26
|
Zhao M, Wei H, Li C, Zhan R, Liu C, Gao J, Yi Y, Cui X, Shan W, Ji L, Pan B, Cheng S, Song M, Sun H, Jiang H, Cai J, Garcia-Barrio MT, Chen YE, Meng X, Dong E, Wang DW, Zheng L. Gut microbiota production of trimethyl-5-aminovaleric acid reduces fatty acid oxidation and accelerates cardiac hypertrophy. Nat Commun 2022; 13:1757. [PMID: 35365608 PMCID: PMC8976029 DOI: 10.1038/s41467-022-29060-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/14/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous studies found intestinal microbiota alterations which are thought to affect the development of various diseases through the production of gut-derived metabolites. However, the specific metabolites and their pathophysiological contribution to cardiac hypertrophy or heart failure progression still remain unclear. N,N,N-trimethyl-5-aminovaleric acid (TMAVA), derived from trimethyllysine through the gut microbiota, was elevated with gradually increased risk of cardiac mortality and transplantation in a prospective heart failure cohort (n = 1647). TMAVA treatment aggravated cardiac hypertrophy and dysfunction in high-fat diet-fed mice. Decreased fatty acid oxidation (FAO) is a hallmark of metabolic reprogramming in the diseased heart and contributes to impaired myocardial energetics and contractile dysfunction. Proteomics uncovered that TMAVA disturbed cardiac energy metabolism, leading to inhibition of FAO and myocardial lipid accumulation. TMAVA treatment altered mitochondrial ultrastructure, respiration and FAO and inhibited carnitine metabolism. Mice with γ-butyrobetaine hydroxylase (BBOX) deficiency displayed a similar cardiac hypertrophy phenotype, indicating that TMAVA functions through BBOX. Finally, exogenous carnitine supplementation reversed TMAVA induced cardiac hypertrophy. These data suggest that the gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent FAO. Intestinal microbiota alterations may affect heart function through the production of gut-derived metabolites. Here the authors found that gut microbiota-derived TMAVA is a key determinant for the development of cardiac hypertrophy through inhibition of carnitine synthesis and subsequent fatty acid oxidation.
Collapse
|
27
|
Dong J, He B, Wang R, Zuo X, Zhan R, Hu L, Li Y, He J. Characterization of the diastaphenazine/izumiphenazine C biosynthetic gene cluster from plant endophyte Streptomyces diastaticus W2. Microb Biotechnol 2022; 15:1168-1177. [PMID: 34487423 PMCID: PMC8966011 DOI: 10.1111/1751-7915.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022] Open
Abstract
Two phenazine compounds, diastaphenazine and izumiphenazine C, with complex structures and promising antitumour activity have been isolated from the plant endophytic actinomycete Streptomyces diastaticus W2. Their putative biosynthetic gene cluster (dap) was identified by heterologous expression and gene knockout. There are twenty genes in the dap cluster. dap14-19 related to shikimic pathway were potentially involved in the precursor chorismic acid biosynthesis, and dapBCDEFG were confirmed to be responsible for the biosynthesis of the dibenzopyrazine ring, the nuclear structure of phenazines. Two transcriptional regulatory genes dapR and dap4 played the positive regulatory roles on the phenazine biosynthetic pathway. Most notably, the dimerization of the dibenzopyrazine ring in diastaphenazine and the loading of the complex side chain in izumiphenazine C could be catalysed by the cyclase homologous gene dap5, suggesting an unusual modification strategy tailoring complex phenazine biosynthesis. Moreover, metabolite analysis of the gene deletion mutant strain S. albus::23C5Δdap2 and substrate assay of the methyltransferase Dap2 clearly revealed the biosynthetic route of the complex side chain in izumiphenazine C.
Collapse
|
28
|
Wu W, Wang S, Zhang H, Guo W, Lu H, Xu H, Zhan R, Fidan O, Sun L. Biosynthesis of Novel Naphthoquinone Derivatives in the Commonly-used Chassis Cells Saccharomyces cerevisiae and Escherichia coli. APPL BIOCHEM MICRO+ 2021. [PMCID: PMC8700708 DOI: 10.1134/s0003683821100124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Naphthoquinones harboring 1,4-naphthoquinone pharmacophore are considered as privileged structures in medicinal chemistry. In pharmaceutical industry and fundamental research, polyketide naphthoquinones were widely produced by heterologous expression of polyketide synthases in microbial chassis cells, such as Saccharomyces cerevisiae and Escherichia coli. Nevertheless, these cell factories still remain, to a great degree, black boxes that often exceed engineers’ expectations. In this work, the biotransformation of juglone or 1,4-naphthoquinone was conducted to generate novel derivatives and it was revealed that these two naphthoquinones can indeed be modified by the chassis cells. Seventeen derivatives, including 6 novel compounds, were isolated and their structural characterizations indicated the attachment of certain metabolites of chassis cells to naphthoquinones. Some of these biosynthesized derivatives were reported as potent antimicrobial agents with reduced cytotoxic activities. Additionally, molecular docking as simple and quick in silico approach was performed to screen the biosynthesized compounds for their potential antiviral activity. It was found that compound 11 and 17 showed the most promising binding affinities against Nsp9 of SARS-CoV-2, demonstrating their potential antiviral activities. Overall, this work provides a new approach to generate novel molecules in the commonly used chassis cells, which would expand the chemical diversity for the drug development pipeline. It also reveals a novel insight into the potential of the catalytic power of the most widely used chassis cells.
Collapse
|
29
|
Xu J, Zhao M, Wang A, Xue J, Cheng S, Cheng A, Gao J, Zhang Q, Zhan R, Meng X, Xu M, Li H, Zheng L, Wang Y. Association Between Plasma Trimethyllysine and Prognosis of Patients With Ischemic Stroke. J Am Heart Assoc 2021; 10:e020979. [PMID: 34816729 PMCID: PMC9075360 DOI: 10.1161/jaha.121.020979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Trimethyllysine, a trimethylamine N‐oxide precursor, has been identified as an independent cardiovascular risk factor in acute coronary syndrome. However, limited data are available to examine the role of trimethyllysine in the population with stroke. We aimed to examine the relationship between plasma trimethyllysine levels and stroke outcomes in patients presenting with ischemic stroke or transient ischemic attack. Methods and Results Data of 10 027 patients with ischemic stroke/transient ischemic attack from the CNSR‐III (Third China National Stroke Registry) and 1‐year follow‐up data for stroke outcomes were analyzed. Plasma levels of trimethyllysine were measured with mass spectrometry. The association between trimethyllysine and stroke outcomes was analyzed using Cox regression models. Mediation analysis was performed to examine the mediation effects of risk factors on the associations of trimethyllysine and stroke outcomes. Elevated trimethyllysine levels were associated with increased risk of cardiovascular death (quartile 4 versus quartile 1: adjusted hazard ratio [HR], 1.72; 95% CI, 1.03–2.86) and all‐cause mortality (quartile 4 versus quartile 1: HR, 1.97; 95% CI, 1.40–2.78) in multivariate Cox regression model. However, no associations were found between trimethyllysine and nonfatal stroke recurrence or nonfatal myocardial infarction. Trimethyllysine was associated with cardiovascular death independent of trimethylamine N‐oxide. Both estimated glomerular filtration rate and hs‐CRP (high‐sensitivity C‐reactive protein) had significant mediation effects on the association of trimethyllysine with cardiovascular death, with a mediation effect of 37.8% and 13.4%, respectively. Conclusions Elevated trimethyllysine level is associated with cardiovascular death among patients with ischemic stroke/transient ischemic attack. Mediation analyses propose that trimethyllysine contributes to cardiovascular death through inflammation and renal function, suggesting a possible pathomechanistic link.
Collapse
|
30
|
Cui H, Chen Y, Li K, Zhan R, Zhao M, Xu Y, Lin Z, Fu Y, He Q, Tang PC, Lei I, Zhang J, Li C, Sun Y, Zhang X, Horng T, Lu HS, Chen YE, Daugherty A, Wang D, Zheng L. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur Heart J 2021; 42:4373-4385. [PMID: 34534287 PMCID: PMC11506060 DOI: 10.1093/eurheartj/ehab605] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
AIMS Aortic aneurysm and dissection (AAD) are high-risk cardiovascular diseases with no effective cure. Macrophages play an important role in the development of AAD. As succinate triggers inflammatory changes in macrophages, we investigated the significance of succinate in the pathogenesis of AAD and its clinical relevance. METHODS AND RESULTS We used untargeted metabolomics and mass spectrometry to determine plasma succinate concentrations in 40 and 1665 individuals of the discovery and validation cohorts, respectively. Three different murine AAD models were used to determine the role of succinate in AAD development. We further examined the role of oxoglutarate dehydrogenase (OGDH) and its transcription factor cyclic adenosine monophosphate-responsive element-binding protein 1 (CREB) in the context of macrophage-mediated inflammation and established p38αMKOApoe-/- mice. Succinate was the most upregulated metabolite in the discovery cohort; this was confirmed in the validation cohort. Plasma succinate concentrations were higher in patients with AAD compared with those in healthy controls, patients with acute myocardial infarction (AMI), and patients with pulmonary embolism (PE). Moreover, succinate administration aggravated angiotensin II-induced AAD and vascular inflammation in mice. In contrast, knockdown of OGDH reduced the expression of inflammatory factors in macrophages. The conditional deletion of p38α decreased CREB phosphorylation, OGDH expression, and succinate concentrations. Conditional deletion of p38α in macrophages reduced angiotensin II-induced AAD. CONCLUSION Plasma succinate concentrations allow to distinguish patients with AAD from both healthy controls and patients with AMI or PE. Succinate concentrations are regulated by the p38α-CREB-OGDH axis in macrophages.
Collapse
|
31
|
Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. The Attenuation of Diabetic Nephropathy by Annexin A1 via Regulation of Lipid Metabolism Through the AMPK/PPARα/CPT1b Pathway. Diabetes 2021; 70:2192-2203. [PMID: 34103347 DOI: 10.2337/db21-0050] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022]
Abstract
Inflammation and abnormal metabolism play important roles in the pathogenesis of diabetic nephropathy (DN). Annexin A1 (ANXA1) contributes to inflammation resolution and improves metabolism. In this study, we assess the effects of ANXA1 in diabetic mice and proximal tubular epithelial cells (PTECs) treated with high glucose plus palmitate acid (HGPA) and explore the association of ANXA1 with lipid accumulation in patients with DN. It is found that ANXA1 deletion aggravates renal injuries, including albuminuria, mesangial matrix expansion, and tubulointerstitial lesions in high-fat diet/streptozotocin-induced diabetic mice. ANXA1 deficiency promotes intrarenal lipid accumulation and drives mitochondrial alterations in kidneys. In addition, Ac2-26, an ANXA1 mimetic peptide, has a therapeutic effect against lipid toxicity in diabetic mice. In HGPA-treated human PTECs, ANXA1 silencing causes FPR2/ALX-driven deleterious effects, which suppress phosphorylated Thr172 AMPK, resulting in decreased peroxisome proliferator-activated receptor α and carnitine palmitoyltransferase 1b expression and increased HGPA-induced lipid accumulation, apoptosis, and elevated expression of proinflammatory and profibrotic genes. Last but not least, the extent of lipid accumulation correlates with renal function, and the level of tubulointerstitial ANXA1 expression correlates with ectopic lipid deposition in kidneys of patients with DN. These data demonstrate that ANXA1 regulates lipid metabolism of PTECs to ameliorate disease progression; hence, it holds great potential as a therapeutic target for DN.
Collapse
|
32
|
Wang M, Wang W, Li D, Wang WJ, Zhan R, Shao LD. α-C(sp 3)-H Arylation of Cyclic Carbonyl Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:379-404. [PMID: 34097248 PMCID: PMC8275813 DOI: 10.1007/s13659-021-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
α-C(sp3)-H arylation is an important type of C-H functionalization. Various biologically significant natural products, chemical intermediates, and drugs have been effectively prepared via C-H functionalization. Cyclic carbonyl compounds comprise of cyclic ketones, enones, lactones, and lactams. The α-C(sp3)-H arylation of these compounds have been exhibited high efficiency in forming C(sp3)-C(sp2) bonds, played a crucial role in organic synthesis, and attracted majority of interests from organic and medicinal communities. This review focused on the most significant advances including methods, mechanism, and applications in total synthesis of natural products in the field of α-C(sp3)-H arylations of cyclic carbonyl compounds in recent years.
Collapse
|
33
|
Zhou S, Zhan R, Qiao Z, Wu J. Giant solitary fibrous tumor: A clinically silent tumor. Asian J Surg 2021; 44:1085-1086. [PMID: 34119388 DOI: 10.1016/j.asjsur.2021.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 01/21/2023] Open
|
34
|
Li Y, Gong H, Zhan R, Ouyang S, Park KT, Lutkenhaus J, Du S. Genetic analysis of the septal peptidoglycan synthase FtsWI complex supports a conserved activation mechanism for SEDS-bPBP complexes. PLoS Genet 2021; 17:e1009366. [PMID: 33857142 PMCID: PMC8078798 DOI: 10.1371/journal.pgen.1009366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/27/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism. Bacterial cell division requires the synthesis of septal peptidoglycan by the widely conserved SEDS-bPBP protein complex FtsWI, but how the complex is activated during cell division is still poorly understood. Previous studies suggested that FtsN initiates a signaling cascade in the periplasm to activate FtsWI. Here we isolated and characterized activated FtsW and FtsI mutants and confirmed that the signaling cascade for FtsW activation goes from FtsN to FtsQLB to FtsI and then to FtsW. The residues corresponding to mutations affecting FtsWI activation are clustered to a small region of the interaction interface between the pedestal domain of FtsI and the extracellular loop 4 of FtsW, suggesting that this interaction mediates activation of FtsW. This is strikingly similar to the proposed activation mechanism for the RodA-PBP2 complex, another SEDS-bPBP complex required for cell elongation. Thus, the two homologous SEDS-bPBP complexes are activated similarly by completely unrelated activators that modulate the interaction interface between the SEDS proteins and the bPBPs.
Collapse
|
35
|
Zhan R, Qi R, Huang S, Lu Y, Wang X, Jiang J, Ruan X, Song A. The correlation between hepatic fat fraction evaluated by dual-energy computed tomography and high-risk coronary plaques in patients with non-alcoholic fatty liver disease. Jpn J Radiol 2021; 39:763-773. [PMID: 33818707 DOI: 10.1007/s11604-021-01113-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine the relationship between non-alcoholic fatty liver disease (NAFLD) evaluated by a hepatic fat fraction (HFF) using dual-energy computed tomography (DECT) and high-risk coronary plaques (HRP) in NAFLD patients. METHODS We conducted a matched case-control study involving 172 NAFLD individuals recruited from August 2019 to September 2020. They underwent dual-energy coronary computed tomographic angiography and were classified as no-plaque, HRP negative and HRP positive groups. HFF values were measured using multimaterial decomposition algorithm of DECT, and the differences among three groups were compared. Multiple logistic regression analysis was performed to determine the independent correlation between HFF and HRP. Spearman rank correlation was used to assess the correlations between HFF and multiple variables. RESULTS HRP positive group (15.3%) had higher HFF values than no-plaque (6.9%) and HRP negative groups (8.9%) (P < 0.001). After adjusting for confounding variables, the results indicated that HFF was an independent risk factor for HRP (OR 1.93, P < 0.001). Additionally, HFF significantly correlated with coronary artery calcium score, hepatic CT attenuation, epicardial and pericoronary adipose tissue volume, and CT attenuation (all P < 0.001). CONCLUSIONS As a new imaging marker for the quantification of liver fat, HFF was independently associated with HRP.
Collapse
|
36
|
Wu L, Liu C, Chang DY, Zhan R, Sun J, Cui SH, Eddy S, Nair V, Tanner E, Brosius FC, Looker HC, Nelson RG, Kretzler M, Wang JC, Xu M, Ju W, Zhao MH, Chen M, Zheng L. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy. Kidney Int 2021; 100:107-121. [PMID: 33675846 DOI: 10.1016/j.kint.2021.02.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
Since failed resolution of inflammation is a major contributor to the progression of diabetic nephropathy, identifying endogenously generated molecules that promote the physiological resolution of inflammation may be a promising therapeutic approach for this disease. Annexin A1 (ANXA1), as an endogenous mediator, plays an important role in resolving inflammation. Whether ANXA1 could affect established diabetic nephropathy through modulating inflammatory states remains largely unknown. In the current study, we found that in patients with diabetic nephropathy, the levels of ANXA1 were upregulated in kidneys, and correlated with kidney function as well as kidney outcomes. Therefore, the role of endogenous ANXA1 in mouse models of diabetic nephropathy was further evaluated. ANXA1 deficiency exacerbated kidney injuries, exhibiting more severe albuminuria, mesangial matrix expansion, tubulointerstitial lesions, kidney inflammation and fibrosis in high fat diet/streptozotocin-induced-diabetic mice. Consistently, ANXA1 overexpression ameliorated kidney injuries in mice with diabetic nephropathy. Additionally, we found Ac2-26 (an ANXA1 mimetic peptide) had therapeutic potential for alleviating kidney injuries in db/db mice and diabetic Anxa1 knockout mice. Mechanistic studies demonstrated that intracellular ANXA1 bound to the transcription factor NF-κB p65 subunit, inhibiting its activation thereby modulating the inflammatory state. Thus, our data indicate that ANXA1 may be a promising therapeutic approach to treating and reversing diabetic nephropathy.
Collapse
|
37
|
Kong J, Yao C, Dong S, Wu S, Xu Y, Li K, Ji L, Shen Q, Zhang Q, Zhan R, Cui H, Zhou C, Niu H, Li G, Sun W, Zheng L. ICAM-1 Activates Platelets and Promotes Endothelial Permeability through VE-Cadherin after Insufficient Radiofrequency Ablation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002228. [PMID: 33643788 PMCID: PMC7887603 DOI: 10.1002/advs.202002228] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/06/2020] [Indexed: 06/02/2023]
Abstract
Radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) often leads to aggressive local recurrence and increased metastasis, and vascular integrity and platelets are implicated in tumor metastasis. However, whether interactions between endothelial cells and platelets induce endothelial permeability in HCC after insufficient RFA remains unclear. Here, significantly increased CD62P-positive platelets and sP-selectin in plasma are observed in HCC patients after RFA, and tumor-associated endothelial cells (TAECs) activate platelets and are susceptible to permeability after heat treatment in the presence of platelets in vitro. In addition, tumors exhibit enhanced vascular permeability after insufficient RFA in mice; heat treatment promotes platelets-induced endothelial permeability through vascular endothelial (VE)-cadherin, and ICAM-1 upregulation in TAECs after heat treatment results in platelet activation and increased endothelial permeability in vitro. Moreover, the binding interaction between upregulated ICAM-1 and Ezrin downregulates VE-cadherin expression. Furthermore, platelet depletion or ICAM-1 inhibition suppresses tumor growth and metastasis after insufficient RFA in an orthotopic tumor mouse model, and vascular permeability decreases in ICAM-1-/- mouse tumor after insufficient RFA. The findings suggest that ICAM-1 activates platelets and promotes endothelial permeability in TAECs through VE-cadherin after insufficient RFA, and anti-platelet and anti-ICAM-1 therapy can be used to prevent progression of HCC after insufficient RFA.
Collapse
|
38
|
Wang CF, Kuang F, Wang WJ, Luo L, Li QX, Liu Y, Zhan R. Phenolic compounds with anti-inflammatory effects from Knema furfuracea. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Lu XL, Zhan R, Zhao GM, Qian ZH, Gong CC, Li YQ. Expression of CDK13 Was Associated with Prognosis and Expression of HIF-1α and beclin1 in Breast Cancer Patients. J INVEST SURG 2020; 35:442-447. [PMID: 33292020 DOI: 10.1080/08941939.2020.1852344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate role and clinical significance of CDK13 in breast cancer patients. METHODS A total of 189 cases of breast cancer were enrolled during March 2013 to March 2015. Immunohistochemistry (IHC) was used for measurement of CDK13, HIF-1α and beclin1. Clinical characteristics of age, BMI, TNM stage, pathological types, and tumor diameter, were recorded. Patients' 5-year overall survival and recurrence were followed up. All patients were followed up for 5 years or to the last follow-up. RESULTS The expression levels of CDK13 and HIF-1αin breast cancer tissues were up-regulated and beclin1 was down-regulated than in the paracancerous non-tumor tissues. CDK13 was positively correlated with HIF-1α and negatively correlated with beclin1 in breast cancer tissues. The patients with higher expression of CDK13 showed significantly higher rates of TNM III-IV, higher rates of lymph node metastasis, distant metastasis and larger tumor size. The mortality and recurrence rates were higher in high expression CDK13 patients than in low CDK13 expression patients, however with no significant difference. K-M curve showed patients with higher CDK13 showed lower 5-year overall survival and lower disease-free survival time, however with no significant difference. CONCLUSION CDK13 was overexpressed in breast cancer tissues, and patients with higher CDK13 had poorer clinical outcomes. Further studies are still needed to reveal the clinical significance of CDK13 in breast cancer.
Collapse
|
40
|
Zhan R, Li D, Liu YL, Xie XY, Chen L, Shao LD, Wang WJ, Chen YG. Structural elucidation, bio-inspired synthesis, and biological activities of cyclic diarylpropanes from Horsfieldia kingii. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Ge X, Cui H, Kong J, Lu SY, Zhan R, Gao J, Xu Y, Lin S, Meng K, Zu L, Guo S, Zheng L. A Non-Invasive Nanoprobe for In Vivo Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000037. [PMID: 32803803 DOI: 10.1002/adma.202000037] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Vulnerable atherosclerotic (AS) plaque is the major cause of cardiovascular death. However, clinical methods cannot directly identify the vulnerable AS plaque at molecule level. Herein, osteopontin antibody (OPN Ab) and NIR fluorescence molecules of ICG co-assembled Ti3 C2 nanosheets are reported as an advanced nanoprobe (OPN Ab/Ti3 C2 /ICG) with enhanced photoacoustic (PA) performance for direct and non-invasive in vivo visual imaging of vulnerable AS plaque. The designed OPN Ab/Ti3 C2 /ICG nanoprobes successfully realize obvious NIR fluorescence imaging toward foam cells as well as the vulnerable AS plaque slices. After intravenous injection of OPN Ab/Ti3 C2 /ICG nanoprobes into AS model mice, in vivo imaging results show a significantly enhanced PA signal in the aortic arch accumulated with vulnerable plaque, well indicating the remarkable feasibility of OPN Ab/Ti3 C2 /ICG nanoprobes to distinguish the vulnerable AS plaque. The proposed OPN Ab/Ti3 C2 /ICG nanoprobes not only overcome the clinical difficulty to differentiate vulnerable plaque, but also achieve the non-invasively specific in vivo imaging of vulnerable AS plaque at molecule level, greatly promoting the innovation of cardiovascular diagnosis technology.
Collapse
|
42
|
Zhan R, Lu XL, Du XL, Zou GZ. [Gallbladder metastasis of lung adenocarcinoma: report of a case]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2020; 49:751-753. [PMID: 32610394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
43
|
Dong J, Sang X, Song H, Zhan R, Wei L, Liu Y, Zhang M, Huang B, Wang X. Molecular characterization and functional analysis of a Rel gene in the Pacific oyster. FISH & SHELLFISH IMMUNOLOGY 2020; 101:9-18. [PMID: 32217142 DOI: 10.1016/j.fsi.2020.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
The nuclear factor-κB (NF-κB) signaling pathway plays a crucial role in regulating many physiological processes such as development, inflammation, apoptosis, cell proliferation, differentiation and immune responses. And the NF-κB/Rel family members were considered as the most important transcription factors in the NF-κB signaling pathway. In this study, we cloned a Rel homolog gene (named as CgRel2) from the Pacific oyster, Crassostrea gigas. The 2115-bp open reading frame (ORF) encodes 704 amino acids and CgRel2 possesses a conserved Rel Homology Domain (RHD) at the N-terminus. Phylogenetic analysis revealed that CgRel2 is most closely related to Pinctada fucata dorsal protein. CgRel2 transcripts are widely expressed in all tested tissues, with the highest expression observed in the labial palp and the gill. Moreover, the expression of CgRel2 is significantly upregulated after lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid [poly(I:C)] challenge. CgRel2 transfection into human cell lines activated NF-κB, TNFα and oyster IL-17 (CgIL-17) reporter genes in a dose-dependent manner, while CgRel2 overexpression cannot induce ISRE (Interferon stimulation response element) reporter gene's transcriptional activity. Additionally, the results of co-immunoprecipitation showed that CgRel2 or CgRel1 could interact with oyster IκB1, IκB2 and IκB3 proteins strongly, which may be critical for the immune signaling transduction and the regulation of its immune functions. Together, these results suggest that CgRel2 could respond to pathogenic infection, participate in the immune signal transduction and activate NF-κB, TNFα and CgIL-17 reporter genes. Thus, CgRel2 could play an important role in the oyster immune system.
Collapse
|
44
|
Lu Y, Wang T, Zhan R, Wang X, Ruan X, Qi R, Huang S. Effects of epicardial adipose tissue volume and density on cardiac structure and function in patients free of coronary artery disease. Jpn J Radiol 2020; 38:666-675. [PMID: 32193792 DOI: 10.1007/s11604-020-00951-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To determine the association of epicardial adipose tissue (EAT) volume and density with cardiac geometry and function. METHODS We included 178 consecutive patients who performed coronary computed tomography angiography but were not diagnosed with coronary artery disease (CAD). The EAT volume, density, and following cardiac structure and function parameters were measured: left ventricular ejection fraction, left ventricular mass (LVM), left ventricular end-diastolic volume (LVEDV), left ventricular end-systolic volume (LVESV), left ventricular stroke volume (LVSV), left ventricular end-diastolic diameter (LVEDD), interventricular septal thickness (IVST) and posterior wall thickness (PWT). All the parameters were standardized using the height2.7. RESULTS A significant correlation was found between larger EAT volume and increased LVM, LVEDV, LVESV, LVSV, LVEDD, IVST and corresponding standardized indexes (P < 0.05 for all). Higher EAT density significantly correlated with increased LVM, LVEDV, LVESV, LVSV, LVEDD, IVST, PWT and corresponding standardized indexes (P < 0.05 for all). The largest cardiac structure and function parameters were observed in the population with above-median EAT volume and density. CONCLUSION Both large EAT volume and high EAT density were associated with cardiac structure and function in patients with no CAD. The EAT density may render complementary information to EAT volume regarding cardiac geometry changes.
Collapse
|
45
|
Yu W, Zhang B, Song H, Zhan R, Li L, He C, Jiang Q, Wang X, Wei L, Zhao N, Guo W, Wang X. Preliminary investigation demonstrating the GHITM gene probably involved in apoptosis and growth of the golden apple snail (Pomacea canaliculata). BMC Genomics 2020; 21:19. [PMID: 31906861 PMCID: PMC6945724 DOI: 10.1186/s12864-019-6434-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Background Growth hormone inducible transmembrane protein (GHITM) is a highly conserved transmembrane protein. This study was conducted to investigate the role of GHITM gene in the apoptosis and growth of the golden apple snail Pomacea canaliculate. Results The complete cDNA of this gene was cloned using the rapid amplification of cDNA ends (RACE) method and subjected to bioinformatics analysis. The full-length cDNA was 2242 bp, including an open reading frame of 1021 bp that encoded a protein of 342 amino acid residues. The mRNA expression profiles of GHITM gene in different tissues (liver, kidney, gonad and foot) and different growth phases (6-months old and 2-years old) showed that it was expressed in various tissues and different growth phases. Silencing of the GHITM gene by RNAi (RNA interference) experiments revealed that the GHITM gene possibly plays a role in inhibiting apoptosis through detecting the Caspase (Cysteine-requiring Aspartate Protease)-3 activity. In addition, the aperture width and body whorl length of the snail was significantly affected by RNAi, suggesting that this gene plays a significant role in promoting the growth of the organism. Conclusions These results demonstrated that the GHITM gene was involved in apoptosis and growth in golden apple snail.
Collapse
|
46
|
Abstract
Three new diarylpropanes (1-3), including two diarylpropane glycosides, and three known ones, were isolated from 70% aqueous acetone extract of the twigs and leaves of Horsfieldia kingii. Their structures were elucidated by spectroscopic analysis. Bioactive evaluation of inhibition on DDC enzyme assay showed that the new compounds were inactive.
Collapse
|
47
|
Wang T, Zhan R, Lu J, Zhong L, Peng X, Wang M, Tang S. Grain consumption and risk of gastric cancer: a meta-analysis. Int J Food Sci Nutr 2019; 71:164-175. [PMID: 31314629 DOI: 10.1080/09637486.2019.1631264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study evaluated the relationship between grain consumption and the risk of gastric cancer. A total of 19 studies met the inclusion criteria. For whole grain consumption, there was a 13% reduction in the risk of gastric cancer (p = .003), and a subgroup analysis showed that a large amount of whole grain consumption reduced the risk of gastric cancer by 44% (p < .001). For refined grain consumption, there was a 36% increase in the risk of gastric cancer (p < .001); a subgroup analysis showed that a large and a moderate amount of refined grain consumption increased the risk of gastric cancer by 63% (p < .001) and 28% (p < .001), respectively. A large intake of whole grains might be protective against gastric cancer, whereas the ingestion of refined cereals may be a risk factor for gastric cancer. Moreover, the risk of cancer increases with the increase of refined grain intake.
Collapse
|
48
|
Zhan R, Hu YT, Shao LD, Qin XJ, Kuang F, Du SZ, Wu F, Chen YG. Horisfieldones A and B, Two Aromatic Ring-Contracted Dimeric Diarylpropanes with Human DOPA Decarboxylase Inhibitory Activity from Horsfieldia kingii. Org Lett 2019; 21:3678-3681. [PMID: 31038317 DOI: 10.1021/acs.orglett.9b01125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Sun J, Chen LJ, Zhang Y, Zhan R, Chen YG. Two new phenylpropanoid esters from Bulbophyllum retusiusculum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:331-336. [PMID: 29334258 DOI: 10.1080/10286020.2018.1425995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Two new phenylpropanoid esters bobulretulates A (1) and B (2), together with eleven known compounds, were isolated from the whole plants of Bulbophyllum retusiusculum. Their structures were elucidated by means of extensive spectroscopic analysis.
Collapse
|
50
|
Xu B, Zhan R, Mai H, Wu Z, Zhu P, Liang Y, Zhang Y. The association between vascular endothelial growth factor gene polymorphisms and stroke: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2019; 98:e14696. [PMID: 30882632 PMCID: PMC6426541 DOI: 10.1097/md.0000000000014696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Numerous studies showed that vascular endothelial growth factor (VEGF) gene polymorphisms were linked with the regularity of stroke, but the results remained controversial. The aim of this meta-analysis was to determine the associations between VEGF gene polymorphisms and the risk of stroke. METHODS A systematic literature search of PubMed, Embase, Wed of Science, The Cochrane Library, Elsevier, China National Knowledge Infrastructure, China Biology Medicine disc, WanFang Data, VIP Database for Chinese Technical Periodicals, and Science paper Online was conducted. Two authors independently assessed trial quality and extracted data. The pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of associations. Begger funnel plot and Egger test were used to estimate the publication bias of included studies. Heterogeneity assumption was assessed by Cochran Chi-squared-based Q-statistic test and I test. RESULTS Thirteen publications including 23 trails with a total of 3794 stroke patients and 3094 control subjects were enrolled. About 3747 cases and 2868 controls for +936C/T, 2134 cases and 1424 controls for -2578C/A, and 2187 cases and 1650 controls for -1154G/A were examined, respectively. The results indicated that VEGF +936C/T (T vs C, OR = 1.19, 95% CI = 1.01-1.40) or -2578C/A (A vs C, OR = 1.13, 95% CI = 1.02-1.27) was positively associated with the risk of stroke, whereas there was no association between -1154G/A (A vs G, OR = 0.99, 95% CI = 0.87-1.11) polymorphism and stroke risk in our study. Among the subgroup analyses on ethnicity, the results showed that VEGF +936C/T was an increased risk of stroke in Asian population (T vs C, OR = 1.21, 95% CI = 1.01-1.44), but not -1154G/A. CONCLUSION Our findings suggest that VEGF +936C/T and -2578C/A might be related to the risk of stroke, especially in the Asian population, but not -1154G/A.
Collapse
|