26
|
Guo J, Wang J, Liang P, Tian E, Liu D, Guo Z, Chen J, Zhang Y, Zhou Z, Kong W, Crans DC, Lu Y, Zhang S. Vestibular dysfunction leads to cognitive impairments: State of knowledge in the field and clinical perspectives (Review). Int J Mol Med 2024; 53:36. [PMID: 38391090 PMCID: PMC10914312 DOI: 10.3892/ijmm.2024.5360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
The vestibular system may have a critical role in the integration of sensory information and the maintenance of cognitive function. A dysfunction in the vestibular system has a significant impact on quality of life. Recent research has provided evidence of a connection between vestibular information and cognitive functions, such as spatial memory, navigation and attention. Although the exact mechanisms linking the vestibular system to cognition remain elusive, researchers have identified various pathways. Vestibular dysfunction may lead to the degeneration of cortical vestibular network regions and adversely affect synaptic plasticity and neurogenesis in the hippocampus, ultimately contributing to neuronal atrophy and cell death, resulting in memory and visuospatial deficits. Furthermore, the extent of cognitive impairment varies depending on the specific type of vestibular disease. In the present study, the current literature was reviewed, potential causal relationships between vestibular dysfunction and cognitive performance were discussed and directions for future research were proposed.
Collapse
|
27
|
Zhang SQ, Wu ZQ, Huo BW, Xu HN, Zhao K, Jing CQ, Liu FL, Yu J, Li ZR, Zhang J, Zang L, Hao HK, Zheng CH, Li Y, Fan L, Huang H, Liang P, Wu B, Zhu JM, Niu ZJ, Zhu LH, Song W, You J, Yan S, Li ZY. [Incidence of postoperative complications in Chinese patients with gastric or colorectal cancer based on a national, multicenter, prospective, cohort study]. ZHONGHUA WEI CHANG WAI KE ZA ZHI = CHINESE JOURNAL OF GASTROINTESTINAL SURGERY 2024; 27:247-260. [PMID: 38532587 DOI: 10.3760/cma.j.cn441530-20240218-00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Objective: To investigate the incidence of postoperative complications in Chinese patients with gastric or colorectal cancer, and to evaluate the risk factors for postoperative complications. Methods: This was a national, multicenter, prospective, registry-based, cohort study of data obtained from the database of the Prevalence of Abdominal Complications After Gastro- enterological Surgery (PACAGE) study sponsored by the China Gastrointestinal Cancer Surgical Union. The PACAGE database prospectively collected general demographic characteristics, protocols for perioperative treatment, and variables associated with postoperative complications in patients treated for gastric or colorectal cancer in 20 medical centers from December 2018 to December 2020. The patients were grouped according to the presence or absence of postoperative complications. Postoperative complications were categorized and graded in accordance with the expert consensus on postoperative complications in gastrointestinal oncology surgery and Clavien-Dindo grading criteria. The incidence of postoperative complications of different grades are presented as bar charts. Independent risk factors for occurrence of postoperative complications were identified by multifactorial unconditional logistic regression. Results: The study cohort comprised 3926 patients with gastric or colorectal cancer, 657 (16.7%) of whom had a total of 876 postoperative complications. Serious complications (Grade III and above) occurred in 4.0% of patients (156/3926). The rate of Grade V complications was 0.2% (7/3926). The cohort included 2271 patients with gastric cancer with a postoperative complication rate of 18.1% (412/2271) and serious complication rate of 4.7% (106/2271); and 1655 with colorectal cancer, with a postoperative complication rate of 14.8% (245/1655) and serious complication rate of 3.0% (50/1655). The incidences of anastomotic leakage in patients with gastric and colorectal cancer were 3.3% (74/2271) and 3.4% (56/1655), respectively. Abdominal infection was the most frequently occurring complication, accounting for 28.7% (164/572) and 39.5% (120/304) of postoperative complications in patients with gastric and colorectal cancer, respectively. The most frequently occurring grade of postoperative complication was Grade II, accounting for 65.4% (374/572) and 56.6% (172/304) of complications in patients with gastric and colorectal cancers, respectively. Multifactorial analysis identified (1) the following independent risk factors for postoperative complications in patients in the gastric cancer group: preoperative comorbidities (OR=2.54, 95%CI: 1.51-4.28, P<0.001), neoadjuvant therapy (OR=1.42, 95%CI:1.06-1.89, P=0.020), high American Society of Anesthesiologists (ASA) scores (ASA score 2 points:OR=1.60, 95% CI: 1.23-2.07, P<0.001, ASA score ≥3 points:OR=0.43, 95% CI: 0.25-0.73, P=0.002), operative time >180 minutes (OR=1.81, 95% CI: 1.42-2.31, P<0.001), intraoperative bleeding >50 mL (OR=1.29,95%CI: 1.01-1.63, P=0.038), and distal gastrectomy compared with total gastrectomy (OR=0.65,95%CI: 0.51-0.83, P<0.001); and (2) the following independent risk factors for postoperative complications in patients in the colorectal cancer group: female (OR=0.60, 95%CI: 0.44-0.80, P<0.001), preoperative comorbidities (OR=2.73, 95%CI: 1.25-5.99, P=0.030), neoadjuvant therapy (OR=1.83, 95%CI:1.23-2.72, P=0.008), laparoscopic surgery (OR=0.47, 95%CI: 0.30-0.72, P=0.022), and abdominoperineal resection compared with low anterior resection (OR=2.74, 95%CI: 1.71-4.41, P<0.001). Conclusion: Postoperative complications associated with various types of infection were the most frequent complications in patients with gastric or colorectal cancer. Although the risk factors for postoperative complications differed between patients with gastric cancer and those with colorectal cancer, the presence of preoperative comorbidities, administration of neoadjuvant therapy, and extent of surgical resection, were the commonest factors associated with postoperative complications in patients of both categories.
Collapse
|
28
|
Sang D, Fan SM, Li SY, Zhang JT, Wang HM, Zhao XH, Zheng LJ, Liang P, Xi GB, Zhao LM, Zhang YR, Yuan P. [Mid-term analysis of prospective cohort study of rivaroxaban in preventing CRT in breast cancer]. ZHONGHUA ZHONG LIU ZA ZHI [CHINESE JOURNAL OF ONCOLOGY] 2024; 46:256-262. [PMID: 38494772 DOI: 10.3760/cma.j.cn112152-20231024-00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objective: To explore the efficacy and safety of Rivaroxaban in preventing catheter related thrombosis (CRT) in patients with breast cancer who are undergoing central venous catheter chemotherapy, and provide basis for making standardized prevention and treatment strategies. Methods: In this research, a prospective cohort study was adopted, and breast cancer patients who received central venous catheter chemotherapy in Sanhuan Cancer Hospital during September 2020 to March 2022 were selected as a treatment group to take the rivaroxaban anticoagulation therapy with 10 mg.po.qd for one month. The control group got no preventive anticoagulation therapy. Vascular ultrasound examination was taken to confirm the occurrence of CRT, and a chi-square test was done for comparison the disparity between the groups. Logistic regression was applied to analyze the univariate and multivariate factors for the formation of CRT. Results: In the research, a total of 235 patients were selected, and there were a total of 19 035 days of catheterization with 81 days of catheterization on average. While in the control group, the incidence of CRT was 28.0% (33/118), the incidence of CRT in the treatment group was 20.5% (24/117), the difference was no significant (P=0.183). Subgroup analysis results showed that the peripherally inserted central catheter (PICC) was performed in 165 cases with the CRT incidence of 18.2% (30/165) and thrombosis was mostly seen around axillary vein, accounting for 63.3%. Subclavian vein catheterization was performed in 63 cases with the CRT incidence of 39.7% (25/63), and thrombosis was mostly seen around subclavian vein, accounting for 88.0% (22/25). Implantable venous access port was implanted in 7 cases around subclavian vein and internal jugular vein with the CRT incidence of 28.6% (2/7). The patients who developed CRT within 30 days after catheterization accounted for 54.4% (31/57), 22.8% (13/57) in a period during 30 days and 60 days) and 22.8% (13/57) in a period during 60 days and 180 days). The diagnosed CRT patients had been treated with rivaroxaban 15 mg.bid.po for 3 months. During the 3 months, 100.0% of the thrombosis waned, 71.9% (41/57) of the thrombosis waned within 30 days, 19.3% (11/57) in a period during 30 and 60days and 8.8% (5/57) in a period during 60 days and 90 days. Univariate and multivariate analysis indicated that the risk of CRT in subclavian vein catheterization was higher than that in PICC, respectively (OR=2.898, 95% CI:1.386-6.056 P=0.005), and the type of catheterization was an independent factor for the formation of thrombosis. Safety analysis result showed that in the prevention of CRT, rivaroxaban treatment did not induce drug-related bleeding, liver function damage, bone marrow suppression or any other side effects. While CRT diagnosed patients were treated with anticoagulation, they kept the central venous catheter, and the infusion was smooth. These patients all finished the anti-tumor treatment as planned, and no abnormalities like new thrombosis or pulmonary embolism were observed. Conclusions: In the mid-term analysis, the proportion of Rivaroxaban in preventing anticoagulant CRT decreases, but it don't reach statistical significance. The sample size should be further increased for observation. Rivaroxaban is proved effective and very safe in the treatment of CRT, and does not affect the concurrent chemotherapy. Medical personnel should carry out the policy of "early prevention, early detection and early treatment" for CRT so as to improve the patients' quality of life.
Collapse
|
29
|
Fan FY, Ding WZ, Liu FY, Cheng ZG, Han ZY, Yu XL, Liang P, Yu J. [Spatial distribution pattern of local tumor progression analysis after microwave ablation of hepatocellular carcinoma based on three-dimensional magnetic resonance imaging]. ZHONGHUA GAN ZANG BING ZA ZHI = ZHONGHUA GANZANGBING ZAZHI = CHINESE JOURNAL OF HEPATOLOGY 2024; 32:208-213. [PMID: 38584101 DOI: 10.3760/cma.j.cn501113-20231123-00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective: To investigate the spatial distribution pattern of local tumor progression (LTP) for hepatocellular carcinoma (HCC) ≤5 cm after microwave ablation. Methods: A retrospective analysis was performed on 169 HCCs with matched MRI before and after ablation from December 2009 to December 2019. A tumor MRI was reconstructed using three-dimensional visualization technology. LTP was classified as contact or non-contact, early or late stage, according to whether LTP was in contact with the edge of the ablation zone and the occurrence time (24 months). The tumor-surrounded area was divided into eight quadrants by using the eight-quadrant map method. An analysis was conducted on the spatial correlation between the quadrant where the ablative margin (AM) safety boundary was located and the quadrant where different types of LTP occurred. The t-test, or rank-sum test, was used for the measurement data. 2-test for count data was used to compare the difference between the two groups. Results: The AM quadrant had a distribution of 54.4% LTP, 64.2% early LTP stage, and 69.1% contact LTP, suggesting this quadrant was much more concentrated than the other quadrants (P < 0.001). Additionally, the AM quadrant had only 15.2% of non-contact type LTP and 17.1% of late LTP, which was not significantly different from the average distribution probability of 12.5% (100/8%) among the eight quadrants (P = 0.667, 0.743). 46.6% of early contact type LTP was located at the ablation needle tip, 25.2% at the body, and 28.1% at the caudal, while the location distribution probabilities of non-early contact LTP were 34.8%, 31.8%, and 33.3%, respectively. Conclusion: LTP mostly occurs in areas where the ablation safety boundary is the shortest. However, non-contact LTP and late LTP stages exhibit the feature of uniform distribution. Thus, this type of LPT may result from an inadequate non-ablation safety boundary.
Collapse
|
30
|
Wang J, Wan Y, Zhang Y, Yuan J, Zheng X, Cao H, Qian K, Feng J, Tang Y, Chen S, Zhang Y, Zhou X, Liang P, Wu Q. Uridine diphosphate glucosyltransferases are involved in spinosad resistance in western flower thrips Frankliniella occidentalis (Pergande). JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133575. [PMID: 38280319 DOI: 10.1016/j.jhazmat.2024.133575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/29/2024]
Abstract
Uridine diphosphate glucosyltransferases (UGTs) play crucial roles in the insect detoxification system and are associated with pesticide resistance. Our previous transcriptomic analysis of spinosad-susceptible (Ivf03) and resistant (NIL-R) Frankliniella occidentalis revealed numerous upregulated UGT genes in the NIL-R strain, suggesting their potential contribution to spinosad resistance. To investigate this hypothesis, here we conducted UGT activity assays and spinosad induction experiments, employing RNA interference (RNAi) techniques for gene function validation. We found significantly elevated UGT activity in the NIL-R strain compared to Ivf03, with 5-nitrouracil showing a substantial synergistic effect on the resistant strain. Eighteen UGT genes were identified in F. occidentalis, with gene expansion and duplication observed within families UGT466, 467, and 468. Ten out of the eighteen UGTs exhibited higher expression levels in NIL-R, specifically FoUGT466B1, FoUGT468A3, and FoUGT468A4 consistently being upregulated across nymphs, males, and females. RNAi-based functional validation targeting these three UGT genes led to increased susceptibility to spinosad in a life stage-, sex-, and dose-dependent manner. These results indicate that UGTs are indeed involved in spinosad resistance in F. occidentalis, and the effects are dependent on life stage, sex, and dose. Therefore, sustainable control for F. occidentalis resistance should always consider these differential responses.
Collapse
|
31
|
Zheng J, Zhang B, Chen X, Hao W, Yao J, Li J, Gan Y, Wang X, Liu X, Wu Z, Liu Y, Lv L, Tao L, Liang P, Ji X, Wang H, Wan H. Critical Solvation Structures Arrested Active Molecules for Reversible Zn Electrochemistry. NANO-MICRO LETTERS 2024; 16:145. [PMID: 38441811 PMCID: PMC10914662 DOI: 10.1007/s40820-024-01361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 03/08/2024]
Abstract
Aqueous Zn-ion batteries (AZIBs) have attracted increasing attention in next-generation energy storage systems due to their high safety and economic. Unfortunately, the side reactions, dendrites and hydrogen evolution effects at the zinc anode interface in aqueous electrolytes seriously hinder the application of aqueous zinc-ion batteries. Here, we report a critical solvation strategy to achieve reversible zinc electrochemistry by introducing a small polar molecule acetonitrile to form a "catcher" to arrest active molecules (bound water molecules). The stable solvation structure of [Zn(H2O)6]2+ is capable of maintaining and completely inhibiting free water molecules. When [Zn(H2O)6]2+ is partially desolvated in the Helmholtz outer layer, the separated active molecules will be arrested by the "catcher" formed by the strong hydrogen bond N-H bond, ensuring the stable desolvation of Zn2+. The Zn||Zn symmetric battery can stably cycle for 2250 h at 1 mAh cm-2, Zn||V6O13 full battery achieved a capacity retention rate of 99.2% after 10,000 cycles at 10 A g-1. This paper proposes a novel critical solvation strategy that paves the route for the construction of high-performance AZIBs.
Collapse
|
32
|
Zhang D, He M, Qin C, Wu Z, Cao M, Ni D, Yu Z, Liang P. A highly effective SERS platform formed by the fabrication of Ag@ZIF-8@Au nanoparticles for rapid detection of acetamiprid in environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123754. [PMID: 38091646 DOI: 10.1016/j.saa.2023.123754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/13/2024]
Abstract
The unreasonable spraying and random migration of acetamiprid may cause pollution of crops, soil and water resources in the environment, resulting in threatening ecosystem and human health. However, the monitoring of acetamiprid using mass spectrum in the environment encounters challenges due to high-cost instruments and complex processing time. Herein, we fabricated a rapid and reliable SERS method based on Ag@ZIF-8@Au platforms for tracing acetamiprid residues in the environment. In this method, a MOF material named ZIF-8 is coated with silver nanoparticles and distributed internally between AgNPs and AuNPs to enhance Raman signal, which can enrich pesticide molecules into the hotspots area provided by noble material and helps avoid the oxidation of silver nanoparticles. High sensitivity (LOD of 9.027 × 10-10 M for acetamiprid, and SERS enhancement factor of 4.3 × 107), excellent reproducibility (6.496% or 7.198% RSD for 30 random points) and superior stability (3.127% RSD for 6 weeks) were achieved using the proposed method. Acetamiprid with concentrations from 10-4 to 10-9 M were successfully detected by SERS method. Furthermore, the linear detection models of acetamiprid in different environment matrices (lake water, tea leaves, tea garden soil, oranges and oranges orchard soil) were established and all the correlation coefficient (R2) were higher than or equal to 95%, indicating the excellent adaptability of Ag@ZIF-8@Au platform in environment. The randomly spiked concentrations of acetamiprid were also tested with good recovery values and low relative error values, further confirming the reliability of the detection method.
Collapse
|
33
|
Liu X, Zheng C, Liu T, Liang P. Identification of amino acid residues that are crucial for afidopyropen binding to the TRPV channel of Myzus persicae (Sulzer). Int J Biol Macromol 2024; 260:129644. [PMID: 38266832 DOI: 10.1016/j.ijbiomac.2024.129644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Afidopyropen is highly effective against sucking insects, including the Myzus persicae, that modulates the transient receptor potential vanilloid (TRPV) channel. However, the action mechanisms of afidopyropen to the TRPV channel remain unknown. In this study, the genes encoding the Nanchung (MpNan) and Inactive (MpIav) subunits of the TRPV channel of M. persicae (MpTRPV) were cloned, and their spatiotemporal expression profiles were investigated. Then, MpTRPV was functionally expressed in Xenopus laevis oocytes, and the AA residues crucial for afidopyropen binding were identified using the two-electrode voltage clamp (TEVC) technique. The results showed that both MpNan and MpIav exhibited the highest expression in the antennae and were most abundant in the 4th instar nymphs and adults. Knockdown of these two genes by RNAi greatly increased the toxicity of afidopyropen to the aphids. Moreover, the AA residues involved in afidopyropen binding to MpNan were predicted and L412 was further identified as the key residue for binding by TEVC analysis. The results also showed that afdopyropen and pymetrozine share the same binding site. These findings lay a foundation not only for exploring the mechanisms of pest target resistance to afidopyropen and pymetrozine but also for developing new insecticides targeting the TRPV channels of pests.
Collapse
|
34
|
Zhang W, Zhang D, Wang P, Li X, Wang Z, Chen Q, Huang J, Yu Z, Guo F, Liang P. Development of a SERS aptasensor for the determination of L-theanine using a noble metal nanoparticle-magnetic nanospheres composite. Mikrochim Acta 2024; 191:158. [PMID: 38409501 DOI: 10.1007/s00604-024-06245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
An ultrasensitive surface-enhanced Raman spectroscopy (SERS) aptamer sensor (aptasensor) using a noble metal nanoparticle-magnetic nanospheres composite was developed for L-theanine detection. It makes use of Fe3O4@Au MNPs and Au@Ag NPs embedded with the Raman reporter 4-mercaptobenzoic acid (4MBA). Au@4MBA@Ag NPs modified by aptamer and Fe3O4@Au MNPs modified by cDNA created the aptasensor with the strongest Raman signal of 4MBA through the specific binding of the aptamer. With the preferred binding of L-theanine aptamer to L-theanine, Au@4MBA@Ag NPs were released from Fe3O4@Au MNPs, causing a linear decrease in SERS intensity to achieve the SERS detection of the L-theanine. The SERS peak of 4MBA at 1078 cm-1 was used for quantitative determination. SERS intensity showed a good log-linear relationship within the range 10-10 to 10-6 M of L-theanine. The aptasensor has a high selectivity for L-theanine compared with other twelve tested analytes. Hence, this aptasensor is a promising analytical tool for L-theanine detection. The developed method was applied to the analysis of real samples, demonstrating excellent performance. The comparison with the standard liquid chromatography mass spectrometry method showed an error within 20%.
Collapse
|
35
|
Hu J, Chen GJ, Xue C, Liang P, Xiang Y, Zhang C, Chi X, Liu G, Ye Y, Cui D, Zhang D, Yu X, Dang H, Zhang W, Chen J, Tang Q, Guo P, Ho HP, Li Y, Cong L, Shum PP. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. LIGHT, SCIENCE & APPLICATIONS 2024; 13:52. [PMID: 38374161 PMCID: PMC10876988 DOI: 10.1038/s41377-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.
Collapse
|
36
|
Wang M, Wang J, Liang P, Wu K. Nutritional Status, Sex, and Ambient Temperature Modulate the Wingbeat Frequency of the Diamondback Moth Plutella xylostella. INSECTS 2024; 15:138. [PMID: 38392557 PMCID: PMC10889836 DOI: 10.3390/insects15020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), is a cosmopolitan horticultural pest that is undergoing a fast, climate-driven range expansion. Its wide geographic distribution, pest status, and high incidence of insecticide resistance are directly tied to long-distance migration. Wingbeat frequency (WBF) is a key aspect of P. xylostella migratory behavior, but has received limited scientific attention. Here, we investigated the effects of environmental parameters, age, adult nutrition, and sex on P. xylostella WBF. Across experimental regimes, WBF ranged from 31.39 Hz to 78.87 Hz. Over a 10-35 °C range, the WBF of both male and female moths increased with temperature up to 62.96 Hz. Though male WBF was unaffected by humidity, females exhibited the highest WBF at 15% relative humidity (RH). WBF was unaffected by adult age, but adult nutrition exerted important impacts. Specifically, the WBF of moths fed honey water (54.66 Hz) was higher than that of water-fed individuals (49.42 Hz). Lastly, males consistently exhibited a higher WBF than females. By uncovering the biological and (nutritional) ecological determinants of diamondback moth flight, our work provides invaluable guidance to radar-based monitoring, migration forecasting, and the targeted deployment of preventative mitigation tactics.
Collapse
|
37
|
Liang P, Liang P, Chen K, Chen Z, Liu Y, Lin Y, Li J, Fu R, Lu G, Wang D. Important nutrient sources and carbohydrate metabolism patterns in the growth and development of spargana. Parasit Vectors 2024; 17:68. [PMID: 38365789 PMCID: PMC10873960 DOI: 10.1186/s13071-024-06148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Sparganosis is a worldwide food-borne parasitic disease caused by spargana infection, which infects the muscle of frogs and snakes as well as many tissues and organs in humans. There are currently no viable treatments for sparganosis. Understanding spargana's nutrition source and carbohydrate metabolism may be crucial for identifying its energy supply and establishing methods of treatment for sparganosis. METHODS Using an amino acid analyzer and nutrient concentration detection kits, we assessed nutrient concentrations in the muscles of Fejervarya limnocharis and Pelophylax plancyi infected or not infected with spargana. Quantitative polymerase chain reaction (PCR) was used to quantify the major enzymes involved in five glucose metabolism pathways of spargana developing in vivo. We also used quantitative PCR to assess key enzymes and transcriptome sequencing to explore the regulation of carbohydrate metabolic pathways in vitro in response to different 24-h food treatments. RESULTS Infected muscle tissues had considerably higher concentrations of glucogenic and/or ketogenic amino acids, glucose, and glycogen than non-infected muscle tissues. We discovered that the number of differentially expressed genes in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was larger in low-glucose than in other dietary groups. We examined differences in the expression of genes producing amino acid transporters, glucose transporters, and cathepsins in spargana grown in various nutritional environments. In the normal saline group, only the major enzymes in the tricarboxylic acid cycle (TCA), glycogenesis, and glycogenolysis pathways were expressed. The L-glutamine group had the greatest transcriptional levels of critical rate-limiting enzymes of gluconeogenesis and glycogenesis. Furthermore, the low-glucose group had the highest transcriptional levels of critical rate-limiting enzymes involved in the TCA, glycolytic, and glycogenolysis pathways. Surprisingly, when compared to the in vitro culturing groups, spargana developing in vivo exhibited higher expression of these critical rate-limiting enzymes in these pathways, with the exception of the pentose phosphate pathway. CONCLUSIONS Spargana have a variety of nutritional sources, and there is a close relationship between nutrients and the carbohydrate metabolism pathways. It takes a multi-site approach to block nutrient absorption and carbohydrate metabolism pathways to provide energy to kill them.
Collapse
|
38
|
Liu X, Fu Z, Liu TX, Liang P. Effects of repeated afidopyropen treatment on the structure and function of the soil microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123083. [PMID: 38061430 DOI: 10.1016/j.envpol.2023.123083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Chemical insecticides are the most effective pest control agents. Afidopyropen is a novel insecticide used against sap-sucking insects, such as aphids. However, the effects of repeated afidopyropen application on the structure and function of soil microorganisms remain unknown. In this study, the changes in the enzyme activities, community structure and function, and relative abundance of antibiotic resistance ontology (ARO) of soil microorganisms were investigated during three repeated afidopyropen applications under laboratory conditions at the maximum recommended dosage (M1) and 10 times the M1 (M10). The neutral phosphatase (NPA) and catalase (CAT) activities in the soil were significantly suppressed after afidopyropen treatment. The Simpson diversity index (1/D) and Shannon-Wiener diversity index (H) also decreased in both the M1 and M10 afidopyropen-treated soils, indicating a remarkable decrease in soil microorganism diversity. The average well color development (AWCD) first increased and subsequently recovered to normal levels after the third application of the insecticide, suggesting that afidopyropen application could increase the metabolic activity of soil microorganisms. Metagenomic analysis showed that repeated afidopyropen application in both the M1 and M10 treatment groups altered the community structure of soil microorganisms, albeit in different ways. Furthermore, repeated afidopyropen application significantly increased the relative ARO abundance, especially in the M10 treatment, with the most dominant AROs being adeF, baeS, and IND-6. These findings reveal the effects of excessive afidopyropen application on soil microorganisms and lay an important foundation for the comprehensive evaluation of the impact of this insecticide on the environment.
Collapse
|
39
|
Xu Y, Tang J, Yuan B, Luo X, Liang P, Liu N, Dong D, Jin L, Ge W, Gu Q. A descriptive pharmacokinetic/pharmacodynamic analysis of ceftazidime-avibactam in a case series of critically ill patients with augmented renal clearance. Pharmacol Res Perspect 2024; 12:e01163. [PMID: 38149723 PMCID: PMC10751856 DOI: 10.1002/prp2.1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023] Open
Abstract
To describe the pharmacokinetics/pharmacodynamics (PK/PD) of a 2 h infusion of ceftazidime-avibactam (CAZ-AVI) in critically ill patients with augmented renal clearance (ARC). A retrospective review of all critically ill patients with ARC who were treated with CAZ-AVI between August 2020 and May 2023 was conducted. Patients whose 12-h creatinine clearance prior to CAZ-AVI treatment and steady-state concentration (Css) of CAZ-AVI were both monitored were enrolled. The free fraction (fCss) of CAZ-AVI was calculated from Css. The joint PK/PD targets of CAZ-AVI were considered optimal when a Css/minimum inhibitory concentration (MIC) ratio for CAZ ≥4 (equivalent to 100% fT > 4 MIC) and a Css/CT ratio of AVI >1 (equivalent to 100% fT > CT 4.0 mg/L) were reached simultaneously, quasioptimal when only one of the two targets was reached, and suboptimal when neither target was reached. The relationship between PK/PD goal achievement, microbial eradication and the clinical efficacy of CAZ-AVI was evaluated. Four patients were included. Only one patient achieved optimal joint PK/PD targets, while the other three reached suboptimal targets. The patient with optimal PK/PD targets achieved microbiological eradication, while the other three patients did not, but all four patients achieved good clinical efficacy. Standard dosages may not enable most critically ill patients with ARC to reach the optimal joint PK/PD targets of CAZ-AVI. Optimal drug dose adjustment of CAZ-AVI in ARC patients requires dynamic drug concentration monitoring.
Collapse
|
40
|
Leung KY, Bala K, Cho JY, Gokhale S, Kikuchi A, Liang P, Ong CL, Nguyen-Phuoc QB, Wataganara T, Wan YL. Utility and challenges of ultrasound education for medical and allied health students in Asia. Hong Kong Med J 2024; 30:75-79. [PMID: 38327163 DOI: 10.12809/hkmj2210647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024] Open
|
41
|
Yan S, Li M, Jiang Q, Li M, Hu M, Shi X, Liang P, Yin M, Gao X, Shen J, Zhang L. Self-assembled co-delivery nanoplatform for increasing the broad-spectrum susceptibility of fall armyworm toward insecticides. J Adv Res 2024:S2090-1232(24)00044-4. [PMID: 38286302 DOI: 10.1016/j.jare.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
INTRODUCTION Unscientific application of insecticides has led to severe resistance of pests to almost all classes of insecticides. Enhanced detoxification is the most common mechanism for this kind of resistance. OBJECT Fall armyworm (FAW) has developed insecticide resistance, which is often linked to the overexpression of detoxification genes. Herein, a multicomponent nano-pesticide is designed to increase its broad-spectrum susceptibility toward insecticides. METHOD Regulatory function of nuclear factor erythroid 2-related factor 2 (Nrf2) in detoxification was confirmed using transcriptome sequencing, quantitative real-time PCR and enzyme activity measurement. A star polycation (SPc) was adopted to construct the pesticide/SPc/complex, whose self-assembly mechanism and characterization were examined using isothermal titration calorimetry, dynamic light scattering and transmission electron microscope. The delivery efficiency of SPc-loaded dsRNA was examined in vitro and in vivo using fluorescent tracer technique. A multicomponent nano-pesticide was created through the integration of bacterial expression system and nano-delivery system, and its bioactivity was tested in laboratory and field. RESULTS We confirmed the crucial role of Nrf2 in regulating the detoxification in FAW, and silencing Nrf2 could decrease detoxification gene expression and increase insecticide susceptibility. We then applied the SPc to self-assemble a nanoplatform for delivering Nrf2 double-stranded RNA (dsRNA) and pesticide simultaneously. Nano-sized pesticide/SPc/dsRNA complex exhibited high delivery efficiency in vitro and in vivo. Excitingly, the insecticidal activities of pesticide/SPc/dsNrf2 complexes were remarkably improved with the normalized synergistic ratios of 5.43-6.25 for chlorantraniliprole, 4.45-15.00 for emamectin benzoate, and 6.75-15.00 for spinetoram. Finally, we developed a multicomponent nano-pesticide (pesticide/SPc/dsNrf2 complex) using a bacterial expression system and nano-delivery system. This approach exhibited excellent leaf protection and pest control efficacy. CONCLUSION The integration between the pesticide nanometerization and insecticide susceptibility improvement offers a promising strategy to increase insecticidal activity. Our study provides a revolutionary and universal strategy to increase insecticidal activity and decease application doses.
Collapse
|
42
|
Lun S, Wang H, Deng Y, Cui J, Liang P, Wang K, Lv L, Wan H, Wang H. FeNi decorated nitrogen-doped hollow carbon spheres as ultra-stable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery with 2.7% decay after 300 hours cycling. RSC Adv 2024; 14:3857-3866. [PMID: 38274171 PMCID: PMC10810229 DOI: 10.1039/d3ra08572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Research on non-noble metal bifunctional electrocatalysts with high efficiency and long-lasting stability is crucial for many energy storage devices such as zinc-air batteries. In this report, nitrogen-doped porous hollow carbon spheres with a size of about 300 nm were fabricated using a modified Stöber method and decorated with an FeNi alloy through a pyrolytic reduction process, resulting in a promising bifunctional electrocatalyst for both the oxygen evolution reaction and oxygen reduction reaction. The as-prepared FeNi@NHCS electrocatalyst exhibits excellent bifunctional activity in KOH electrolyte, attributed to its mesoporous structure, large specific surface area, and the strong coupling between the FeNi nanoalloy and nitrogen-doped carbon carriers. The electrocatalyst demonstrates excellent ORR performance with E1/2 = 0.828 V and OER activity with Ej=10 mA = 1.51 V. A zinc-air battery using FeNi@NHCS as the air electrode achieves an open-circuit voltage of 1.432 V and a maximum power density of 181.8 mW cm-2. After 300 h of galvanostatic charge-discharge cycles, the charge-discharge voltage gap (ΔU) of the battery had only decayed by 2.7%, demonstrating superior cycling stability.
Collapse
|
43
|
Huang J, Chen Q, Shang Z, Lu J, Wang Z, Chen Q, Liang P. Fabrication of silver nanostructure array patterns (SNAPs) on silicon wafer for highly sensitive and reliable SERS substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123914. [PMID: 38266600 DOI: 10.1016/j.saa.2024.123914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Metal nanostructure arrays with large amounts of nano-gaps are important for surface enhanced Raman scattering applications, though the fabrications of such nanostructures are difficult due to the complex and multiple synthetic steps. In this research, we report silver nanostructure array patterns (SNAPs) on silicon wafer, which is fabricated with semiconductor manufacturing technology, Cu2O electrochemistry deposition, and Ag In-situ oxidation-reduction growth. Benefiting from the dense and uniform distribution of Ag nanowires, the fabricated SNAPs demonstrate a very strong and uniform surface-enhanced Raman scattering (SERS) effect. The efficiency of SNAPs was investigated by using rhodamine 6G (R6G) dye as an analyte molecule. The results show that the minimum detectable concentration of R6G can reach as low as 10-11 M, and the Raman signals in the random region show good signal homogeneity with a low relative standard deviation (RSD) of 4.77 %. These results indicate that the SNAPs perform a great sensitivity and uniformity as a SERS substrate. Furthermore, we used the SNAPs substrate to detect antibiotic sulfadiazine. The main peaks in sulfadiazine Raman and vibration modes assignments were obtained and the quantitative analysis model was established by principal component analysis (PCA). The detection and application results of sulfadiazine indicate that the SNAPs substrate can be applied for trace detection of antibiotics. In addition, we have cited the application of the SNAPs substrate in anti-counterfeiting labels. These practical applications demonstrate that the fabricated SNAPs can potentially provide a way to develop low-cost SERS platforms for environmental detections, biomedicine analysis, and commodities anti-counterfeiting.
Collapse
|
44
|
Wang Z, Yang Z, Song X, Zhang H, Sun B, Zhai J, Yang S, Xie Y, Liang P. Raman spectrum model transfer method based on Cycle-GAN. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123416. [PMID: 37722159 DOI: 10.1016/j.saa.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The disparity in hardware quality among various models of Raman spectrometers gives rise to variations in the acquired Raman spectral data, even when the same substance is collected under identical external conditions. Conventionally, models constructed using data obtained from a particular instrument exhibit issues such as limited applicability or poor performance when deployed to different instruments. Currently, numerous model transfer algorithms grounded in chemometrics have been developed, all aiming to establish a mapping relationship capable of transforming spectral data from the source domain to the target domain. With the advancement of deep learning techniques, the utilization of deep learning enables the effective resolution of nonlinear mapping relationships between two spectral vectors. In the field of image translation, the Cycle-Consistent Adversarial Networks, Cycle-GAN, has already achieved mutual transformation between two distinct style images. However, due to images being multidimensional matrix data, unlike one-dimensional spectral data vectors, we have constructed a deep learning network based on Cycle-GAN for vector-to-vector transformation. This network allows the direct conversion of spectral data from the source domain to the target domain, without requiring parameter adjustments or other operations. Compared with traditional chemometric methods, our method is more intelligent and efficient. Finally, the cosine similarity between the source domain data and the transformed target domain data exceeds 99%.
Collapse
|
45
|
Sun B, Zhai J, Wang Z, Wu T, Yang S, Xie Y, Li Y, Liang P. Sparse decomposition enables adaptive and accurate Raman spectral denoising. Talanta 2024; 266:125120. [PMID: 37657375 DOI: 10.1016/j.talanta.2023.125120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Enhancing the quality of spectral denoising plays a vital role in Raman spectroscopy. Nevertheless, the intricate nature of the noise, coupled with the existence of impurity peaks, poses significant challenges to achieving high accuracy while accommodating various Raman spectral types. In this study, an innovative adaptive sparse decomposition denoising (ASDD) method is proposed for denoising Raman spectra. This approach features several innovations. Firstly, a dictionary comprising spectral feature peaks is established from the input spectra by applying a chemometric feature extraction method, which better aligns with the original data compared to traditional dictionaries. Secondly, a dynamic Raman spectral dictionary construction technique is introduced to swiftly adapt to new substances, employing a limited amount of additional Raman spectral data. Thirdly, the orthogonal matching pursuit algorithm is utilized to sparsely decompose the Raman spectra onto the constructed dictionaries, effectively eliminating various random and background noises in the Raman spectra. Empirical results confirm that ASDD enhances the accuracy and robustness of denoising Raman spectra. Significantly, ASDD surpasses existing algorithms in processing Raman spectra of pesticide.
Collapse
|
46
|
Shang J, Dong W, Fang H, Wang C, Yang H, Chen Z, Guo X, Wang H, Liang P, Shi X. Effects of dimpropyridaz on feeding behavior, locomotivity and biological parameters of Aphis gossypii. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105694. [PMID: 38072549 DOI: 10.1016/j.pestbp.2023.105694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Aphis gossypii is a worldwide agricultural pest insect that has developed resistance to multiple pesticides. Dimpropyridaz is a new chordotonal organ regulator and has been registered for control of sap-sucking insects including A. gossypii. For the aim to effectively apply dimpropyridaz for A. gossypii control, it is necessary to clarify the toxic effects of dimpropyridaz on cotton aphids. In the present study, the effects of dimpropyridaz on feeding behavior, locomotivity and biological parameters of A. gossypii were investigated. The bioassay results showed that dimpropyridaz had good insecticidal activity against A. gossypii, with LC50 as 1.91 mg/L at 72 h post exposure. Moreover, the dimpropyridaz treated A. gossypii showed obvious poisoning symptoms of dehydration and shrivel. Through the gentle-touch experiment and feeding experiment, it was found that dimpropyridaz treatment had significant adverse impacts on the locomotivity and feeding behavior of A. gossypii. Compared with the control group, the coordinated movement ability of the treated A. gossypii attenuated, moreover the feeding behavior of A. gossypii was inhibited. The feeding rate decreased by 62.00%, 64.00% and 71.67% after treatment with 50.33 mg/L dimpropyridaz for 24 h, 48 h and 72 h, respectively. Especially, EPG recordings showed that the number of intracellular stylet puncture and the total duration of phloem sap ingestion and concurrent salivation decreased substantially, while the total duration of non-probing increased after exposure to dimpropyridaz. Furthermore, the treatments with LC10 and LC30 of dimpropyridaz significantly reduced the longevity and fecundity of F0, and led to a decrease of the relative fitness of F0 to 0.48 and 0.32, respectively. The net reproductive rate (R0) and mean generation time (T) of F1 generation were also significantly reduced, moreover the duration of reproduction was significantly shortened. In addition, at 72 h post treatment with LC30 dimpropyridaz, the gene expression levels of JHEH and USP of cotton aphids significantly increased, while the expression of FOXO, INR, EcR and INRS decreased. These results provide basis for clarifying the toxicology of dimpropyridaz to cotton aphids, and also are beneficial for effective control of cotton aphid using dimpropyridaz.
Collapse
|
47
|
Xu Y, Yang X, Liang P, Qu C. Linezolid dose adjustment according to therapeutic drug monitoring helps reach the goal concentration in severe patients, and the oldest seniors benefit more. BMC Infect Dis 2023; 23:840. [PMID: 38030977 PMCID: PMC10685494 DOI: 10.1186/s12879-023-08831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The elderly with severe infection increased dramatically in intensive care unit (ICU). Proper antimicrobial therapy help improve the prognosis. Linezolid, as an antimicrobial drug, is commonly utilized to treat patients infected with methicillin-resistant S. aureus and vancomycin-resistant enterococci. Clinical evidence suggests elderly patients prone to linezolid overexposure. Here, we describe the results of three years' linezolid adjustment experiences according to therapeutic drug monitoring (TDM), especially in the oldest old. METHODS Linezolid therapeutic drug monitoring data were collected between January 2020 and November 2022 from patients who were admitted to ICU and treated with linezolid. All the patients started with a dosage of 600 mg, twice daily. The first TMD was carried out ten minutes before the seventh administration. The dosage adjustment was determined by the doctor according to the first TMD and patients' condition, and the repeated TDM was conducted as required. The dosage adjustment in different age group was recorded. Laboratory data were compared between the old and the oldest old. The high mortality risk of the oldest old was also explored. RESULTS Data of 556 linezolid TDM from 330 patients were collected. Among which, 31.6%, 54.8%, and 75% of patients had supra-therapeutic linezolid trough concentrations at the first TDM assessment in different age group, leading to the dosage adjustment rate of 31.0%, 40.3%, 68.8% respectively. The linezolid dosage adjustments according to TDM help to reach therapeutic concentration. The oldest old was in high risk of linezolid overexposure with lowercreatinine clearance. The norepinephrine maximum dosage but not linezolid Cmin was associated with 28-day mortality in the oldest old. CONCLUSIONS Elderly patients with linezolid conventional 600 mg twice-daily dose might be at a high risk of overexposure, especially in the oldest old. The linezolid dosage adjustments according to TDM help reach the therapeutic concentration. The high mortality of the oldest old was not related with initial linezolid overexposure.
Collapse
|
48
|
Chen Q, Wang J, Yao F, Zhang W, Qi X, Gao X, Liu Y, Wang J, Zou M, Liang P. A review of recent progress in the application of Raman spectroscopy and SERS detection of microplastics and derivatives. Mikrochim Acta 2023; 190:465. [PMID: 37953347 DOI: 10.1007/s00604-023-06044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
The global environmental concern surrounding microplastic (MP) pollution has raised alarms due to its potential health risks to animals, plants, and humans. Because of the complex structure and composition of microplastics (MPs), the detection methods are limited, resulting in restricted detection accuracy. Surface enhancement of Raman spectroscopy (SERS), a spectral technique, offers several advantages, such as high resolution and low detection limit. It has the potential to be extensively employed for sensitive detection and high-resolution imaging of microplastics. We have summarized the research conducted in recent years on the detection of microplastics using Raman and SERS. Here, we have reviewed qualitative and quantitative analyses of microplastics and their derivatives, as well as the latest progress, challenges, and potential applications.
Collapse
|
49
|
Bu F, Sun Z, Zhou W, Zhang Y, Chen Y, Ma B, Liu X, Liang P, Zhong C, Zhao R, Li H, Wang L, Zhang T, Wang B, Zhao Z, Zhang J, Li W, Ibrahim YS, Hassan Y, Elzatahry A, Chao D, Zhao D. Reviving Zn 0 Dendrites to Electroactive Zn 2+ by Mesoporous MXene with Active Edge Sites. J Am Chem Soc 2023; 145:24284-24293. [PMID: 37888942 DOI: 10.1021/jacs.3c08986] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Zinc metal-based aqueous batteries (ZABs) offer a sustainable, affordable, and safe energy storage alternative to lithium, yet inevitable dendrite formation impedes their wide use, especially under long-term and high-rate cycles. How the battery can survive after dendrite formation remains an open question. Here, we pivot from conventional Zn dendrite growth suppression strategies, introducing proactive dendrite-digesting chemistry via a mesoporous Ti3C2 MXene (MesoTi3C2)-wrapped polypropylene separator. Spectroscopic characterizations and electrochemical evaluation demonstrate that MesoTi3C2, acting as an oxidant, can revive the formed dead Zn0 dendrites into electroactive Zn2+ ions through a spontaneous redox process. Density functional theory reveals that the abundant edge-Ti-O sites in our MesoTi3C2 facilitate high oxidizability and electron transfer from Zn0 dendrites compared to their in-plane counterparts. The resultant asymmetrical cell demonstrates remarkable ultralong cycle life of 2200 h at a practical current of 5 mA cm-2 with a low overpotential (<50 mV). The study reveals the unexpected edge effect of mesoporous MXenes and uncovers a new proactive dendrite-digesting chemistry to survive ZABs, albeit with inevitable dendrite formation.
Collapse
|
50
|
Liang P, Henning SM, Grogan T, Elashoff D, Said J, Cohen P, Aronson WJ. Effect of omega-3 fatty acid diet on prostate cancer progression and cholesterol efflux in tumor-associated macrophages-dependence on GPR120. Prostate Cancer Prostatic Dis 2023:10.1038/s41391-023-00745-4. [PMID: 37872251 PMCID: PMC11035487 DOI: 10.1038/s41391-023-00745-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Preclinical and clinical translational research supports the role of an ω-3 fatty acid diet for prostate cancer prevention and treatment. The anti-prostate cancer effects of an ω-3 diet require a functional host g-protein coupled receptor 120 (GPR120) but the underlying effects on the tumor microenvironment and host immune system are yet to be elucidated. METHODS Friend leukemia virus B (FVB) mice received bone marrow from green fluorescent protein (GFP) labeled GPR120 wild-type (WT) or knockout (KO) mice followed by implanting Myc-driven mouse prostate cancer (MycCap) allografts and feeding an ω-3 or ω-6 diet. Tumor associated immune cells were characterized by flow cytometry, and CD206+ tumor infiltrating M2-like macrophages were isolated for gene expression studies. MycCap prostate cancer cell conditioned medium (CM) was used to stimulate murine macrophage cells (RAW264.7) and bone marrow-derived (BMD) macrophages to study the effects of docosahexanoic acid (DHA, fish-derived ω-3 fatty acid) on M2 macrophage function and cholesterol metabolism. RESULTS The bone marrow transplantation study showed that an ω-3 as compared to an ω-6 diet inhibited MycCaP allograft tumor growth only in mice receiving GPR120 WT but not GPR120 KO bone marrow. In the ω-3 group, GPR120 WT BMD M2-like macrophages infiltrating the tumor were significantly reduced in number and gene expression of cholesterol transporters Abca1, Abca6, and Abcg1. RAW264.7 murine macrophages and BMDMs exposed to MycCaP cell CM had increased gene expression of cholesterol transporters, depleted cholesterol levels, and were converted to the M2 phenotype. These effects were inhibited by DHA through the GPR120 receptor. CONCLUSION Host bone marrow cells with functional GPR120 are essential for the anticancer effects of dietary ω-3 fatty acids, and a key target of the ω-3 diet are the M2-like CD206+ macrophages. Our preclinical findings provide rationale for clinical trials evaluating ω-3 fatty acids as a potential therapy for prostate cancer through inhibition of GPR120 functional M2-like macrophages.
Collapse
|