26
|
Fujita S, Koshikawa N, Kobayashi M. GABAB receptors accentuate neural excitation contrast in rat insular cortex. Neuroscience 2011; 199:259-71. [DOI: 10.1016/j.neuroscience.2011.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/17/2011] [Accepted: 09/20/2011] [Indexed: 12/21/2022]
|
27
|
Kohnomi S, Koshikawa N, Kobayashi M. D(2)-like dopamine receptors differentially regulate unitary IPSCs depending on presynaptic GABAergic neuron subtypes in rat nucleus accumbens shell. J Neurophysiol 2011; 107:692-703. [PMID: 22049335 DOI: 10.1152/jn.00281.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the nucleus accumbens (NAc), a medium spiny (MS) neuron receives GABAergic inputs from two major sources: fast-spiking (FS) neurons and other, adjacent MS neurons. These two types of inhibitory synapses are considered to play different roles in output activities, i.e., FS→MS connections suppress output from the NAc whereas MS→MS connections contribute to lateral inhibition. In the present study, we focused on the electrophysiological properties of unitary inhibitory postsynaptic currents (uIPSCs) obtained from MS→MS connections and FS→MS connections and examined the effects of quinpirole, a dopamine D(2)-like receptor agonist, on uIPSCs with multiple whole cell patch-clamp recording. Application of quinpirole (1 μM) reliably suppressed the amplitude of uIPSCs by 29.6% in MS→MS connections, with increases in paired-pulse ratio and failure rate. The suppressive effects of quinpirole on uIPSCs were mimicked by 1 μM PD128907, a D(2/3) receptor agonist, whereas quinpirole-induced suppression of uISPCs was blocked by preapplication of 1 μM sulpiride or 10 μM nafadotride, both D(2/3) receptor antagonists. On the other hand, quinpirole (1 μM) had divergent effects on FS→MS connections, i.e., quinpirole increased uIPSC amplitude in 38.1% of FS→MS connections and 23.8% of FS→MS connections were suppressed by quinpirole. Analysis of coefficient of variation in uIPSC amplitude implied the involvement of presynaptic mechanisms in quinpirole-induced effects on uIPSCs. These results suggest that activation of D(2)-like receptors facilitates outputs from MS neurons in the NAc by reducing lateral inhibition during a dormant period of FS neuron activities.
Collapse
|
28
|
Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N, Cools AR. In vivo neurochemical evidence that newly synthesised GABA activates GABA(B), but not GABA(A), receptors on dopaminergic nerve endings in the nucleus accumbens of freely moving rats. Neuropharmacology 2011; 62:907-13. [PMID: 21964521 DOI: 10.1016/j.neuropharm.2011.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/19/2011] [Accepted: 09/16/2011] [Indexed: 01/13/2023]
Abstract
GABA released from accumbal GABAergic interneurons plays an inhibitory role in the regulation of dopamine efflux through GABA(B) and GABA(A) receptors located on accumbal dopaminergic nerve endings. The cytosolic newly synthesised GABA alters vesicular GABA levels and, accordingly, the amount of GABA released from the neuron. Therefore, we hypothesised that glutamic acid decarboxylase (GAD) which generates GABA in accumbal GABAergic neurons, at least partly determines the GABA receptor subtype-mediated GABAergic tonus. To (in)validate this hypothesis, in vivo microdialysis was used to study the effects of an intra-accumbal infusion of the GAD inhibitor l-allylglycine (allylglycine) on the accumbal dopamine efflux of freely moving rats. The intra-accumbal infusion of allylglycine (50.0, 250.0 and 500.0 nmol) dose-dependently increased the accumbal dopamine levels. The co-administration of tetrodotoxin (720 pmol) suppressed the allylglycine (500.0 nmol)-induced dopamine efflux. The intra-accumbal infusion of GABA(B) receptor agonist baclofen (2.5 and 5.0 nmol) inhibited the allylglycine (500.0 nmol)-induced dopamine efflux. The baclofen's effects were counteracted by GABA(B) receptor antagonist saclofen (10.0 nmol). Neither GABA(A) receptor agonist (muscimol: 25.0 and 250.0 pmol) nor antagonist (bicuculline: 50.0 pmol) altered the allylglycine (250.0 and 500.0 nmol)-induced dopamine efflux. The present study provides in vivo neurochemical evidence that newly synthesised GABA that exerts an inhibitory tonus on the accumbal dopaminergic activity, acts at the level of GABA(B) receptors, but not GABA(A) receptors. The present study also shows that there is an allylglycine-insensitive GABA pool that release GABA exerting an inhibitory control of the accumbal dopaminergic activity, at the level of GABA(A) receptors. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
|
29
|
Mizoguchi N, Fujita S, Koshikawa N, Kobayashi M. Spatiotemporal dynamics of long-term potentiation in rat insular cortex revealed by optical imaging. Neurobiol Learn Mem 2011; 96:468-78. [PMID: 21855644 DOI: 10.1016/j.nlm.2011.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/06/2011] [Accepted: 07/25/2011] [Indexed: 01/25/2023]
Abstract
Long-term potentiation (LTP) of the gustatory cortex (GC), a part of the insular cortex (IC) around the middle cerebral artery, is a key process of gustatory learning and memory, including conditioned taste aversion learning. The rostral (rGC) and caudal GC (cGC) process different tastes; the rGC responds to hedonic and the cGC responds to aversive tastes. However, plastic changes of spatial interaction of excitatory propagation between the rGC and cGC remain unknown. The present study aimed to elucidate spatiotemporal profiles of excitatory propagation, induced by electrical stimulation (five train pulses) of the rGC/cGC before and after LTP induction, using in vivo optical imaging with a voltage-sensitive dye. We demonstrated that tetanic stimulation of the cGC induced long-lasting expansion of the excitation responding to five train stimulation of the cGC, and an increase in amplitude of optical signals in the IC. Excitatory propagation after LTP induction spread preferentially toward the rostral IC: the length constant (λ) of excitation, obtained by fitting optical signals with a monoexponential curve, was increased to 121.9% in the rostral direction, whereas λ for the caudal, dorsal, and ventral directions were 48.9%, 44.2%, and 62.5%, respectively. LTP induction was prevented by pre-application of D-APV, an NMDA receptor antagonist, or atropine, a muscarinic receptor antagonist, to the cortical surface. In contrast, rGC stimulation induced only slight LTP without direction preference. Considering the different roles of the rGC and cGC in gustatory processing, these characteristic patterns of LTP in the GC may be involved in a mechanism underlying conversion of palatability.
Collapse
|
30
|
Tomiyama K, Kim HA, Kinsella A, Ehrlich ME, Schütz G, Koshikawa N, Lawrence AJ, Waddington JL, Drago J. Phenotypic disruption to orofacial movement topography in conditional mutants with generalized CamKIIa/Cre D1Tox versus striatal-specific DARPP-32/Cre D1Tox ablation of D1 dopamine receptor-expressing cells. Synapse 2011; 65:835-42. [PMID: 21308794 DOI: 10.1002/syn.20910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/21/2010] [Indexed: 01/29/2023]
Abstract
Orofacial movements were quantified in (a) DARPP-32/Cre D1Tox mutants, having progressive loss of D1 dopamine receptor expressing striatal medium spiny neurons and (b) CamKIIa/Cre D1Tox mutants, having progressive, generalized loss of forebrain D1 receptor expressing cells. Horizontal jaw movements and tongue protrusions were reduced in DARPP-32/Cre but not in CamKIIa/Cre mutants; head and vibrissae movements were increased in DARPP-32/Cre but decreased in CamKIIa/Cre mutants. In drug challenge studies, tongue protrusions were increased in CamKIIa/Cre mutants following vehicle, suggesting a stress-related phenotype. These findings indicate that mice with progressive loss of striatal-specific D1 receptor expressing cells have an orofacial phenotype that may be modulated by the loss of extrastriatal D1 receptor expressing cells. As progressive loss of D1 dopamine receptor-expressing cells is a hallmark feature of Huntington's disease (HD), these findings may inform the functional role of loss of this cell population in the overall pathobiology of HD.
Collapse
|
31
|
Koshikawa N, Fujita S, Adachi K. Behavioral pharmacology of orofacial movement disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:1-38. [PMID: 21708305 DOI: 10.1016/b978-0-12-385198-7.00001-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dysfunction in orofacial movement is evident in patients with schizophrenia, Parkinson's disease and Huntington's disease. In animal studies on orofacial dyskinesia, these neurological disorders have been considered as a starting point to examine the pathophysiology and mechanisms underlying the symptoms. There is circumstantial evidence that orofacial dyskinesia in humans might be the consequence of hyperfunctioning mesolimbic-pallidal circuitry, in which the mesolimbic region occupies a central role, in contrast to typical Parkinson-like symptoms which involve hypofunction in the nigrostriato-nigral circuity. Studies in animals suffer from technical difficulties concerning the assessment of orofacial behaviors. There are some experimental designs that provide detailed information on the amplitude and the frequency of the jaw movements. By using such methods, the involvement of neurotransmitter systems and functional neural connections within the basal ganglia has been studied in rat rhythmical jaw movements. Regarding neurotransmitter systems, dopaminergic, cholinergic, γ-aminobutyric acid (GABA)ergic and glutamaterigic systems have been shown to be involved in rat rhythmical jaw movements. The involved neural connections have also been investigated, focusing on the differential role between the dorsal and ventral part of the striatum, the shell and core of the nucleus accumbens and the output pathways from the striatum and the nucleus accumbens. Taking available clinical and experimental evidence, the orofacial dyskinesias are thought to arise when hierarchically lower order output stations of the mesolimbic region start to dysfunction as a consequence of the arrival of distorted information sent by the mesolimbic region. This review seeks to provide an overview of prior and recent findings across several orofacial movement disorders and interpret new insights in the context of the limitations of behavioral pharmacology and prior knowledge of the regulation of behavior by dopamine receptors and other related neuronal systems.
Collapse
|
32
|
Okamoto S, Ito S, Ando K, Mouri M, Ikeda A, Hasegawa H, Koshikawa N. Gelation of Photonic Microdomain Structures Formed in Semi-Dilute Solutions of Ultra-High-Molecular-Weight Polystyrene-b-Polybutadiene with Various Polybutadiene Contents. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1757-899x/14/1/012008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Ikeda H, Miyatake M, Koshikawa N, Ochiai K, Yamada K, Kiss A, Donlin MJ, Panneton WM, Churchill JD, Green M, Siddiqui AM, Leinweber AL, Crews NR, Ezerskiy LA, Rendell VR, Belcheva MM, Coscia CJ. Morphine modulation of thrombospondin levels in astrocytes and its implications for neurite outgrowth and synapse formation. J Biol Chem 2010; 285:38415-27. [PMID: 20889977 PMCID: PMC2992274 DOI: 10.1074/jbc.m110.109827] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 09/28/2010] [Indexed: 11/06/2022] Open
Abstract
Opioid receptor signaling via EGF receptor (EGFR) transactivation and ERK/MAPK phosphorylation initiates diverse cellular responses that are cell type-dependent. In astrocytes, multiple μ opioid receptor-mediated mechanisms of ERK activation exist that are temporally distinctive and feature different outcomes. Upon discovering that chronic opiate treatment of rats down-regulates thrombospondin 1 (TSP1) expression in the nucleus accumbens and cortex, we investigated the mechanism of action of this modulation in astrocytes. TSP1 is synthesized in astrocytes and is released into the extracellular matrix where it is known to play a role in synapse formation and neurite outgrowth. Acute morphine (hours) reduced TSP1 levels in astrocytes. Chronic (days) opioids repressed TSP1 gene expression and reduced its protein levels by μ opioid receptor and ERK-dependent mechanisms in astrocytes. Morphine also depleted TSP1 levels stimulated by TGFβ1 and abolished ERK activation induced by this factor. Chronic morphine treatment of astrocyte-neuron co-cultures reduced neurite outgrowth and synapse formation. Therefore, inhibitory actions of morphine were detected after both acute and chronic treatments. An acute mechanism of morphine signaling to ERK that entails depletion of TSP1 levels was suggested by inhibition of morphine activation of ERK by a function-blocking TSP1 antibody. This raises the novel possibility that acute morphine uses TSP1 as a source of EGF-like ligands to activate EGFR. Chronic morphine inhibition of TSP1 is reminiscent of the negative effect of μ opioids on EGFR-induced astrocyte proliferation via a phospho-ERK feedback inhibition mechanism. Both of these variations of classical EGFR transactivation may enable opiates to diminish neurite outgrowth and synapse formation.
Collapse
|
34
|
Sekino R, Saigusa T, Aono Y, Uchida T, Takada K, Oi Y, Koshikawa N, Cools AR. Dopamine D1-like receptors play only a minor role in the increase of striatal dopamine induced by striatally applied SKF38393. Eur J Pharmacol 2010; 648:80-6. [DOI: 10.1016/j.ejphar.2010.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/14/2010] [Accepted: 08/21/2010] [Indexed: 11/16/2022]
|
35
|
Tomiyama K, Song L, Kobayashi M, Kinsella A, Kanematsu T, Hirata M, Koshikawa N, Waddington JL. Orofacial movements in phospholipase C-related catalytically inactive protein-1/2 double knockout mice: Effect of the GABAergic agent diazepam and the D(1) dopamine receptor agonist SKF 83959. Synapse 2010; 64:714-20. [PMID: 20340178 DOI: 10.1002/syn.20798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orofacial movements are regulated by D(1)-like dopamine receptors interacting with additional mechanisms. Phospholipase C-related catalytically inactive protein (PRIP) regulates cell surface expression of GABA(A) receptors containing a gamma2 subunit. Mutant mice with double knockout of PRIP-1 and PRIP-2 were used to investigate aspects of GABAergic regulation of orofacial movements and interactions with D(1) mechanisms. Vertical jaw movements, tongue protrusions and movements of the head and vibrissae were reduced in PRIP-1/2 double knockouts. The GABA(A)ergic agent diazepam reduced movements of the head and vibrissae; these effects were unaltered in PRIP-1/2 double knockouts. The D(1)-like agonist SKF 83959 induced vertical jaw movements, incisor chattering, and movements of the head and vibrissae that were unaltered in PRIP-1/2 double knockouts. However, SKF 83959-induced tongue protrusions were reduced in PRIP-1/2 double knockouts. PRIP-mediated regulation of GABA(A)ergic receptor mechanisms influences topographically distinct aspects of orofacial movement and interacts with D(1) receptor systems.
Collapse
|
36
|
Yamamoto K, Koyanagi Y, Koshikawa N, Kobayashi M. Postsynaptic Cell Type–Dependent Cholinergic Regulation of GABAergic Synaptic Transmission in Rat Insular Cortex. J Neurophysiol 2010; 104:1933-45. [DOI: 10.1152/jn.00438.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral cortex consists of multiple neuron subtypes whose electrophysiological properties exhibit diverse modulation patterns in response to neurotransmitters, including noradrenaline and acetylcholine (ACh). We performed multiple whole cell patch-clamp recording from layer V GABAergic interneurons and pyramidal cells of rat insular cortex (IC) to examine whether cholinergic effects on unitary inhibitory postsynaptic currents (uIPSCs) are differentially regulated by ACh receptors, depending on their presynaptic and postsynaptic cell subtypes. In fast-spiking (FS) to pyramidal cell synapses, carbachol (10 μM) invariably decreased uIPSC amplitude by 51.0%, accompanied by increases in paired-pulse ratio (PPR) of the second to first uIPSC amplitude, coefficient of variation (CV) of the first uIPSC amplitude, and failure rate. Carbachol-induced uIPSC suppression was dose dependent and blocked by atropine, a muscarinic ACh receptor antagonist. Similar cholinergic suppression was observed in non-FS to pyramidal cell synapses. In contrast, FS to FS/non-FS cell synapses showed heterogeneous effects on uIPSC amplitude by carbachol. In roughly 40% of pairs, carbachol suppressed uIPSCs by 35.8%, whereas in a similar percentage of pairs uIPSCs were increased by 34.8%. Non-FS to FS/non-FS cell synapses also showed carbachol-induced uIPSC facilitation by 29.2% in about half of the pairs, whereas nearly 40% of pairs showed carbachol-induced suppression of uIPSCs by 40.3%. Carbachol tended to increase uIPSC amplitude in interneuron-to-interneuron synapses with higher PPR, suggesting that carbachol facilitates GABA release in interneuron synapses with lower release probability. These results suggest that carbachol-induced effects on uIPSCs are not homogeneous but preiotropic: i.e., cholinergic modulation of GABAergic synaptic transmission is differentially regulated depending on postsynaptic neuron subtypes.
Collapse
|
37
|
Adachi K, Shimizu K, Hu JW, Suzuki I, Sakagami H, Koshikawa N, Sessle BJ, Shinoda M, Miyamoto M, Honda K, Iwata K. Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity. Mol Pain 2010; 6:59. [PMID: 20860800 PMCID: PMC3146069 DOI: 10.1186/1744-8069-6-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP) was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK) phosphorylation in trigeminal spinal subnucleus caudalis (Vc), trigeminal spinal subnucleus interpolaris (Vi), upper cervical spinal cord (C1/C2) and paratrigeminal nucleus (Pa5) neurons were analyzed in rats. Results Genioglossus (GG) muscle activity was evoked by pulpal application of 100 mM α,β-meATP and was significantly larger than GG activity following vehicle (phosphate-buffered saline PBS) application (p < 0.01). The enhanced GG muscle activity following 100 mM α,β-meATP was significantly reduced (p < 0.05) by co-application of 1 mM TNP-ATP (P2X1, P2X3 and, P2X2/3 antagonist). A large number of pERK-LI cells were expressed in the Vc, Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM α,β-meATP compared to PBS application to the pulp (p < 0.05). The pERK-LI cell expression and GG muscle activity induced by 100 mM α,β-meATP pulpal application were significantly reduced after intrathecal injection of the MAPK/ERK kinase (MEK) inhibitor PD 98059 and by pulpal co-application of 1 mM TNP-ATP (p < 0.05). Conclusions The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.
Collapse
|
38
|
Koyanagi Y, Yamamoto K, Oi Y, Koshikawa N, Kobayashi M. Presynaptic Interneuron Subtype- and Age-Dependent Modulation of GABAergic Synaptic Transmission by β-Adrenoceptors in Rat Insular Cortex. J Neurophysiol 2010; 103:2876-88. [DOI: 10.1152/jn.00972.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
β-Adrenoceptors play a crucial role in the regulation of taste aversion learning in the insular cortex (IC). However, β-adrenergic effects on inhibitory synaptic transmission mediated by γ-aminobutyric acid (GABA) remain unknown. To elucidate the mechanisms of β-adrenergic modulation of inhibitory synaptic transmission, we performed paired whole cell patch-clamp recordings from layer V GABAergic interneurons and pyramidal cells of rat IC aged from postnatal day 17 (PD17) to PD46 and examined the effects of isoproterenol, a β-adrenoceptor agonist, on unitary inhibitory postsynaptic currents (uIPSCs). Isoproterenol (100 μM) induced facilitating effects on uIPSCs in 33.3% of cell pairs accompanied by decreases in coefficient of variation (CV) of the first uIPSC amplitude and paired-pulse ratio (PPR) of the second to first uIPSC amplitude, whereas 35.9% of pairs showed suppressive effects of isoproterenol on uIPSC amplitude obtained from fast spiking (FS) to pyramidal cell pairs. Facilitatory effects of isoproterenol were frequently observed in FS–pyramidal cell pairs at ≥PD24. On the other hand, isoproterenol suppressed uIPSC amplitude by 52.3 and 39.8% in low-threshold spike (LTS)–pyramidal and late spiking (LS)–pyramidal cell pairs, respectively, with increases in CV and PPR. The isoproterenol-induced suppressive effects were blocked by preapplication of 100 μM propranolol, a β-adrenoceptor antagonist. There was no significant correlation between age and changes of uIPSCs in LTS–/LS–pyramidal cell pairs. These results suggest the presence of differential mechanisms in presynaptic GABA release and/or postsynaptic GABAA receptor-related assemblies among interneuron subtypes. Age- and interneuron subtype-specific β-adrenergic modulation of IPSCs may contribute to experience-dependent plasticity in the IC.
Collapse
|
39
|
Ikeda H, Kotani A, Koshikawa N, Cools A. Differential role of GABAA and GABAB receptors in two distinct output stations of the rat striatum: studies on the substantia nigra pars reticulata and the globus pallidus. Neuroscience 2010; 167:31-9. [DOI: 10.1016/j.neuroscience.2010.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/07/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
|
40
|
Kobayashi M, Fujita S, Takei H, Song L, Chen S, Suzuki I, Yoshida A, Iwata K, Koshikawa N. Functional mapping of gustatory neurons in the insular cortex revealed by pERK-immunohistochemistry and in vivo optical imaging. Synapse 2010; 64:323-34. [DOI: 10.1002/syn.20731] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Coscia CJ, Ikeda H, Miyatake M, Koshikawa N, Ochiai K, Yamada K, Kiss A, Donlin M, Panneton WM, Churchill J, Green M, Siddiqui A, Leinweber A, Ezerskiy L, Rendell V, Belcheva M. MORPHINE MODULATION OF THROMBSPONDIN LEVELS IN ASTROCYTES AND ITS IMPLICATIONS FOR SYNAPSE FORMATION. FASEB J 2010. [DOI: 10.1096/fasebj.24.1_supplement.710.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Fujita S, Kiguchi M, Kobayashi M, Koshikawa N, Waddington JL. Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements. Brain Res 2010; 1322:30-7. [PMID: 20122906 DOI: 10.1016/j.brainres.2010.01.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/25/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022]
Abstract
The role of NMDA receptors in the ventrolateral striatum to modulate dopamine receptor-mediated jaw movements was investigated in freely moving rats, using a magnetic sensor system combined with intracerebral microinjection of drugs. Apomorphine (1mg/kg i.v.) induced repetitive jaw movements that were reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor agonist NMDA (0.1 and 1mug/0.2mul bilaterally) into the ventrolateral striatum. Apomorphine-induced repetitive jaw movements were also reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor antagonists d-APV (0.01 and 0.1mug) or MK-801 (0.5 and 5mug). The inhibitory effect of NMDA (1mug) was reduced by co-administration of MK-801 (0.5mug). Microinjections of drugs into the ventrolateral striatum in the absence of apomorphine did not affect jaw movements. These results suggest that NMDA receptors in the ventrolateral striatum play an important modulatory role in the expression of dopamine receptor-mediated jaw movements. However, similar effects of NMDA and NMDA antagonists echo previous paradoxical findings and indicate that interactions between dopamine and NMDA receptors are complex and multifaceted. Cellular mechanism(s) may involve differential effects of NMDA agonism and antagonism on dopamine D1-like vs D2-like receptors and, possibly, on related GABAergic processes.
Collapse
|
43
|
Fujita S, Kiguchi M, Kobayashi M, Kinsella A, Koshikawa N, Waddington JL. Assessment of jaw movements by magnetic sensor in relation to topographies of orofacial behaviour in freely moving rats: Studies with the dopamine D(1)-like receptor agonists SKF 83822 vs SKF 83959. Eur J Pharmacol 2010; 632:39-44. [PMID: 20122923 DOI: 10.1016/j.ejphar.2010.01.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 12/09/2009] [Accepted: 01/20/2010] [Indexed: 11/27/2022]
Abstract
This study applies new magnetic sensor-electromyographic technology for recording jaw movements in freely moving rats to analyse topographies of orofacial movement that occur in association with individual elements of behaviour under challenge with two dopamine D(1)-like receptor agonists, SKF 83822 ([R/S]-6-chloro-7, 8-dihydroxy-3-allyl-1-[3-methyl-phenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine) and SKF 83959([R/S]-3-methyl-6-chloro-7, 8-dihydroxy-1-[3-methyl-phenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine). Grooming of the snout/face involved primarily dominant-mouth opening jaw movements with small activation of digastric muscles; subsequent grooming of the flank/trunk was characterised by repetitive, uniform jaw movements with small activation of digastric and masseter muscles. In contrast, grooming of the fingers and tail typically involved high-frequency jaw movements with variable vertical jaw movements and/or strong activation of masseter muscles. Vacuous chewing involved two distinct patterns of jaw movements: a dominant-closing pattern, with strong activation of masseter muscles, and a dominant-opening pattern, with slight activation of masseter muscles. SKF 83822 stimulates dopamine D(1)-like receptors and activates adenylate cyclase but not phosphoinositide hydrolysis, while SKF 83959 stimulates dopamine D(1)-like receptors and activates phosphoinositide hydrolysis but not adenylate cyclase. These agonists exerted differential effects on jaw movements, as SKF 83959 induced more jaw movements per episode of syntactic grooming than SKF 83822, while SKF 83822 induced more jaw movements during non-syntactic grooming than SKF 83959. Magnetic sensor technology in freely moving animals resolved distinct topographies of orofacial movement and informs on their relationship to other behaviours in the rodent repertoire and to dopamine D(1)-like receptor function.
Collapse
|
44
|
Kobayashi M, Koyanagi Y, Yamamoto K, Koshikawa N. β-Adrenoceptors differentially modulate inhibitory synaptic transmission depending on presynaptic interneuron subtype. Neurosci Res 2010. [DOI: 10.1016/j.neures.2010.07.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Koshikawa N, Tomiyama K, Waddington JL. Dopamine Receptor Subtypes and Orofacial Movement Topographies: Studies with Mutant Models. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Fujita S, Adachi K, Koshikawa N, Kobayashi M. Spatiotemporal dynamics of excitation in rat insular cortex: intrinsic corticocortical circuit regulates caudal-rostro excitatory propagation from the insular to frontal cortex. Neuroscience 2009; 165:278-92. [PMID: 19800943 DOI: 10.1016/j.neuroscience.2009.09.073] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/12/2009] [Accepted: 09/27/2009] [Indexed: 11/28/2022]
Abstract
The insular cortex (IC), composing unique anatomical connections, receives multi-modal sensory inputs including visceral, gustatory and somatosensory information from sensory thalamic nuclei. Axonal projections from the limbic structures, which have a profound influence on induction of epileptic activity, also converge onto the IC. However, functional connectivity underlying the physiological and pathological roles characteristic to the IC still remains unclear. The present study sought to elucidate the spatiotemporal dynamics of excitatory propagation and their cellular mechanisms in the IC using optical recording in urethane-anesthetized rats. Repetitive electrical stimulations of the IC at 50 Hz demonstrated characteristic patterns of excitatory propagation depending on the stimulation sites. Stimulation of the granular zone of the IC (GI) and other surrounding cortices such as the motor/primary sensory/secondary sensory cortices evoked round-shaped excitatory propagations, which often extended over the borders of adjacent areas, whereas excitation of the agranular and dysgranular zones in the IC (AI and DI, respectively) spread along the rostrocaudal axis parallel to the rhinal fissure. Stimulation of AI/DI often evoked excitation in the dorsolateral orbital cortex, which exhibited spatially discontinuous topography of excitatory propagation in the IC. Pharmacological manipulations using 6,7-dinitroquinoxaline-2,3(1H,4H)-dione (DNQX), a non-NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (D-APV), an NMDA receptor antagonist, and bicuculline methiodide, a GABA(A) receptor antagonist, indicate that excitatory propagation was primarily regulated by non-NMDA and GABA(A) receptors. Microinjection of lidocaine or incision of the supragranular layers of the rostrocaudally middle part of excitatory regions suppressed excitation in the remote regions from the stimulation site, suggesting that the excitatory propagation in the IC is largely mediated by cortical local circuits. These features of excitatory propagation in the AI/DI, that is the propagation along the rostrocaudal axis with less propagation in the ventro-dorsal direction, may play an important role for transmitting neural excitation arising from the limbic structures to the frontal and orbital cortices.
Collapse
|
47
|
Kobayashi M, Kojima M, Koyanagi Y, Adachi K, Imamura K, Koshikawa N. Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of alpha(1)- and beta-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex. Synapse 2009; 63:269-81. [PMID: 19116948 DOI: 10.1002/syn.20604] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adrenergic agonists have different modulatory effects on excitatory synaptic transmission depending on the receptor subtypes involved. The present study examined the loci of alpha(1)- and beta-adrenoceptor agonists, which have opposite effects on excitatory neural transmission, involved in modulation of glutamatergic transmission in layer V pyramidal cells of rat cerebral cortex. Phenylephrine, an alpha(1)-adrenoceptor agonist, suppressed the amplitude of AMPA receptor-mediated excitatory postsynaptic currents evoked by repetitive electrical stimulation (eEPSCs, 10 pulses at 33 Hz). The coefficient of variation (CV) of the 1st eEPSC amplitude and paired-pulse ratio (PPR), which were sensitive to extracellular Ca(2+) concentration, were not affected by phenylephrine. Phenylephrine suppressed miniature EPSC (mEPSC) amplitude without changing its frequency. In contrast, isoproterenol, a beta-adrenoceptor agonist, strongly increased the amplitude of the 1st eEPSC compared with that of the 2nd to 10th eEPSCs, which resulted in a decrease in PPR. Isoproterenol-induced enhancement of eEPSC amplitude was accompanied by a decrease in CV. Isoproterenol increased the frequency of mEPSCs without significant effect on amplitude. Phenylephrine suppressed inward currents evoked by puff application of glutamate, AMPA, or NMDA, whereas isoproterenol application was not accompanied by significant changes in these inward currents. These findings suggest that phenylephrine decreases eEPSCs through postsynaptic AMPA or NMDA receptors, while the effects of isoproterenol are mediated by facilitation of glutamate release from presynaptic terminals without effect on postsynaptic glutamate receptors. These two different mechanisms of modulation of excitatory synaptic transmission may improve the "signal-to-noise ratio" in cerebral cortex.
Collapse
|
48
|
Ikeda H, Kotani A, Lee J, Koshikawa N, Cools A. GABAA receptors in the mediodorsal thalamus play a crucial role in rat shell-specific acetylcholine-mediated, but not dopamine-mediated, turning behaviour. Neuroscience 2009; 159:1200-7. [DOI: 10.1016/j.neuroscience.2009.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/13/2009] [Accepted: 02/07/2009] [Indexed: 11/25/2022]
|
49
|
Tomiyama K, O'Tuathaigh CM, O'Sullivan GJ, Kinsella A, Lai D, Harvey RP, Tighe O, Croke DT, Koshikawa N, Waddington JL. Phenotype of spontaneous orofacial dyskinesia in neuregulin-1 'knockout' mice. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:330-3. [PMID: 19150478 DOI: 10.1016/j.pnpbp.2008.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/09/2008] [Accepted: 12/16/2008] [Indexed: 11/25/2022]
Abstract
Studies in antipsychotic-naïve patients with schizophrenia indicate a baseline level of spontaneous involuntary movements, particularly orofacial dyskinesia. Neuregulin-1 is associated with risk for schizophrenia and its functional role can be studied in 'knockout' mice. We have shown previously that neuregulin-1 'knockouts' evidence disruption in social behaviour. Neuregulin-1 'knockouts' were assessed for four topographies of orofacial movement, both spontaneously and under challenge with the D(1)-like dopamine receptor agonist SKF 83959. Neuregulin-1 'knockouts' evidenced an increase in spontaneous incisor chattering, particularly among males. SKF 83959 induced incisor chattering, vertical jaw movements and tongue protrusions; the level of horizontal jaw movements was increased and that of tongue protrusions decreased in neuregulin-1 'knockouts'. These findings indicate that the schizophrenia risk gene neuregulin-1 is involved in the regulation of not only social behaviour but also orofacial dyskinesia. Orofacial dyskinesia in neuregulin-1 mutants may indicate some modest genetic relationship between risk for schizophrenia and vulnerability to spontaneous movement disorder.
Collapse
|
50
|
Ikeda H, Kotani A, Koshikawa N, Cools A. Somatostatin receptors in the nucleus accumbens modulate dopamine-dependent but not acetylcholine-dependent turning behaviour of rats. Neuroscience 2009; 159:974-81. [DOI: 10.1016/j.neuroscience.2009.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 11/27/2022]
|