorphism in systemic sclerosis (SSc) susceptibility or clinical phenotype, or both. METHODS 150 patients with SSc and 150 controls were enrolled. Skin involvement, autoantibodies, interstitial lung disease, pulmonary arterial hypertension (PAH), scleroderma renal crisis, past and/or current skin ulcers were assessed. Genotyping was performed by PCR-RFLP. RESULTS Genotype distribution and allele frequency were similar in SSc and controls. SDF1-3'A allele and SDF1-3'GA/AA genotype frequencies were significantly higher in SSc-PAH than in SSc-non-PAH (33.3% vs 18.3%, p = 0.01) and in SSc with skin ulcers than in SSc without ulcers (27.3% vs 16.9%, p = 0.03). The SDF1-3'A allele influenced the predisposition to SSc-related PAH (OR = 2.52, 95% CI 1.11 to 5.69, p = 0.02) and skin ulcers (OR = 2.31, 95% CI 1.18 to 4.52, p = 0.01). After adjustment for age and gender, the SDF1-3'A allele remained a susceptibility factor for the SSc-related vascular manifestations (PAH: OR = 2.37, 95% CI 1.04 to 5.42, p = 0.04; ulcers: OR = 2.33, 95% CI 1.78 to 4.62, p = 0.01). CONCLUSION The SDF1-3'A allele is significantly associated with microvascular involvement in SSc.
Collapse
|
Multicenter Study |
16 |
24 |
44
|
Mazzotta C, Manetti M, Rosa I, Romano E, Blagojevic J, Bellando-Randone S, Bruni C, Lepri G, Guiducci S, Ibba-Manneschi L, Matucci-Cerinic M. Proangiogenic effects of soluble α-Klotho on systemic sclerosis dermal microvascular endothelial cells. Arthritis Res Ther 2017; 19:27. [PMID: 28183357 PMCID: PMC5301388 DOI: 10.1186/s13075-017-1233-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Background Systemic sclerosis (SSc) is characterized by endothelial cell (EC) apoptosis, impaired angiogenesis and peripheral microvasculopathy. Soluble α-Klotho (sKl) is a pleiotropic molecule with multiple effects on ECs, including antioxidant and vasculoprotective activities. On the EC surface, sKl interacts with vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2) and transient receptor potential canonical-1 (TRPC-1) cation channel to control EC homeostasis. Here, we investigated whether sKl might act as a protective factor to improve angiogenesis in dermal microvascular endothelial cells (MVECs) from SSc patients (SSc-MVECs). Methods Wound healing assay was performed on healthy dermal MVECs (H-MVECs) challenged with sera from healthy controls or SSc patients with or without the addition of sKl. Capillary morphogenesis on Matrigel was assessed in H-MVECs and SSc-MVECs at basal conditions and treated with sKl, as well as in H-MVECs challenged with healthy or SSc sera in presence or absence of sKl. The expression of α-Klotho, VEGF165b, VEGFR-2, TRPC-1, Ki67 and active caspase-3 in H-MVECs and SSc-MVECs was investigated by western blotting. Immunostaining for α-Klotho was performed in H-MVECs and SSc-MVECs, and in healthy and SSc skin sections. Results Treatment with sKl effectively counteracted the inihibitory effects of SSc sera on wound healing ability and angiogenic performance of H-MVECs. The addition of sKl significantly improved angiogenesis and maintained over time capillary-like tube formation in vitro by SSc-MVECs. Stimulation of SSc-MVECs with sKl resulted in the upregulation of the proliferation marker Ki67 in parallel with the downregulation of proapoptotic active caspase-3. The expression of α-Klotho was significantly lower in SSc-MVECs than in H-MVECs. The expression of TRPC-1 was also significantly decreased, while that of VEGFR-2 and VEGF165b was significantly increased, in SSc-MVECs compared with H-MVECs. Challenge with sKl either significantly increased TRPC-1 or decreased VEGF165b in SSc-MVECs. Ex vivo analyses revealed that α-Klotho immunostaining was almost absent in the dermal microvascular network of SSc skin compared with control skin. Conclusions Our findings provide the first evidence that α-Klotho is significantly decreased in the microvasculature in SSc skin and that sKl administration may effectively improve SSc-MVEC functions in vitro by acting as a powerful proangiogenic factor.
Collapse
|
Journal Article |
8 |
23 |
45
|
Marini M, Mencucci R, Rosa I, Favuzza E, Guasti D, Ibba-Manneschi L, Manetti M. Telocytes in normal and keratoconic human cornea: an immunohistochemical and transmission electron microscopy study. J Cell Mol Med 2017; 21:3602-3611. [PMID: 28714595 PMCID: PMC5706519 DOI: 10.1111/jcmm.13270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/07/2017] [Indexed: 12/20/2022] Open
Abstract
Telocytes (TC) are typically defined as cells with telopodes by their ultrastructural features. Their presence was reported in the interstitium of various organs in vertebrates, including humans. However, no study has yet described the presence of TC in the human eye and in particular, within the stromal compartment of the cornea. To address this issue, samples of normal and pathologic (keratoconic) human corneas were tested by immunohistochemistry for CD34, platelet‐derived growth factor receptor α (PDGFRα) and c‐kit/CD117 or examined by transmission electron microscopy. We found that TC coexpressing CD34 and PDGFRα were distributed throughout the whole normal corneal stroma with different TC subtypes being distinguishable on the basis of the expression of the stemness marker c‐kit (i.e. c‐kit‐positive and c‐kit‐negative TC subpopulations). Transmission electron microscopy examination confirmed the existence of spindle‐shaped and bipolar TC typically displaying two long and thin moniliform telopodes establishing intercellular contacts formed by gap junctions. Keratoconic corneas were characterized by ultrastructural damages and patchy loss of TC with an almost complete depletion of the c‐kit‐positive TC subpopulation. We propose that TC may contribute to the maintenance of corneal stromal homoeostasis and that, in particular, the c‐kit‐positive TC subtype might have stemness capacity participating in corneal regeneration and repair processes. Further studies are needed to clarify the differential roles of corneal TC subtypes as well as the possible therapeutic applications of TC in degenerative corneal disorders such as keratoconus.
Collapse
|
Journal Article |
8 |
22 |
46
|
Chora I, Romano E, Manetti M, Mazzotta C, Costa R, Machado V, Cortez A, Bruni C, Lepri G, Guiducci S, De Paulis A, Soares R, Matucci-Cerinic M. Evidence for a Derangement of the Microvascular System in Patients with a Very Early Diagnosis of Systemic Sclerosis. J Rheumatol 2017; 44:1190-1197. [PMID: 28507177 DOI: 10.3899/jrheum.160791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To investigate whether patients with a very early diagnosis of systemic sclerosis (VEDOSS) may already present circulating markers and in vitro signs of microvascular dysfunction. METHODS Serum samples were obtained from 55 patients with systemic sclerosis (SSc), 25 patients with VEDOSS, and 55 matched healthy controls (HC). Serum levels of pan-vascular endothelial growth factor (VEGF) and soluble neuropilin-1 (sNRP-1) were measured by ELISA. Human dermal microvascular endothelial cells (H-MVEC) were cultured and stimulated with SSc, VEDOSS, and HC sera. Protein expression of NRP-1 was analyzed by Western blotting, cell proliferation by 5'-bromodeoxyuridine assay, migration capacity by wound-healing assay, and capillary-like tube formation by Matrigel assay. RESULTS Serum levels of pan-VEGF were increased in patients with VEDOSS and SSc versus HC (p = 0.05 and p = 0.003, respectively). Serum levels of sNRP-1 were significantly reduced in patients with VEDOSS and SSc compared with controls (p = 0.012 and p = 0.027, respectively). NRP-1 expression was decreased in H-MVEC stimulated with VEDOSS sera (p < 0.001 vs HC). Proliferation was reduced in H-MVEC stimulated either with VEDOSS or SSc sera in comparison with HC sera (p = 0.015 and p = 0.043, respectively). Wound healing was compromised in H-MVEC stimulated with VEDOSS and SSc sera versus HC sera (p < 0.01 for both). Capillarogenesis was decreased in H-MVEC stimulated with VEDOSS sera (p < 0.01) and SSc sera (p < 0.001) compared with cells stimulated with HC sera. CONCLUSION Similar to patients with SSc, patients with VEDOSS already present biological signs of endothelial dysfunction. Our data demonstrate that VEDOSS sera significantly modify endothelial cell behavior and impair the angiogenic potential of the microvascular system.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
21 |
47
|
Matucci-Cerinic M, Manetti M, Bruni C, Chora I, Bellando-Randone S, Lepri G, De Paulis A, Guiducci S. The "myth" of loss of angiogenesis in systemic sclerosis: a pivotal early pathogenetic process or just a late unavoidable event? Arthritis Res Ther 2017; 19:162. [PMID: 28683836 PMCID: PMC5501068 DOI: 10.1186/s13075-017-1370-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Systemic sclerosis is considered a disease dominated by a "loss of angiogenesis", although in its early phases evidence indicates a disturbed angiogenic response only. In fact, microvascular changes are primarily due to endothelial cell injury, triggering downstream significant enlargement of the capillary in an inflammatory environment, followed by capillary rupture (microhemorrhages). Subsequent pro-angiogenic efforts lead to an aberrant angiogenesis and, eventually, to a total loss of vessel repair and regeneration (loss of angiogenesis). This clearly suggests that the pathogenetic process has a steady progression: from an early excessive pro-angiogenesis, to an aberrant microvascular regeneration, then ending with a late loss of angiogenesis. Herein, we suggest the loss of angiogenesis should not be considered as an overall "myth" characterizing systemic sclerosis but as a very late event of the vascular pathogenesis. Future research should be oriented essentially on the earlier phases dominated by excessive pro-angiogenesis and microvascular aberration.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
21 |
48
|
Hashimoto A, Tarner IH, Bohle RM, Gaumann A, Manetti M, Distler O, Steinmeyer J, Ulfgren AK, Schulz A, Gay S, Müller-Ladner U, Neumann E. Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection. ACTA ACUST UNITED AC 2007; 56:1094-105. [PMID: 17393418 DOI: 10.1002/art.22450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), formation of new blood vessels is necessary to meet the nutritional and oxygen requirements of actively proliferating synovial tissue. The aim of this study was to analyze the specific synovial vascular expression profiles of several angiogenesis-related genes as well as CD82 in RA compared with osteoarthritis (OA), using laser-mediated microdissection (LMM). METHODS LMM and subsequent real-time polymerase chain reaction were used in combination with immunohistochemical analysis for area-specific analysis of messenger RNA (mRNA) and protein expression of vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1), VEGFR-2, hypoxia-inducible factor 1alpha (HIF-1alpha), HIF-2alpha, platelet-derived growth factor receptor alpha (PDGFRalpha), PDGFRbeta, inhibitor of DNA binding/differentiation 2 (Id2), and CD82 in RA and OA synovial microvasculature and synovial lining. RESULTS Expression of Id2 mRNA was significantly lower in RA synovial vessels compared with OA synovial vessels (P=0.0011), whereas expression of VEGFR-1 was significantly higher in RA (P=0.0433). No differences were observed for the other parameters. At the protein level, no statistically significant differences were observed for any parameter, although Id2 levels were 2.5-fold lower in RA (P=0.0952). However, the number of synovial blood vessels and the number of VEGFR-2-expressing blood vessels were significantly higher in RA compared with OA. CONCLUSION Our results underscore the importance of area-specific gene expression analysis in studying the pathogenesis of RA and support LMM as a robust tool for this purpose. Of note, our results indicate that previously described differences between RA and OA in the expression of angiogenic molecules are attributable to higher total numbers of synovial and vascular cells expressing these molecules in RA rather than higher expression levels in the individual cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arthritis, Rheumatoid
- Basic Helix-Loop-Helix Transcription Factors
- Female
- Gene Expression
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Inhibitor of Differentiation Protein 2/genetics
- Inhibitor of Differentiation Protein 2/metabolism
- Kangai-1 Protein/genetics
- Kangai-1 Protein/metabolism
- Male
- Microdissection
- Middle Aged
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Osteoarthritis
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Synovial Membrane/blood supply
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
|
|
18 |
21 |
49
|
Milia AF, Ibba-Manneschi L, Manetti M, Benelli G, Generini S, Messerini L, Matucci-Cerinic M. Evidence for the prevention of enthesitis in HLA-B27/hβ(2)m transgenic rats treated with a monoclonal antibody against TNF-α. J Cell Mol Med 2012; 15:270-9. [PMID: 20015205 PMCID: PMC3822794 DOI: 10.1111/j.1582-4934.2009.00984.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Transgenic rats with high expression of HLA-B27 and human β2-microglobulin (B27TR) develop a multisystem inflammatory disease resembling human inflammatory bowel disease (IBD) and spondyloarthropaties (SpA). Tumour necrosis factor α (TNF-α) has a crucial role in sustaining chronic inflammation in the gut and joints. The aim of this work was to evaluate whether TNF-α blockade could prevent or reduce the inflammation of peripheral joints in B27TR. A first group of 9-week-old B27TR received an anti-TNF-α monoclonal antibody (mAb) or an isotypic IgG2a,k up to the age of 18 weeks. An untreated group was monitored up to the age of 18 weeks and then randomly assigned to a 9-week treatment with anti-TNF-α mAb or IgG2a,k. Each rat was monitored for clinical IBD and peripheral joint manifestations. After sacrifice the colon and hind paws were examined for macroscopical and microscopical pathological changes. Early TNF-α blockade prevented, and late treatment improved IBD signs in B27TR. Erythema, oedema, inflammatory infiltrate close to the tendons and enthesis, proliferating chondrocyte-like cells, signs of new endochondral bone ossification and bone erosion were observed in peripheral joints of four out of six IgG2a,k-treated B27TR, both at 18 and 27 weeks. Immunopositivity for phosphorylated Smad1/5/8 indicated that the process of joint remodelling was activated in B27TR. Some entheses showed chondroid nodules. Anti-TNF-α treatment reduced inflammation and preserved the enthesis organization in most animals. Occasional and transient erythema and oedema were still present in three of six of the late anti-TNF-α-treated animals. Smad1/5/8 signalling was not inhibited by late anti-TNF-α treatment. In B27TR, articular involvement follows IBD onset and develops at entheses. Early TNF-α blockade prevents the onset of IBD and consequently the development of enthesitis in peripheral joints in the B27TR model of human SpA.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
21 |
50
|
Borghini A, Manetti M, Nacci F, Bellando-Randone S, Guiducci S, Matucci-Cerinic M, Ibba-Manneschi L, Weber E. Systemic Sclerosis Sera Impair Angiogenic Performance of Dermal Microvascular Endothelial Cells: Therapeutic Implications of Cyclophosphamide. PLoS One 2015; 10:e0130166. [PMID: 26076019 PMCID: PMC4468204 DOI: 10.1371/journal.pone.0130166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 11/19/2022] Open
Abstract
In systemic sclerosis (SSc), dermal capillaries are progressively lost with consequent chronic tissue hypoxia insufficiently compensated by angiogenesis. Clinical studies reported that intravenous cyclophosphamide (CYC) may improve SSc-related peripheral microvascular damage. Recently, we showed that CYC treatment may normalize SSc sera-induced abnormalities in endothelial cell-matrix interactions. Our objective was to evaluate in vitro the effects of sera from treatment-naïve or CYC-treated SSc patients on dermal blood microvascular endothelial cell (dMVEC) angiogenesis, migration, proliferation and apoptosis. dMVECs were challenged with sera from 21 SSc patients, treatment-naïve (n = 8) or under CYC treatment (n = 13), and 8 healthy controls. Capillary morphogenesis on Geltrex matrix was significantly reduced upon challenge with sera from naïve SSc patients compared with healthy controls. When dMVECs were challenged with sera from CYC-treated SSc patients, their angiogenic capacity was comparable to that of cells treated with healthy sera. Wound healing capacity and chemotaxis in Boyden chamber were both significantly decreased in the presence either of naïve or CYC-treated SSc sera compared with healthy sera. WST-1 assay revealed that cell proliferation was significantly decreased in dMVECs challenged with sera from naïve SSc patients compared with healthy sera. Conversely, dMVEC proliferation was not impaired in the presence of sera from CYC-treated SSc patients. Accordingly, the percentage of TUNEL-positive apoptotic dMVECs was significantly higher in the presence of sera from naïve SSc patients than healthy controls, while CYC-treated SSc sera did not induce dMVEC apoptosis. Levels of the angiostatic mediators endostatin, pentraxin 3, angiostatin and matrix metalloproteinase-12 were all significantly elevated in sera from naïve SSc patients compared with sera from both healthy controls and CYC-treated SSc patients. In SSc, CYC treatment might boost angiogenesis and consequently improve peripheral microangiopathy through the normalization of the endothelial cell-matrix interactions, reduction of endothelial cell apoptosis and rebalance of dysregulated angiostatic factors.
Collapse
MESH Headings
- Antineoplastic Agents, Alkylating/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Case-Control Studies
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclophosphamide/pharmacology
- Dermis/drug effects
- Dermis/metabolism
- Dermis/pathology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Female
- Follow-Up Studies
- Humans
- Male
- Middle Aged
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prognosis
- Scleroderma, Systemic/blood
- Scleroderma, Systemic/drug therapy
- Scleroderma, Systemic/pathology
- Wound Healing
Collapse
|
Journal Article |
10 |
20 |