26
|
Irons RD, Pyatt DW, Stillman WS, Som DB, Claffey DJ, Ruth JA. Comparative toxicity of known and putative metabolites of 1, 3-butadiene in human CD34(+) bone marrow cells. Toxicology 2000; 150:99-106. [PMID: 10996666 DOI: 10.1016/s0300-483x(00)00249-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Species-specific susceptibility to the hematotoxic effects of 1, 3-butadiene (BD) is well known. Previous studies have revealed that murine bone marrow is uniquely susceptible to toxicity following exposure to the parent compound in vivo or exposure of bone marrow cells to the monoepoxide metabolite, 3,4-epoxybutane, in vitro. Studies described herein compare the relative ability of putative and known BD metabolites to produce concentration dependent suppression of colony formation and cytotoxicity in human CD34(+) bone marrow cells. Compounds evaluated included 3,4-epoxybutane, D, L-butane-bis-oxide, meso-butane-bis-oxide and (2S, 3R)-3-epoxybutane-1,2-diol. In contrast to results previously observed in mice, only the bis-oxides produced significant suppression of colony formation at potentially relevant concentrations (10(-8) to 10(-3) M). No enantiospecific differences were observed between the meso- and D,L-bis-oxides and no significant lineage-specific differences in susceptibility to inhibition of clonogenic response were observed among early multi-potential myeloid and erythroid hematopoietic progenitor cells. The relative potencies of the bis-oxides were found to be comparable to that of the prototype hematotoxic compound, hydroquinone. These results confirm previous studies that reveal marked species-specific differences in the susceptibility of bone marrow cells to 3,4-epoxybutane. Moreover, these results suggest that the bis-oxides of BD are capable of suppressing the clonogenic function of human hematopoietic progenitor cells, if, in fact, they are produced in human bone marrow in significant concentration. Further interpretation of these findings requires a better understanding of the metabolism of BD in humans.
Collapse
|
27
|
Pyatt DW, Yang Y, Le A, Stillman WS, Irons RD. Dithiocarbamates inhibit hematopoiesis via a copper-dependent mechanism. Biochem Biophys Res Commun 2000; 274:513-8. [PMID: 10913369 DOI: 10.1006/bbrc.2000.3149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dithiocarbamates (DTC), an important class of therapeutic and industrial chemicals, have alternatively been reported to be either beneficial or toxic to the hematopoietic and immune systems. In the present study, we investigated the potential of dimethyl- and diethyl-dithiocarbamate to alter clonogenic response of primary human CD34(+) bone marrow cells in vitro. Our results demonstrate that both compounds are potent inhibitors of clonogenic response in human CD34(+) bone marrow cells, suppressing cytokine-induced colony formation at concentrations between 100 and 500 nM. Pretreatment of bone marrow cells for 1 h with very high doses of DTC (30 microM) had no effect on colony formation. DTCs are known inhibitors of nuclear factor-kappa B (NF-kappa B); however, data presented herein demonstrate that DTC do not inhibit cytokine activation of NF-kappa B in CD34(+) bone marrow cells. Additional experiments demonstrate that DTCs induce a dose-related increase in apoptosis, potentially acting via a cytotoxic mechanism. We further demonstrate that the addition of copper sulfate greatly potentiates the hematotoxicity of DTC and that the addition of a copper-specific chelator completely abrogates DTC clonogenic suppression. These data support a role for copper in DTC-induced hematotoxicity.
Collapse
|
28
|
Pyatt DW, Yang Y, Mehos B, Le A, Stillman W, Irons RD. Hematotoxicity of the chinese herbal medicine Tripterygium wilfordii hook f in CD34-positive human bone marrow cells. Mol Pharmacol 2000; 57:512-8. [PMID: 10692491 DOI: 10.1124/mol.57.3.512] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
T2, a chloroform/methanol extract of the herb Tripterygium wilfordii Hook f, has been used in China for the treatment of autoimmune and inflammatory diseases for many years. Recent experimental evidence has confirmed that T2 has potent anti-inflammatory and immunosuppressive activity, and a United States Food and Drug Administration-approved clinical trial is currently exploring the efficacy of T2 in the treatment of rheumatoid arthritis. Despite the potential therapeutic benefits of T2, there is ample documentation that T2 is toxic, targeting, among other things, the hematopoietic system, and its use has resulted in cases of leukopenia, thrombocytopenia, and aplastic anemia. This investigation was undertaken to characterize the in vitro effects of T2 on primary human CD34-positive (CD34+) bone marrow cells. Our results demonstrate that T2 has a potent inhibitory effect on the clonogenic response of human bone marrow cells to exogenously added hematopoietic growth factors. The inhibition of colony formation by T2 is not the result of direct cytotoxicity or increased apoptosis and indicates a functional suppression of hematopoiesis. Additional experiments demonstrate that T2 also alters transcriptional regulation in bone marrow cells by inhibiting nuclear factor-kappaB. This transcription factor is found in CD34+ bone marrow cells and has been recently shown to be a requirement for colony formation. These results demonstrate that therapeutic concentrations of T2 exert a significant hematotoxic effect by inhibiting growth factor response in CD34+ bone marrow cells and suggest that inhibition of nuclear factor-kappaB may play a role in the blood dyscrasias encountered with the use of this drug.
Collapse
|
29
|
Stillman WS, Varella-Garcia M, Irons RD. The benzene metabolite, hydroquinone, selectively induces 5q31- and -7 in human CD34+CD19- bone marrow cells. Exp Hematol 2000; 28:169-76. [PMID: 10706073 DOI: 10.1016/s0301-472x(99)00144-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Chronic exposure to high concentrations of benzene is associated with an increased incidence of myelodysplastic syndrome and acute myelogenous leukemia. Acute myelogenous leukemia developing in patients treated with alkylating agents for other cancers or occupationally exposed to benzene exhibit a pattern of cytogenetic aberrations predominantly involving loss of all or part of chromosomes 5 and/or 7. In contrast, trisomy 8 is observed equally in both de novo and secondary acute myelogenous leukemia. Studies using peripheral lymphocytes or lymphoblastoid cell lines have observed dose-dependent loss of chromosomes 5, 7, and 8 following treatment with the benzene metabolite, hydroquinone. The purpose of this study was to determine the dose response and specificity of hydroquinone-induced aberrations on chromosomes 5, 7, and 8 using human CD34+CD19 bone marrow cells. MATERIALS AND METHODS Fluorescence in situ hybridization analysis was performed on CD34+CD19- bone marrow cells using the locus-specific probes, 5q31, 5p15.2, and centromeric probes specific for human chromosomes 7 and 8 following hydroquinone exposure. RESULTS Hydroquinone exposure results in -7, selective deletion of 5q31 but not chromosome 5 and no loss or gain of chromosome 8 in human CD34+CD19- cells. CONCLUSION CD34+ bone marrow cells are more susceptible and show a different pattern of cytogenetic aberrations as a result of hydroquinone exposure compared to lymphocytes. CD34+ bone marrow cells exhibit unique susceptibility to the development of specific chromosome aberrations that have been identified as the earliest structural changes occurring in the development of secondary myelodysplastic syndrome and acute myelogenous leukemia.
Collapse
MESH Headings
- Benzene/toxicity
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 8
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/physiology
- Humans
- Hydroquinones/toxicity
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/genetics
- Mutagens/toxicity
- Myelodysplastic Syndromes/chemically induced
- Myelodysplastic Syndromes/genetics
- Sequence Deletion/drug effects
Collapse
|
30
|
Stillman WS, Varella-Garcia M, Irons RD. The benzene metabolites hydroquinone and catechol act in synergy to induce dose-dependent hypoploidy and -5q31 in a human cell line. Leuk Lymphoma 1999; 35:269-81. [PMID: 10706450 DOI: 10.3109/10428199909145730] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic exposure to high concentrations of benzene is associated with an increased incidence of myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Studies of patients occupationally exposed to benzene show a pattern of cytogenetic aberrations involving loss of all or part of chromosomes 5 and/or 7 as well as trisomy 8 and we have previously reported that hydroquinone (HQ) induces deletions of 5, 7 and 8. Benzene metabolism is a requirement for bone marrow toxicity and the phenolic metabolites, HQ and catechol (CAT), have been implicated in benzene hematotoxicity. A research project was designed to determine whether CAT by itself and in conjunction with HQ could directly induce loss of chromosome 5 and/or 7 and gain of chromosome 8. Using fluorescence in situ hybridization with chromosome-specific 5, 7, and 8 probes we demonstrate that 5 to 150 uM CAT does not produce chromosomal aberrations, however CAT and 25 uM HQ can act in synergy to induce dose dependent loss of these chromosomes. In addition HQ/CAT selectively induces -5q which is not observed for HQ only. These results demonstrate for the first time that CAT/HQ act in synergy to induce specific chromosome loss found in secondary MDS/AML.
Collapse
MESH Headings
- Benzene/toxicity
- Catechols/toxicity
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Chromosome Deletion
- Chromosomes, Human, Pair 5/drug effects
- Dose-Response Relationship, Drug
- Drug Synergism
- Humans
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/genetics
- Myelodysplastic Syndromes/chemically induced
- Myelodysplastic Syndromes/genetics
- Ploidies
- Tumor Cells, Cultured
Collapse
|
31
|
Pyatt DW, Stillman WS, Yang Y, Gross S, Zheng JH, Irons RD. An essential role for NF-kappaB in human CD34(+) bone marrow cell survival. Blood 1999; 93:3302-8. [PMID: 10233882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The transcription factor, NF-kappaB, is important for T-cell activation, B-cell maturation, and human immunodeficiency virus transcription and plays a role in alternatively mediating and protecting against apoptosis in a variety of cell types. However, a role for NF-kappaB in human CD34(+) bone marrow cells has not been described. We provide evidence here that virtually all human CD34(+) bone marrow cells express NF-kappaB that can be activated by exposure to phorbol 12-myristate 13-acetate and a variety of cytokines, eg, tumor necrosis factor alpha, interleukin-3, and granulocyte-macrophage colony-stimulating factor. In addition, we demonstrate that NF-kappaB may be required for human CD34(+) bone marrow cell clonogenic function and survival. These results offer insight into a new role for NF-kappaB in maintaining survival and function in hematopoietic stem and progenitor cells and suggest that proposed strategies involving inhibition of NF-kappaB activation as an adjunct to cancer chemotherapy should be approached with caution.
Collapse
|
32
|
Pyatt DW, Gruntmeir J, Stillman WS, Irons RD. Dimethyldithiocarbamate inhibits in vitro activation of primary human CD4+ T lymphocytes. Toxicology 1998; 128:83-90. [PMID: 9710149 DOI: 10.1016/s0300-483x(98)00047-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dithiocarbamates (DTC), a diverse group of industrial and therapeutic chemicals, have been reported to inhibit, enhance or have no effect on the immune system. These apparent inconsistencies reflect the complexity of the DTCs biological activities and are probably due in part to differences in dose, route of exposure, animal species used and/or specific compound tested. The studies described herein were undertaken to investigate the immunotoxicity of one member of this family, dimethyldithiocarbamate (DMDTC). We demonstrate that 0.1-0.5 microM DMDTC inhibits TNF-alpha-induced activation of NF-kappaB in primary human CD4+ T cells. This inhibition is not accompanied by a loss in viability, and DMDTC-treated T cells retain other active signaling pathways throughout the exposure duration. The inhibition of NF-kappaB is apparently permanent as DMDTC-treated T cells did not regain normal TNF-alpha activation, even after 72 h in culture. DMDTC does not appear to alter NF-kappaB directly as pre-incubation of nuclear extracts with DMDTC does not diminish binding activity of this protein. We further demonstrate that 0.1-0.5 microM DMDTC inhibits intracellular IL-2 production and decreases surface expression of CD25 (the alpha subunit of the IL-2 receptor) in T cells stimulated with phorbol ester. These data demonstrate that DMDTC is a potent immunosuppressive compound in vitro.
Collapse
|
33
|
Irons RD, Pyatt DW. Dithiocarbamates as potential confounders in butadiene epidemiology. Carcinogenesis 1998; 19:539-42. [PMID: 9600335 DOI: 10.1093/carcin/19.4.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hematopoietic neoplasms associated with occupational exposure to 1,3-butadiene (BD) have been the subject of controversy. This has largely been due to the inconsistent results of epidemiology studies that have reported alternatively no or weak associations between exposure to BD and hematopoietic neoplasms. Moreover, the specificity of association of BD exposure with individual leukemia types remains unclear. In addition, a distinct difference in the pattern of leukemia risk has been observed between workers employed in BD monomer production and those involved in styrene-butadiene rubber (SBR) production: with no increase in leukemia risk observed for exposure to BD monomer alone. These observations are consistent with an increase in leukemia risk associated with the SBR process but not BD monomer and suggest the possibility that the increase may be the result of exposure to confounding factors previously not considered. In this regard, evidence is accumulating to suggest that SBR studies may be confounded by the presence of an important class of biologically active chemicals employed in the rubber industry, dithiocarbamates. The hematotoxicity and immunotoxicity of dithiocarbamates have been implicated in a wide range of clinical, animal and molecular studies, and an extremely high concordance exists between the risk of developing leukemia in SBR production and opportunity for exposure to this class of agents. Based on these findings additional studies on the epidemiology, carcinogenesis and molecular biology of dithiocarbamates are clearly warranted.
Collapse
|
34
|
Pyatt DW, Stillman WS, Irons RD. Hydroquinone, a reactive metabolite of benzene, inhibits NF-kappa B in primary human CD4+ T lymphocytes. Toxicol Appl Pharmacol 1998; 149:178-84. [PMID: 9571986 DOI: 10.1006/taap.1998.8369] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hydroquinone (HQ), a reactive metabolite of benzene, is present in cigarette smoke and is known to inhibit mitogen-stimulated activation of both T and B lymphocytes. Despite extensive study, the underlying mechanism for HQ's immunotoxicity is not clear. NF-kappa B is a transcription factor known to regulate the expression of a number of genes critical for normal T cell activation. We therefore hypothesized that NF-kappa B might be involved in HQ-induced immunosuppression. In this study, we demonstrate that 1 microM HQ inhibits tumor necrosis factor alpha induced activation of NF-kappa B in primary human CD4+ T cells. This inhibition is not accompanied by a loss in viability, and HQ-treated T cells maintain other active signaling pathways throughout the exposure duration. Additionally, the inhibition of NF-kappa B is reversible as HQ-treated T cells regain normal functioning after 72 h in culture. HQ does not appear to alter NF-kappa B directly as preincubation of nuclear extracts with HQ does not diminish activity of this protein. We further demonstrate that 1 microM HQ inhibits intracellular IL-2 production in T cells stimulated with phorbol ester but does not alter surface expression of CD25 (the alpha-subunit of the IL-2 receptor). These data suggest that NF-kappa B may be an important molecular mediator of HQ's (and benzene's) immunotoxicity.
Collapse
|
35
|
Gross S, Helm K, Gruntmeir JJ, Stillman WS, Pyatt DW, Irons RD. Characterization and phenotypic analysis of differentiating CD34+ human bone marrow cells in liquid culture. Eur J Haematol 1997; 59:318-26. [PMID: 9414644 DOI: 10.1111/j.1600-0609.1997.tb01693.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our current understanding of human haematopoietic stem cell biology is based in part on the characterization of human CD34+ bone marrow cell differentiation in vitro. CD34 is highly expressed on early stem cells and haematopoietic progenitor cells with clonogenic potential and is gradually lost during differentiation and commitment. However, CD71 (transferrin receptor) is expressed at low levels on early stem cells and generally increases during haematopoietic progenitor cell proliferation. We reasoned that the combination of these surface markers would provide a useful framework for the simultaneous analysis of multiple lineage differentiation of CD34+ haematopoietic progenitor cells in liquid culture. In this report, we identify the phenotype of distinct subpopulations of myeloid, erythroid and lymphoid cells in liquid suspension culture using differential expression of CD34 vs. CD71 in combination with specific lineage markers. Freshly isolated human CD34+ bone marrow cells were introduced into suspension culture and monitored over a 6-d period using 3-colour flow cytometry. This is the first demonstration that differential expression of CD34 vs. CD71 can be used to simultaneously monitor differentiation of multiple haematopoietic cell lineages in liquid suspension culture, facilitating the study of cytokine-, drug- or chemical-induced alterations in haematopoietic progenitor cell differentiation in vitro.
Collapse
|
36
|
Stillman WS, Varella-Garcia M, Gruntmeir JJ, Irons RD. The benzene metabolite, hydroquinone, induces dose-dependent hypoploidy in a human cell line. Leukemia 1997; 11:1540-5. [PMID: 9305610 DOI: 10.1038/sj.leu.2400763] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chronic exposure to high concentrations of benzene can result in the development of myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML). Studies of patients occupationally exposed to benzene show a pattern of cytogenetic aberrations involving high frequency of loss of all or part of chromosomes 5 and/or 7 as well as trisomy 8. The pattern of reoccurring chromosome abnormalities associated with the development of leukemia can be used as a guide in understanding the etiology and pathogenesis of these diseases. Therefore, a research project was designed to determine whether a metabolite of benzene, hydroquinone (HQ), could directly induce loss of chromosome 5 and/or 7 and gain of chromosome 8. Using fluorescence in situ hybridization with chromosome-specific 5, 7 and 8 probes we demonstrate that 42, 49 and 26 microM HQ induces monosomy 5, 7 and 8, respectively, in the human lymphoblast cell line GM09948. These results demonstrate for the first time that HQ induces a specific chromosome loss found in secondary MDS/AML. The pattern of chromosome 5 and/or 7 loss in benzene-induced MDS/AML is probably due to selective cell survival after HQ exposure rather than specific targeting of HQ for chromosomes 5 or 7.
Collapse
|
37
|
Irons RD, Stillman WS. Impact of benzene metabolites on differentiation of bone marrow progenitor cells. ENVIRONMENTAL HEALTH PERSPECTIVES 1996; 104 Suppl 6:1247-50. [PMID: 9118900 PMCID: PMC1469760 DOI: 10.1289/ehp.961041247] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Interleukin-3 (IL-3) and granulocyte/macrophage-colony-stimulating factor (GM-CSF) are responsible for maintaining survival and stimulating growth of early dormant hematopoietic progenitor cells (HPC). These cytokines exhibit extensive overlap, with GM-CSF supporting growth and differentiation of myeloid HPC. A characteristic shared by a diverse group of leukemogens is the ability to act synergistically with GM-CSF to increase clonogenic response. Previous studies have revealed that pretreatment of murine HPC with hydroquinone (HQ) but not phenol, catechol, or trans-trans-muconaldehyde results in a selective enhancement of GM-CSF but not IL-3-mediated clonogenic response. Pretreatment of murine bone marrow cells with these agents or their metabolites in vitro results in increased numbers of HPC dividing and forming colonies in response to GM-CSF but not IL-3. The present studies explored the molecular mechanisms associated with altered cytokine response in early HPC in murine bone marrow and extended our initial observations in murine bone marrow to human bone marrow cells. HQ pretreatment of murine HPC did not induce either an up- or a down-regulation of GM-CSF receptors or any change in receptor affinity. CD34+ cells, which represent between 1 and 5% of human bone marrow, contain virtually all clonogenic stem and HPC. Pretreatment of CD34+ cells (approximately 95% purity) with HQ also results in enhanced clonogenic response with GM-CSF but not IL-3. These findings suggest that an early step in chemical leukemogenesis may involve transient alterations in the regulation of cytokine response to GM-CSF.
Collapse
|
38
|
Rothman N, Smith MT, Hayes RB, Li GL, Irons RD, Dosemeci M, Haas R, Stillman WS, Linet M, Xi LQ, Bechtold WE, Wiemels J, Campleman S, Zhang L, Quintana PJ, Titenko-Holland N, Wang YZ, Lu W, Kolachana P, Meyer KB, Yin S. An epidemiologic study of early biologic effects of benzene in Chinese workers. ENVIRONMENTAL HEALTH PERSPECTIVES 1996; 104 Suppl 6:1365-1370. [PMID: 9118921 PMCID: PMC1469765 DOI: 10.1289/ehp.961041365] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Benzene is a recognized hematotoxin and leukemogen, but its mechanisms of action in humans are still uncertain. To provide insight into these processes, we carried out a cross-sectional study of 44 healthy workers currently exposed to benzene (median 8-hr time-weighted average; 31 ppm), and unexposed controls in Shanghai, China. Here we provide an overview of the study results on peripheral blood cells levels and somatic cell mutation frequency measured by the glycophorin A (GPA) gene loss assay and report on peripheral cytokine levels. All peripheral blood cells levels (i.e., total white blood cells, absolute lymphocyte count, platelets, red blood cells, and hemoglobin) were decreased among exposed workers compared to controls, with the exception of the red blood cell mean corpuscular volume, which was higher among exposed subjects. In contrast, peripheral cytokine levels (interleukin-3, interleukin-6, erythropoietin, granulocyte colony-stimulating factor, tissue necrosis factor-alpha) in a subset of the most highly exposed workers (n = 11) were similar to values in controls (n = 11), suggesting that benzene does not affect these growth factor levels in peripheral blood. The GPA assay measures stem cell or precursor erythroid cell mutations expressed in peripheral red blood cells of MN heterozygous subjects, identifying NN variants, which result from loss of the GPA M allele and duplication of the N allele, and N phi variants, which arise from gene inactivation. The NN (but not N phi) GPA variant cell frequency was elevated in the exposed workers compared with controls (mean +/- SD, 13.9 +/- 8.4 mutants per million cells versus 7.4 +/- 5.2 per million cells, (respectively; p = 0.0002), suggesting that benzene produces gene-duplicating but not gene-inactivating mutations at the GPA locus in bone marrow cells of exposed humans. These findings, combined with ongoing analyses of benzene macromolecular adducts and chromosomal aberrations, will provide an opportunity to comprehensively evaluate a wide range of early biologic effects associated with benzene exposure in humans.
Collapse
|
39
|
Irons RD, Stillman WS. The process of leukemogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 1996; 104 Suppl 6:1239-46. [PMID: 9118899 PMCID: PMC1469736 DOI: 10.1289/ehp.961041239] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leukemias are monoclonal diseases that arise from cells in the hematopoietic stem and progenitor cell compartment. Consistent with emerging models of carcinogenesis, leukemogenesis is an evolutionary process that involves multiple independent genetic and epigenetic events. Over the last half-century a predominant paradigm has emerged to describe leukemia developing secondary to alkylating drug therapy or exposure to benzene in which progressive dysplastic changes, accompanied by a distinct pattern of clonal cytogenetic abnormalities, give rise to acute myelogenous leukemia. Characterization of these clonal chromosomal aberrations, together with observed alterations in other growth-promoting genes, provides a useful framework for studying chemical leukemogenesis and for use in understanding the origins and development of leukemia in general.
Collapse
|
40
|
Irons RD, Colagiovanni DB, Stillman WS. Murine thymic lymphoma is associated with a species-specific hematopoietic progenitor cell subpopulation. Toxicology 1996; 113:59-67. [PMID: 8901883 DOI: 10.1016/0300-483x(96)03428-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many strains of laboratory mouse are uniquely susceptible to the development of T cell lymphoma/leukemia, either spontaneously or as a result of chemical or radiation exposure. In contrast, T cell leukemias or lymphomas which are relatively uncommon in human populations, are not easily induced by radiation, and are not generally associated with chemotherapy or chemical exposure. Evidence is presented to suggest that differences in the susceptibility to the development of these malignancies is related to subtle but important variations in the regulation of hematopoietic stem cell differentiation between these two species.
Collapse
|
41
|
Pyatt DW, Zheng JH, Stillman WS, Irons RD. Inorganic lead activates NF-kappa B in primary human CD4+ T lymphocytes. Biochem Biophys Res Commun 1996; 227:380-5. [PMID: 8878524 DOI: 10.1006/bbrc.1996.1516] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Inorganic lead (Pb) is a ubiquitous environmental contaminant that produces a variety of effects on humoral and cell mediated immune responses. The underlying molecular mechanism for Pb's complex effects on the immune system remain obscure. Many of Pb's effects on the immune system could be explained through activation of the transcription factor, NF-kappa B. NF-kappa B is critical for T lymphocyte function and is a strong inducer of HIV-LTR activation. We demonstrate that Pb at physiologically relevant concentrations activates NF-kappa B in primary human CD4+ T lymphocytes. Pb-induced activation of NF-kappa B is blocked by antibodies for p65 and p50 subunits but not cRel, indicating that the p65:p50 heterodimer (NF-kappa B) is involved. Functional activation of gene expression by Pb was confirmed using primary CD4+ T cells transfected with an NF-kappa B dependent reporter gene construct. Pb did not activate NF-kappa B in 4 different T cell lines, suggesting that lymphoid cell lines may not be reliable surrogates for the study of transcriptional activation in human T cells. These data suggest that NF-kappa B may be an important molecular mediator of Pb-induced immunotoxicity.
Collapse
|
42
|
Pyatt DW, Stillman WS, Irons RD. Reactive oxygen species mediate stem cell factor synergy with granulocyte/macrophage colony-stimulating factor in a subpopulation of primitive murine hematopoietic progenitor cells. Mol Pharmacol 1996; 49:1097-1103. [PMID: 8649349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Reactive oxygen species (ROS) have been shown to stimulate proliferation and growth responses in a variety of mammalian cell types and to act as important mediators in many cellular processes, including hematolymphopoiesis. We examined the effect on primitive murine hematopoietic progenitor cells (HPC) of ROS generated by xanthine plus xanthine oxidase (xanthine/XO) and various antioxidants. Pretreatment of murine HPC (C57BL/6) with xanthine/XO produced a dose-dependent enhancement of clonogenic response to granulocyte/macrophage colony-stimulating factor (GM-CSF) but not to interleukin-3 or granulocyte colony-stimulating factor. Stem cell factor (SCF), a potent comitogen for many hematopoietic growth factors, also synergized with GM-CSF. However, the synergistic enhancement of GM-CSF with xanthine/XO and SCF was not additive, indicating that xanthine/XO and SCF may target the same subpopulation of HPC. Support for this conclusion came from experiments demonstrating that 1) mutant mice strains constitutively lacking a SCF-responsive population of HPC [White spotted (W/WV) and Steel (SI/SId)] are unresponsive to xanthine/XO- and SCF-induced enhancement of GM-CSF and 2) 3,4-epoxybutene, which selectively abrogates SCF synergy with GM-CSF, inhibits xanthine/XO-induced enhancement. As xanthine/XO can mimic SCF in this population of HPC, the possibility exists that ROS also play a role in normal SCF-mediated proliferation of these cells. To test this hypothesis, we used the antioxidants N-tert-butyl-alpha-phenylnitrone, exogenous superoxide dismutase, and catalase. Both N-tert-butyl-alpha-phenylnitrone and superoxide dismutase effectively inhibited SCF and xanthine/XO synergism with GM-CSF, whereas catalase had no effect, indicating that the superoxide anion may be involved. Also, none of these compounds affected SCF synergism with other hematopoietic growth factors, such as interleukin-3 or granulocyte colony-stimulating factor, suggesting a population-specific phenomenon. These findings indicate that xanthine/XO mimics SCF in stimulating a subpopulation of murine HPC to proliferate and that SCF synergy with GM-CSF in this population is sensitive to antioxidant inhibition.
Collapse
|
43
|
Irons RD, Le AT, Som DB, Stillman WS. 2'3'-Dideoxycytidine-induced thymic lymphoma correlates with species-specific suppression of a subpopulation of primitive hematopoietic progenitor cells in mouse but not rat or human bone marrow. J Clin Invest 1995; 95:2777-82. [PMID: 7539460 PMCID: PMC295962 DOI: 10.1172/jci117981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nucleoside analogue, 2',3'-dideoxycytidine (ddC), is a potent inhibitor of HIV replication, and AIDS patients receiving ddC experience clinical improvement without significant hematologic toxicity. Repeated ddC administration (1,000 mg/kg per day) for 13 wk produces an increased incidence of thymic lymphoma in B6C3F1 mice. Previous studies reveal a common link between chemically induced and genetically associated models of mouse thymic lymphoma that involves a defect in a subpopulation of primitive hematopoietic progenitor cells. This defect is characterized by suppression of a subpopulation of IL-3-responsive cells and ablation of stem cell factor synergy with GM-CSF. The present study was undertaken to ascertain whether ddC produces the same pattern of bone marrow toxicity in mice, and whether this effect is observed in rat and human bone marrow. ddC exposure in vivo and in vitro produced a select suppression of murine CFU identical to that previously described for other models of mouse thymic lymphoma. In contrast, this selective CFU suppression was not observed in rat and human bone marrow or in CD34+ cells. These studies suggest that the mouse may not be a good predictive model for ddC hematotoxicity in humans and that susceptibility to the development of thymic lymphoma may be unique to the mouse.
Collapse
|
44
|
Schattenberg DG, Stillman WS, Gruntmeir JJ, Helm KM, Irons RD, Ross D. Peroxidase activity in murine and human hematopoietic progenitor cells: potential relevance to benzene-induced toxicity. Mol Pharmacol 1994; 46:346-51. [PMID: 8078496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Peroxidases may be important in the mechanism of toxicity of a number of compounds including benzene, a chemical that has been associated with bone marrow toxicity and leukemia after chronic exposure. The major peroxidase in bone marrow is myeloperoxidase (MPO), which has been previously thought to be expressed at the promyelocytic stage of differentiation. Hematopoietic progenitor cells are important potential cellular targets of bone marrow toxins and leukemogens. We therefore examined peroxidase activity in both murine and human progenitor cells. Murine progenitor populations were purified as lineage-negative cells (> 99% enriched) and human progenitor populations were purified as CD34+ cells (> 95% enriched). Using conventional biochemical assays for peroxidase activity, murine and human progenitor cells were found to have 30% and 11% of the peroxidase activity of murine and human unpurified marrow, respectively. Peroxidase activity was confirmed in purified murine and human progenitor populations by flow cytometry using a 2,7-dichlorofluorescein assay, adapted to measure peroxidase activity. In addition, two-color flow cytometry of murine whole marrow using phycoerythrin-conjugated antibodies to lineage markers confirmed the peroxidase activity of the murine progenitor cell population. A reverse transcription-polymerase chain reaction assay was developed for MPO mRNA, which was detected in murine progenitor cells. These data show that MPO mRNA is expressed in murine progenitor cells and that both murine and human progenitor cells have marked peroxidase activity. These data may have relevance for studies of hematopoietic cell differentiation and for the examination of mechanisms underlying cell-specific toxicity in bone marrow.
Collapse
|
45
|
Irons RD, Clarkson TW, Schulz J, Eberhardt R, Weiss B, Todd P, Morgenthaler GW, Oberdorster G, Utell MJ. Risk Assessment Team Report: hazard identification and risk assessment in the extended spaceflight environment. ACTA ASTRONAUTICA 1994; 33:277-287. [PMID: 11539532 DOI: 10.1016/0094-5765(94)90135-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
46
|
Farris GM, Everitt JI, Irons RD, Popp JA. Carcinogenicity of inhaled benzene in CBA mice. FUNDAMENTAL AND APPLIED TOXICOLOGY : OFFICIAL JOURNAL OF THE SOCIETY OF TOXICOLOGY 1993; 20:503-7. [PMID: 8314465 DOI: 10.1006/faat.1993.1061] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study investigated benzene-induced neoplasia in CBA/Ca mice, with special emphasis on hematopoietic tissues. Ten-week-old male CBA/Ca mice were exposed to 300 ppm benzene via inhalation for 6 hr/day, 5 days/week, for 16 weeks and held 18 months after the last exposure. There were 125 benzene-exposed and 125 sham-exposed mice. Malignant lymphoma was a statistically significant cause of early mortality in the benzene-exposed mice. Fourteen benzene-exposed mice developed lymphoma (lymphoblastic, lymphocytic, or mixed) as compared to only 2 sham-exposed mice. Benzene-exposed mice also developed preputial gland squamous cell carcinomas (60% in benzene-exposed vs 0% in sham-exposed) and had an increased incidence of lung adenomas (36% vs 14%). Moderate to marked granulocytic hyperplasia was present in benzene-exposed animals, with a 36% incidence in the bone marrow and 6% in the spleen, as compared to the sham-exposed with 8 and 0%, respectively. Interpretation of the granulocytic response as a direct effect of benzene was complicated by the presence of inflammation in the mice. Although inhaled benzene was clearly carcinogenic in CBA mice, it did not induce granulocytic leukemia.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Benzene/toxicity
- Blood Cell Count/drug effects
- Bone Marrow/pathology
- Carcinogenicity Tests
- Carcinoma, Squamous Cell/chemically induced
- Carcinoma, Squamous Cell/pathology
- Granulocytes/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/chemically induced
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Mice
- Mice, Inbred CBA
- Neoplasms/chemically induced
- Neoplasms/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/chemically induced
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
Collapse
|
47
|
Abstract
In tissues such as bone marrow with normally high rates of cell division, proliferation is tightly coordinated with cell differentiation. Survival, proliferation and differentiation of early hematopoietic progenitor cells depend on the growth factors, interleukin 3 (IL-3) and/or granulocyte-macrophage colony stimulating factor (GM-CSF) and their synergism with other cytokines. We provide evidence that a characteristic shared by a diverse group of compounds with demonstrated leukemogenic potential is the ability to act synergistically with GM-CSF. This results in an increase in recruitment of a resting population of hematopoietic progenitor cells normally unresponsive to the cytokine and a twofold increase in the size of the proliferating cell population normally regarded to be at risk of transformation in leukemogenesis. These findings support the possibility that transient alterations in hematopoietic progenitor cell differentiation may be an important factor in the early stages of development of leukemia secondary to chemical or drug exposure.
Collapse
|
48
|
Colagiovanni DB, Stillman WS, Irons RD. Chemical suppression of a subpopulation of primitive hematopoietic progenitor cells: 1,3-butadiene produces a hematopoietic defect similar to steel or white spotted mutations in mice. Proc Natl Acad Sci U S A 1993; 90:2803-6. [PMID: 7681989 PMCID: PMC46184 DOI: 10.1073/pnas.90.7.2803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chronic exposure of mice to 1,3-butadiene produces a macrocytic-megaloblastic anemia, thymic hypoplasia, and an increased incidence of T-cell lymphoma/leukemia. This is reminiscent of pathologies observed in mice bearing mutations at the W and Sl loci, which are deficient in c-kit and c-kit ligand (CKL), respectively. The influence of 3,4-epoxybutene (EB), the primary metabolite of 1,3-butadiene, on the colony-forming response of hematopoietic progenitor cells (HPCs) from C57BL/6, Sl, and W mice was investigated in order to elucidate the role of altered HPC regulation in the pathogenesis of 1,3-butadiene toxicity. EB pretreatment suppressed interleukin 3 colony formation and abrogated CKL synergism of the granulocyte-macrophage/colony-stimulating factor (GM-CSF) response in C57BL/6 cells, had no effect on colony formation induced by GM-CSF or granulocyte/colony-stimulating factor (G-CSF) alone, and failed to suppress CKL-induced synergism of the G-CSF response. Experiments conducted with cells from Sl and W mice revealed that they lack the same primitive HPC targeted by EB. EB pretreatment in vitro and butadiene exposure in vivo mimic hematopoietic defects seen in W and Sl mice, suggesting that the pleotypic pathologies encountered in these murine models may be largely due to a common defect in primitive HPCs. Susceptibility to EB appears to define a functional subpopulation of primitive HPCs and illustrates that differences observed in the susceptibility of specific cytokine responses to chemical/drug exposure may provide a valuable tool for characterizing functional subpopulations of HPCs.
Collapse
|
49
|
Irons RD, Eberhardt R, Schulz J. Risk characterization and the extended spaceflight environment. ACTA ASTRONAUTICA 1992; 27:243-250. [PMID: 11537591 DOI: 10.1016/0094-5765(92)90204-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recent trends toward prolonged space flights have highlighted concern over potential health hazards for crews occupying a confined habitat for an extended duration mission. Previous spaceflight and remote habitat experiences have identified a large number of compounds that pose potential hazards as space habitat contaminants. A project is underway to prioritize these compounds according to: 1) the degree of potential exposure, 2) known or potential health risks, 3) process- and mission-specific determination of sources of contamination, and 4) preliminary evaluation of mission performance degradations associated with compound contaminant or substitution. An effort is underway to establish a comprehensive database making use of all available national and international data in order to provide a basis from which to evaluate both the impact and the likelihood of long term or transient exposure to these agents. The database will define projected capabilities of Space Station Freedom from early assembly phase through man-tended and permanently-manned capability, previous knowledge of the lunar base environment, and the limited data available from the Viking mission for the Mars environment. This information will then form the basis for mitigation measures including: 1) future process modification or substitution, 2) special provisions for compound containment or use restrictions, 3) re-evaluation of current exposure standards, and 4) reprioritization of information needs (e.g., toxicology, effects on human performance, or re-evaluation of alternative-process mission requirements).
Collapse
|
50
|
Irons RD, Stillman WS, Colagiovanni DB, Henry VA. Synergistic action of the benzene metabolite hydroquinone on myelopoietic stimulating activity of granulocyte/macrophage colony-stimulating factor in vitro. Proc Natl Acad Sci U S A 1992; 89:3691-5. [PMID: 1570288 PMCID: PMC525556 DOI: 10.1073/pnas.89.9.3691] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The effects of in vitro pretreatment with benzene metabolites on colony-forming response of murine bone marrow cells stimulated with recombinant granulocyte/macrophage colony-stimulating factor (rGM-CSF) were examined. Pretreatment with hydroquinone (HQ) at concentrations ranging from picomolar to micromolar for 30 min resulted in a 1.5- to 4.6-fold enhancement in colonies formed in response to rGM-CSF that was due to an increase in granulocyte/macrophage colonies. The synergism equaled or exceeded that reported for the effects of interleukin 1, interleukin 3, or interleukin 6 with GM-CSF. Optimal enhancement was obtained with 1 microM HQ and was largely independent of the concentration of rGM-CSF. Pretreatment with other authentic benzene metabolites, phenol and catechol, and the putative metabolite trans, trans-muconaldehyde did not enhance growth factor response. Coadministration of phenol and HQ did not enhance the maximal rGM-CSF response obtained with HQ alone but shifted the optimal concentration to 100 pM. Synergism between HQ and rGM-CSF was observed with nonadherent bone marrow cells and lineage-depleted bone marrow cells, suggesting an intrinsic effect on recruitment of myeloid progenitor cells not normally responsive to rGM-CSF. Alterations in differentiation in a myeloid progenitor cell population may be of relevance in the pathogenesis of acute myelogenous leukemia secondary to drug or chemical exposure.
Collapse
|