26
|
Kim JH, Kang SW, Lee EJ, Kim J, Kim SJ, Ahn J. Temporal changes in foveal contour after macular hole surgery. Eye (Lond) 2014; 28:1355-63. [PMID: 25233817 DOI: 10.1038/eye.2014.217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the changes in inner foveal contour after surgery for macular hole (MH) and its clinical implications. METHODS This retrospective observational case series included 66 eyes from 66 patients who underwent surgery for MH. Notching of tissue was defined as an abrupt alteration in the inner contour of the parafoveal tissue based on postoperative optical coherence tomography (OCT) image. The distance between the parafoveal edges of the outer plexiform layer (OPL) was defined as the inter-OPL distance. The inter-OPL distance was divided into nasal, temporal, superior, and inferior lengths. The difference in the lengths of each direction between the early and late postoperative period was compared between directions with and without notching. RESULTS The early and late postoperative examination was performed at 4.6±2.9 weeks and 6.2±0.6 months, respectively. Notching of tissue was noted in 54 eyes (81.8%). In 53 eyes with a measurable inter-OPL distance, the notching of tissue was noted in 45 eyes (84.9%) regardless of preoperative MH size. The mean amount of foveal tissue elongation that occurred during the designated period was 104.6±68.8 and 78.4±72.9 μm in the directions with and without the notching of tissue (P<0.001), respectively. CONCLUSIONS The changes in the inner foveal contour, including notching of tissue and elongation of foveal tissue, were noted in the majority of eyes after MH surgery. Notching of tissue on OCT image could be a clinical marker for the development of foveal tissue elongation after MH surgery.
Collapse
|
27
|
Kang SW, Kuenzel WJ. Regulation of gene expression of vasotocin and corticotropin-releasing hormone receptors in the avian anterior pituitary by corticosterone. Gen Comp Endocrinol 2014; 204:25-32. [PMID: 24815884 DOI: 10.1016/j.ygcen.2014.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 11/26/2022]
Abstract
The effect of chronic stress (CS) on gene expression of the chicken arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH) receptors [VT2R, VT4R, CRH-R1, and CRH-R2] was examined by measuring receptor mRNA levels in the anterior pituitary gland of the chicken after chronic immobilization stress compared to acute stress (AS). Radioimmunoassay results showed that blood circulating corticosterone (CORT) levels in the CS group were significantly decreased compared to that of birds in the AS group (P<0.05). The VT2R and CRH-R2 mRNA in CS birds were significantly decreased to that of controls. The VT4R mRNA was significantly decreased compared to controls in AC birds and was further decreased in the CS group compared to controls (P<0.05). The CRH-R1 mRNA was significantly decreased in the AS birds compared to controls. However, there was no significant difference of CRH-R1 mRNA between acute stress and chronic stress birds. Using primary anterior pituitary cell cultures, the effect of exogenous CORT on VT/CRH receptor gene expression was examined. Receptor mRNA levels were measured after treatment of CORT followed by AVT/CRH administration. The CORT pretreatment resulted in a dose-dependent decrease of proopiomelanocortin heteronuclear RNA, a molecular marker of a stress-induced anterior pituitary. Without CORT pretreatment of anterior pituitary cell cultures, the VT2R, VT4R and CRH-R1mRNA levels were significantly increased within 15 min and then decreased at 1 h and 6 h by AVT/CRH administration (P<0.05). Pretreatment of CORT in anterior pituitary cells induced a dose-dependent increase of VT2R, VT4R and CRH-R2 mRNA levels, and a significant decrease of CRH-R1 mRNA levels at only the high dose (10 ng/ml) of CORT (P<0.05).Taken together, results suggest a modulatory role of CORT on the regulation of VT/CRH receptor gene expression in the avian anterior pituitary gland dependent upon CORT levels.
Collapse
|
28
|
Nagarajan G, Tessaro BA, Kang SW, Kuenzel WJ. Identification of arginine vasotocin (AVT) neurons activated by acute and chronic restraint stress in the avian septum and anterior diencephalon. Gen Comp Endocrinol 2014; 202:59-68. [PMID: 24780118 DOI: 10.1016/j.ygcen.2014.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/21/2023]
Abstract
Effects of acute and chronic psychological stress in the brain of domestic avian species have not been extensively studied. Experiments were performed using restraint stress to determine groups of neurons activated in the septum and diencephalon of chickens. Using FOS immunoreactivity six brain structures were shown activated by acute stress including: the lateral hypothalamic area (LHy), ventrolateral thalamic nucleus (VLT), lateral septum (LS), lateral bed nucleus of the stria terminalis (BSTL), nucleus of the hippocampal commissure (NHpC) and the core region of the paraventricular nucleus (PVNc). Additionally, the LHy and PVNc showed increased FOS immunoreactive (-ir) cells in the birds chronically stressed when compared to controls. In contrast, the NHpC showed decreased FOS-ir cells following the 10day chronic stress imposed. Thereafter, restraint stress experiments were performed to identify activated arginine vasotocin (AVT) neurons (parvocellular or magnocellular) using immunocytochemistry. Of the six FOS activated structures, the PVN was known to contain distinct size groups of AVT-ir neurons, parvocellular (small), medium sized and magnocellular (large). Using dual immunostaining (AVT/FOS), AVT-ir parvocellular neurons in the PVNc were found activated in both acute and chronic stress. To determine whether these AVT-ir parvocellular neurons are co-localized with corticotropin releasing hormone (CRH), an attempt was made to visualize CRH-ir neurons using colchicine. Although AVT-ir and CRH-ir parvocellular neurons occur in the PVNc, only a few neurons were shown co-localized with AVT and CRH after acute restraint stress. Results of this study suggest that the NHpC, LS, VLT, BSTL, LHy and AVT-ir parvocellular neurons in the PVNc are associated with psychological stress in birds.
Collapse
|
29
|
Kwon SJ, Park JH, Park EJ, Lee SA, Lee HS, Kang SW, Kwon J. ATM-mediated phosphorylation of the chromatin remodeling enzyme BRG1 modulates DNA double-strand break repair. Oncogene 2014; 34:303-13. [PMID: 24413084 DOI: 10.1038/onc.2013.556] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022]
Abstract
ATP-dependent chromatin remodeling complexes such as SWI/SNF (SWItch/Sucrose NonFermentable) have been implicated in DNA double-strand break (DSB) repair and damage responses. However, the regulatory mechanisms that control the function of chromatin remodelers in DNA damage response are largely unknown. Here, we show that ataxia telangiectasia mutated (ATM) mediates the phosphorylation of BRG1, the catalytic ATPase of the SWI/SNF complex that contributes to DSB repair by binding γ-H2AX-containing nucleosomes via interaction with acetylated histone H3 and stimulating γ-H2AX formation, at Ser-721 in response to DNA damage. ATM-mediated phosphorylation of BRG1 occurs rapidly and transiently after DNA damage. Phosphorylated BRG1 binds γ-H2AX-containing nucleosomes to form the repair foci. The Ser-721 phosphorylation of BRG1 is critical for binding γ-H2AX-containing nucleosomes and stimulating γ-H2AX formation and DSB repair. BRG1 binds to acetylated H3 peptides much better after phosphorylation at Ser-721 by DNA damage. However, the phosphorylation of Ser-721 does not significantly affect the ATPase and transcriptional activities of BRG1. These results, establishing BRG1 as a novel and functional ATM substrate, suggest that the ATM-mediated phosphorylation of BRG1 facilitates DSB repair by stimulating the association of this remodeler with γ-H2AX nucleosomes via enhancing the affinity to acetylated H3. Our work also suggests that the mechanism of BRG1 stimulation of DNA repair is independent of the remodeler's enzymatic or transcriptional activities.
Collapse
|
30
|
Lim SM, Chang H, Yoon MJ, Hong YK, Kim H, Chung WY, Park CS, Nam KH, Kang SW, Kim MK, Kim SB, Lee SH, Kim HG, Na II, Kim YS, Choi MY, Kim JG, Park KU, Yun HJ, Kim JH, Cho BC. A multicenter, phase II trial of everolimus in locally advanced or metastatic thyroid cancer of all histologic subtypes. Ann Oncol 2013; 24:3089-94. [PMID: 24050953 DOI: 10.1093/annonc/mdt379] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
31
|
Kim HR, Lee MJ, Song JE, Han JH, Yoo TH, Kang SW, Choi KH, Han SH. Drainage failure because of spontaneous fracture of the peritoneal dialysis catheter. Perit Dial Int 2013; 33:218-20. [PMID: 23478378 DOI: 10.3747/pdi.2012.00045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Kuenzel WJ, Kang SW, Jurkevich A. Neuroendocrine regulation of stress in birds with an emphasis on vasotocin receptors (VTRs). Gen Comp Endocrinol 2013; 190:18-23. [PMID: 23500673 DOI: 10.1016/j.ygcen.2013.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/20/2013] [Accepted: 02/23/2013] [Indexed: 11/22/2022]
Abstract
The neuroendocrine stress response of vertebrates, particularly mammals, comprises at least two types of neuropeptide containing neurons, corticotropin-releasing hormone (CRH) and vasopressin (VP) neurons, and four receptors [CRH receptor one (CRH-R1) and two (CRH-R2) and VP receptor 1a (V1aR) and 1b (V1bR)]. The avian neuropeptide CRH, a 41-amino acid peptide, has been shown to have the same amino acid sequence as humans while nonapeptide neurohormone arginine-vasotocin (AVT) is regarded as highly conserved having a single amino acid substitution compared to mammalian arginine vasopressin. Similar to mammals, birds have two receptor subtypes (CRH-R1 and CRH-R2) for CRH, however, four vasotocin receptors have been identified. Less is known about the functions of the four avian vasotocin receptors compared to homologous ones found in mammals and other vertebrate classes. Recently, chicken vasotocin receptor two (VT2R) and four (VT4R) have been characterized utilizing immunocytochemistry and an imposed stress test. The purpose of this review is to present evidence that the VT2R and VT4R are involved in the avian stress response and that the cephalic lobe of the anterior pituitary appears specialized for this function as it contains the major population of corticotropes and necessary neuroendocrine receptors to respond to stressors impacting avian species.
Collapse
|
33
|
Cornett LE, Kang SW, Kuenzel WJ. A possible mechanism contributing to the synergistic action of vasotocin (VT) and corticotropin-releasing hormone (CRH) receptors on corticosterone release in birds. Gen Comp Endocrinol 2013; 188:46-53. [PMID: 23499785 DOI: 10.1016/j.ygcen.2013.02.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/30/2022]
Abstract
Arginine vasotocin (AVT) and corticotropin-releasing hormone (CRH) are two neuronal regulators in the hypothalamic-pituitary-adrenal (HPA) axis that modulate biological responses to stress in avian species. When AVT and CRH are administered together in vitro or in vivo, levels of adrenocorticotropic hormone (ACTH) or plasma corticosterone (CORT) are released, respectively, in a synergistic manner. The underlying mechanism of this greater than additive stress response was investigated by expressing the vasotocin receptor type 2 (VT2R) and CRH receptor type 1 (CRH-R1), both G-protein coupled receptors, in HeLa cells. Fluorescence resonance energy transfer (FRET) analysis provided the evidence for heterodimerization of the VT2R/CRH-R1 in the presence of their respective ligands, AVT and CRH. The VT2R and CRH-R1 were tagged at the C-terminal ends with either cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP), and a VT2R chimera was constructed by replacing the fourth transmembrane region (TM4) of the VT2R with TM-IV of the β2-adrenergic receptor (β2AR). When VT2R/β2AR chimera and CRH-R1 were expressed in HeLa cells, heterodimerization was partly disrupted. Taken together, these data indicate that TM-IV of the VT2R may provide an important interface for effective receptor dimerization, suggesting that direct molecular interaction between VT2R and CRH-R1 receptors plays a role in mediating an enhanced interaction between these two receptors. Their interaction at the anterior pituitary level may potentiate the endocrine output of the avian HPA system.
Collapse
|
34
|
Kim JH, Kang SW, Kim YT, Kim SJ, Chung SE. Partial posterior hyaloidectomy for macular disorders. Eye (Lond) 2013; 27:946-51. [PMID: 23743531 DOI: 10.1038/eye.2013.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/16/2013] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the effect of partial posterior hyaloidectomy (PPH) in preventing iatrogenic retinal breaks related to the induction of a posterior vitreous detachment (IPVD). METHODS Fifty-nine patients who necessitated IPVD for an epiretinal membrane or macular hole were included in this prospective, interventional case series. Extensive removal of vitreous gel, close to the retina, was conducted before IPVD under 23 G (gauge)-vitrectomy system. The PPH involved the limited extent of IPVD and limited removal of the outermost vitreous cortex to an area slightly beyond the margin of the temporal major vascular arcade. The incidence of retinal breaks related to the surgery was compared with 57 eyes that had undergone conventional 23-G total vitrectomy accompanied by extensive IPVD using χ(2)-test. RESULTS Patients were followed-up for a mean of 14.3 months (6-30 months) after the surgery. The incidence of peripheral retinal breaks after the PPH was 3.4% (2/59 eyes), which was significantly lower than that in the eyes that underwent conventional 23 G vitrectomy (15.8%, 9/57 eyes, P=0.023) for the same disorders that required an IPVD. No patient complained of postoperative floaters, postoperatively. CONCLUSIONS PPH would be an efficient procedure to prevent iatrogenic peripheral retinal breaks related to an IPVD.
Collapse
|
35
|
Yoon H, Oh D, Park HC, Kang SW, Han Y, Lim DH, Paik SW. Predictive factors for gastroduodenal toxicity based on endoscopy following radiotherapy in patients with hepatocellular carcinoma. Strahlenther Onkol 2013; 189:541-6. [PMID: 23703401 DOI: 10.1007/s00066-013-0343-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/06/2013] [Indexed: 12/25/2022]
Abstract
PURPOSE The aim of this work was to determine predictive factors for gastroduodenal (GD) toxicity in hepatocellular carcinoma (HCC) patients who were treated with radiotherapy (RT). PATIENTS AND METHODS A total of 90 HCC patients who underwent esophagogastroduodenoscopy (EGD) before and after RT were enrolled. RT was delivered as 30-50 Gy (median 37.5 Gy) in 2-5 Gy (median 3.5 Gy) per fraction. All endoscopic findings were reviewed and GD toxicities related to RT were graded by the Common Toxicity Criteria for Adverse Events, version 3.0. The predictive factors for the ≥ grade 2 GD toxicity were investigated. RESULTS Endoscopic findings showed erosive gastritis in 14 patients (16 %), gastric ulcers in 8 patients (9 %), erosive duodenitis in 15 patients (17 %), and duodenal ulcers in 14 patients (16 %). Grade 2 toxicity developed in 19 patients (21 %) and grade 3 toxicity developed in 8 patients (9 %). V25 for stomach and V35 for duodenum (volume receiving a RT dose of more than x Gy) were the most predictive factors for ≥ grade 2 toxicity. The gastric toxicity rate at 6 months was 2.9 % for V25 ≤ 6.3 % and 57.1 % for V25 > 6.3 %. The duodenal toxicity rate at 6 months was 9.4 % for V35 ≤ 5.4 % and 45.9 % for V35 > 5.4 %. By multivariate analysis including the clinical factors, V25 for stomach and V35 for duodenum were the significant factors. CONCLUSION EGD revealed that GD toxicity is common following RT for HCC. V25 for the stomach and V35 for the duodenum were the significant factors to predict ≥ grade 2 GD toxicity.
Collapse
|
36
|
Selvam R, Jurkevich A, Kang SW, Mikhailova MV, Cornett LE, Kuenzel WJ. Distribution of the Vasotocin Subtype Four Receptor (VT4R) in the Anterior Pituitary Gland of the Chicken, Gallus gallus, and its Possible Role in the Avian Stress Response. J Neuroendocrinol 2013; 25:56-66. [PMID: 22849330 DOI: 10.1111/j.1365-2826.2012.02370.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/29/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022]
Abstract
The neurohormone arginine vasotocin (AVT) in non mammalian vertebrates is homologous to arginine vasopressin (AVP) in mammals. Its actions are mediated via G protein-coupled receptors that belong to the vasotocin/mesotocin family. Because of the known regulatory effects of nonapeptide hormones on anterior pituitary functions, receptor subtypes in that family have been proposed to be located in anterior pituitary cells. Recently, an avian vasotocin receptor subtype designated VT4R has been cloned, which shares 69% sequence homology with a human vasopressin receptor, the V1aR. In the present study, a polyclonal antibody to the VT4R was developed and validated to confirm its specificity to the VT4R. The antibody was used to test the hypothesis that the VT4R is present in the avian anterior pituitary and is specifically associated with certain cell types, where its expression is modulated by acute stress. Western blotting of membrane protein extracts from pituitary tissue, the use of HeLa cells transfected with the VT4R and peptide competition assays all confirmed the specificity of the antibody to the VT4R. Dual-labelling immunofluorescence microscopy was utilised to identify pituitary cell types that contained immunoreactive VT4R. The receptor was found to be widely distributed throughout the cephalic lobe but not in the caudal lobe of the anterior pituitary. Immunoreactive VT4R was associated with corticotrophs. Approximately 89% of immunolabelled corticotrophs were shown to contain the VT4R. The immunoreactive VT4R was not found in gonadotrophs, somatotrophs or lactotrophs. To determine a possible functional role of the VT4R and previously characterised VT2R, gene expression levels in the anterior pituitary were determined after acute immobilisation stress by quantitative reverse transcriptase-polymerase chain reaction. The results showed a significant increase in plasma corticosterone levels (three- to four-fold), a significant reduction of VT4R mRNA and an increase of VT2R mRNA (P < 0.05) in acutely immobilised chicks compared to controls. The data suggest a role of the VT4R in the avian stress response.
Collapse
|
37
|
Kim DK, Nam BY, Li JJ, Park JT, Lee SH, Kim DH, Kim JY, Kang HY, Han SH, Yoo TH, Han DS, Kang SW. Translationally controlled tumour protein is associated with podocyte hypertrophy in a mouse model of type 1 diabetes. Diabetologia 2012; 55:1205-17. [PMID: 22311416 DOI: 10.1007/s00125-012-2467-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 12/31/2011] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Translationally controlled tumour protein (TCTP) is thought to be involved in cell growth by regulating mTOR complex 1 (mTORC1) signalling. As diabetes characteristically induces podocyte hypertrophy and mTORC1 has been implicated in this process, TCTP may have a role in the pathogenesis of diabetes-induced podocyte hypertrophy. METHODS We investigated the effects and molecular mechanisms of TCTP in diabetic mice and in high glucose-stimulated cultured podocytes. To characterise the role of TCTP, we conducted lentivirus-mediated gene silencing of TCTP both in vivo and in vitro. RESULTS Glomerular production of TCTP was significantly higher in streptozotocin induced-diabetic DBA/2J mice than in control animals. Double-immunofluorescence staining for TCTP and synaptopodin revealed that podocyte was the principal cell responsible for this increase. TCTP knockdown attenuated the activation of mTORC1 downstream effectors and the overproduction of cyclin-dependent kinase inhibitors (CKIs) in diabetic glomeruli, along with a reduction in proteinuria and a decrease in the sizes of podocytes as well as glomeruli. In addition, knockdown of TCTP in db/db mice prevented the development of diabetic nephropathy, as indicated by the amelioration of proteinuria, mesangial expansion, podocytopenia and glomerulosclerosis. In accordance with the in vivo data, TCTP inhibition abrogated high glucose-induced hypertrophy in cultured podocytes, which was accompanied by the downregulation of mTORC1 effectors and CKIs. CONCLUSIONS/INTERPRETATION These findings suggest that TCTP might play an important role in the process of podocyte hypertrophy under diabetic conditions via the regulation of mTORC1 activity and the induction of cell-cycle arrest.
Collapse
|
38
|
Song S, Choi K, Ryu SW, Kang SW, Choi C. TRAIL promotes caspase-dependent pro-inflammatory responses via PKCδ activation by vascular smooth muscle cells. Cell Death Dis 2011; 2:e223. [PMID: 22048166 PMCID: PMC3223690 DOI: 10.1038/cddis.2011.103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is best known for its selective cytotoxicity against transformed tumor cells. Most non-transformed primary cells and several cancer cell lines are not only resistant to death receptor-induced apoptosis, but also subject to inflammatory responses in a nuclear factor-κB (NF-κB)-dependent manner. Although the involvement of TRAIL in a variety of vascular disorders has been proposed, the exact molecular mechanisms are unclear. Here, we aimed to delineate the role of TRAIL in inflammatory vascular response. We also sought possible molecular mechanisms to identify potential targets for the prevention and treatment of post-angioplastic restenosis and atherosclerosis. Treatment with TRAIL increased the expression of intercellular adhesion molecule-1 by primary human vascular smooth muscle cells via protein kinase C (PKC)δ and NF-κB activation. Following detailed analysis using various PKCδ mutants, we determined that PKCδ activation was mediated by caspase-dependent proteolysis. The protective role of PKCδ was further confirmed in post-traumatic vascular remodeling in vivo. We propose that the TRAIL/TRAIL receptor system has a critical role in the pathogenesis of inflammatory vascular disorders by transducing pro-inflammatory signals via caspase-mediated PKCδ cleavage and subsequent NF-κB activation.
Collapse
|
39
|
Thayananuphat A, Youngren OM, Kang SW, Bakken T, Kosonsiriluk S, Chaiseha Y, El Halawani ME. Dopamine and mesotocin neurotransmission during the transition from incubation to brooding in the turkey. Horm Behav 2011; 60:327-35. [PMID: 21741977 DOI: 10.1016/j.yhbeh.2011.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022]
Abstract
We investigated the neuroendocrine changes involved in the transition from incubating eggs to brooding of the young in turkeys. Numbers of mesotocin (MT; the avian analog of mammalian oxytocin) immunoreactive (ir) neurons were higher in the nucleus paraventricularis magnocellularis (PVN) and nucleus supraopticus, pars ventralis (SOv) of late stage incubating hens compared to the layers. When incubating and laying hens were presented with poults, all incubating hens displayed brooding behavior. c-fos mRNA expression was found in several brain areas in brooding hens. The majority of c-fos mRNA expression by MT-ir neurons was observed in the PVN and SOv while the majority of c-fos mRNA expression in dopaminergic (DAergic) neurons was observed in the ventral part of the nucleus preopticus medialis (POM). Following intracerebroventricular injection of DA or oxytocin (OT) receptor antagonists, hens incubating eggs were introduced to poults. Over 80% of those injected with vehicle or the D1 DA receptor antagonist brooded poults, while over 80% of those receiving the D2 DA receptor antagonist or the OT receptor antagonist failed to brood the poults. The D2 DA/OT antagonist groups also displayed less c-fos mRNA in the dorsal part of POM and the medial part of the bed nucleus of the stria terminalis (BSTM) areas than did the D1 DA/vehicle groups. These data indicate that numerous brain areas are activated when incubating hens initially transition to poult brooding behavior. They also indicate that DAergic, through its D2 receptor, and MTergic systems may play a role in regulating brooding behaviors in birds.
Collapse
|
40
|
Lee DY, Song SB, Moon JY, Jeong KH, Park SJ, Kim HJ, Kang SW, Lee SH, Kim YH, Chung JH, Ihm CG, Lee TW. Association between interleukin-3 gene polymorphism and acute rejection after kidney transplantation. Transplant Proc 2011; 42:4501-4. [PMID: 21168724 DOI: 10.1016/j.transproceed.2010.09.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute rejection (AR) after kidney transplantation resulting from alloimmune responses has a negative effect on graft survival. AR is mainly caused by T-cell immune responses activated by cytokines, including interleukin (IL)-2, -4, and -7. Many reports have shown that single nucleotide polymorphisms (SNPs) of these cytokines can affect the occurrence of AR. IL-3, which is secreted by activated T cells, can mediate AR. Our study sought to investigate the association between SNPs of the IL3 gene and the occurrence of an AR episode (ARE). METHODS We analyzed 3 SNPs of IL3 (rs181781, rs2073506, and rs40401) among 330 renal recipients, 60 of whom had developed an ARE. SNPs of the IL3 gene, including 1 exonic SNP (rs40401) and 2 regulatory thought to be promoter SNPs (rs181781 and rs2073506). RESULTS The genotypes of 60 ARE subjects and the 270 patients without AR demonstrated a significant relationship between genotype frequencies and the SNPs. The occurrence of an ARE was associated with rs181781 (P = .041, dominant model), rs2073506 (P = .009, codominant 1 model; P = .003, dominant model), and rs40401 (P = .014, recessive model). Among haplotypes, AAT showed a significant association with ARE. (P = .0033). CONCLUSION Our results suggest that IL3 gene polymorphisms were associated with this event.
Collapse
|
41
|
Kang SW, Park HJ, Ban JY, Chung JH, Chun GS, Cho JO. Effects of nicotine on apoptosis in human gingival fibroblasts. Arch Oral Biol 2011; 56:1091-7. [PMID: 21497792 DOI: 10.1016/j.archoralbio.2011.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/25/2011] [Accepted: 03/26/2011] [Indexed: 02/03/2023]
Abstract
AIM Cigarette smoke is a complex mixture of more than 4700 chemical compounds including free radicals and oxidants and it is a world widely known problem to health. Nicotine is the major compound of tobacco and known as the cause of gingivitis and periodontitis. It induces intracellular oxidative stress recognized as the important agent in the damage of biological molecules. The aim of this study is to clarify the cytotoxic pathway of nicotine in human gingival fibroblasts (HGFs). METHODS Human gingival fibroblasts stimulated by nicotine were used as an in vitro model. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect cell viability and reactive oxygen species (ROS) generation was assessed with 2,7-dichlorofluoroscein diacetate (DCF-DA). Morphological change was detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL) assay, stained with 4,6-diamidino-2-phenylindole (DAPI). To delineate the roles of extracellular signal-regulated kinase (ERK), P38 and c-Jun N-terminal kinase (JNK), Western blot and caspase-3 (CASP3) activity assay were performed. RESULTS Exposure of the human gingival fibroblasts to nicotine reduced cell viability by time and dose dependent and increased the generation of ROS. It also showed morphological evidence of increased apoptosis, resulted in transient activation of JNK and ERK concomitant with activation of P38, and stimulated apoptosis as evidenced by CASP3 activation and Poly ADP ribose polymerase (PARP) cleavage. CONCLUSION These results suggest that nicotine induces apoptosis through the ROS generation and CASP3 dependent pathways in HGFs.
Collapse
|
42
|
Kang SW, Yoon I, Lee HW, Cho J. Association between AMELX polymorphisms and dental caries in Koreans. Oral Dis 2010; 17:399-406. [PMID: 21114591 DOI: 10.1111/j.1601-0825.2010.01766.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Dental caries is greatly influenced disease by environmental factors, but recently there are increasing evidences for a genetic component in caries susceptibility. AMELX is the gene coding amelogenin, which is the most important factor for normal enamel development. The aim of this study was to examine the relationship between dental caries and single nucleotide polymorphisms (SNPs) in AMELX. SUBJECTS AND METHODS For this study, we used DNA samples collected from 120 unrelated individuals older than 12 years of age. All of them were examined for their oral and dental status under the WHO recommended criteria, and clinical information such as DMFT and DMFS were evaluated. Individuals whose DMFT and DMFS index lower than 2 were designated 'very low caries experience' and higher than 3 were designated 'higher caries experience'. Genomic DNA was extracted from hair samples, and single nucleotide polymorphisms of AMELX were genotyped. Genotyping of three SNPs (rs17878486, rs5933871, rs5934997, intron) in AMELX gene was determined by direct sequencing and analyzed with SNPStats. RESULTS There were significant associations between rs5933871 and rs5934997 SNP and caries susceptibility in the water fluoridation group. CONCLUSIONS These results suggest that SNPs of AMELX might be associated with dental caries susceptibility in Korean population.
Collapse
|
43
|
Lee JS, Park HK, Suh JS, Hahn WH, Kang SW, Park HJ, Kim MJ, Chung JH, Cho BS. Toll-like receptor 1 gene polymorphisms in childhood IgA nephropathy: a case-control study in the Korean population. Int J Immunogenet 2010; 38:133-8. [PMID: 21108742 DOI: 10.1111/j.1744-313x.2010.00978.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toll-like receptors (TLRs) are innate immune mediators that stimulate nuclear factor kappa B and the inflammatory cytokines. TLR1 is expressed in renal tubular epithelial cells when the kidney is injured, but the role of TLR1 gene in glomerulonephritis has not been clearly elucidated. We aimed to investigate the association of TLR1 polymorphisms with immunoglobulin A nephropathy (IgAN) in children. One hundred and ninety pediatric patients with biopsy-proven IgAN and 283 healthy control subjects were enrolled. Two single nucleotide polymorphisms of TLR1 gene [rs4833095 (missense, Asn248Ser) and rs5743557 (promoter, -414C/T)] were selected and genotyped by direct sequencing. For rs4833095, the C/T genotype in the codominant model (vs. the T/T genotype) [odds ratio (OR) = 2.11, 95% confidence interval (CI): 1.21-3.69, P = 0.009] and the genotype containing C allele (C/T and C/C) in the dominant model (vs. the T/T genotype) (OR = 1.97, 95% CI: 1.16-3.34, P = 0.012) were associated with an increased risk of IgAN. For rs5743557, the T/T genotype in the codominant model (vs. the C/C genotype) (OR = 1.74, 95% CI: 1.02-2.96, P = 0.041) appeared to be associated with IgAN risk. In haplotype analysis, the CT haplotype revealed an association with IgAN (codominant model, OR = 1.38, 95% CI: 1.06-1.80, P = 0.017; dominant model, OR = 1.76, 95% CI: 1.16-2.67, P = 0.008). After Bonferroni correction, the association of the genotypes of rs4833095 and the CT haplotype with IgAN risk remained significant. These findings suggest that TLR1 gene polymorphisms may affect IgAN susceptibility in Korean children.
Collapse
|
44
|
Kang SW, Leclerc B, Kosonsiriluk S, Mauro LJ, Iwasawa A, El Halawani ME. Melanopsin expression in dopamine-melatonin neurons of the premammillary nucleus of the hypothalamus and seasonal reproduction in birds. Neuroscience 2010; 170:200-13. [PMID: 20620198 DOI: 10.1016/j.neuroscience.2010.06.082] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/27/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022]
Abstract
Melanopsin (OPN4) is a photoreceptive molecule regulating circadian systems in mammals. Previous studies from our laboratory have shown that co-localized dopamine-melatonin (DA-MEL) neurons in the hypothalamic premammillary nucleus (PMM) are putatively photosensitive and exhibit circadian rhythms in DAergic and MELergic activities. This study investigates turkey OPN4x (tOPN4x) mRNA distribution in the hypothalamus and brainstem, and characterizes its expression in PMM DA-MEL neurons, using in situ hybridization (ISH), immunocytochemistry (ICC), double-label ISH/ICC, and real time-PCR. The mRNA encoding tOPN4x was found in anatomically discrete areas in or near the hypothalamus and the brainstem, including nucleus preopticus medialis (POM), nucleus septalis lateralis (SL), PMM and the pineal gland. Double ICC, using tyrosine hydroxylase (TH, the rate limiting enzyme in DA synthesis)-and OPN4x antibodies, confirmed the existence of OPN4x protein in DA-MEL neurons. Also, tOPN4x mRNA expression was verified with double ISH/ICC using tOPN4x mRNA and TH immunoreactivity. PMM and pineal gland tOPN4x mRNA expression levels were diurnally high during the night and low during the day. A light pulse provided to short day photosensitive hens during the photosensitive phase at night significantly down-regulated tOPN4x expression. The expression level of tOPN4x mRNA in PMM DA-MEL neurons of photorefractory hens was significantly lower as compared with that of short or long day photosensitive hens. The results implicate tOPN4x in hypothalamic PMM DA-MEL neurons as an important component of the photoreceptive system regulating reproductive activity in temperate zone birds.
Collapse
|
45
|
Jung MY, Kang SW, Kim SK, Kim HJ, Yun DH, Yim SV, Hong SJ, Chung JH. The interleukin-1 family gene polymorphisms in Korean patients with rheumatoid arthritis. Scand J Rheumatol 2010; 39:190-6. [DOI: 10.3109/03009740903447028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Leclerc B, Kang SW, Mauro LJ, Kosonsiriluk S, Chaiseha Y, El Halawani ME. Photoperiodic modulation of clock gene expression in the avian premammillary nucleus. J Neuroendocrinol 2010; 22:119-28. [PMID: 20002961 DOI: 10.1111/j.1365-2826.2009.01942.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The premammillary nucleus (PMM) has been shown to contain a daily endogenous dual-oscillation in dopamine (DA)/melatonin (MEL) as well as c-fos mRNA expression that is associated with the daily photo-inducible phase of gonad growth in turkeys. In the present study, the expression of clock genes (Bmal1, Clock, Cry1, Cry2, Per2 and Per3) in the PMM was determined under short (8 : 16 h light/dark cycle) and long (16 : 8 h light/dark cycle) photoperiods relative to changes associated with the diurnal rhythm of DA and MEL. Constant darkness (0 : 24 h light/dark cycle) was used to assess the endogenous response of clock genes. In addition, light pulses were given at zeitgeber time (ZT) 8, 14 and 20 to ascertain whether clock gene expression is modulated by light pulse stimulation and therefore has a daily phase-related response. In the PMM, the temporal clock gene expression profiles were similar under short and long photoperiods, except that Per3 gene was phase-delayed by approximately 16 h under long photoperiod. In addition, Cry1 and Per3 genes were light-induced at ZT 14, the photosensitive phase for gonad recrudescence, whereas the Clock gene was repressed. Gene expression in established circadian pacemakers, the visual suprachiasmatic nucleus (vSCN) and the pineal, was also determined. Clock genes in the pineal gland were rhythmic under both photoperiods, and were not altered after light pulses at ZT 14, which suggests that pineal clock genes may not be associated with the photosensitive phase and reproductive activities. In the vSCN, clock gene expression was phase-shifted depending on the photoperiod, with apexes at night under short day length and during the day under long day length. Furthermore, light pulses at ZT 14 induced the Per2 gene, whereas it repressed the Bmal1 gene. Taken together, the changes in clock gene expression observed within the PMM were unique compared to the pineal and vSCN, and were induced by long photoperiod and light during the daily photosensitive phase; stimuli that are also documented to promote reproductive activity. These results show that Cry1 and Per3 are involved in the photic response associated with the PMM neuronal activation and are coincident with an essential circadian mechanism (photosensitive phase) controlling the reproductive neuroendocrine system.
Collapse
|
47
|
Chaiseha Y, Kang SW, Leclerc B, Kosonsiriluk S, Sartsoongnoen N, El Halawani ME. Serotonin receptor subtypes influence prolactin secretion in the turkey. Gen Comp Endocrinol 2010; 165:170-5. [PMID: 19540238 DOI: 10.1016/j.ygcen.2009.06.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 06/11/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
Abstract
Serotonin (5-HT) stimulation of prolactin (PRL) secretion is mediated through the dopaminergic (DAergic) system, with 5-HT ligands having no direct effect on pituitary PRL release. Infusion of 5-HT into the third ventricle (ICV) or electrical stimulation (ES) of the medial preoptic area (POM) or the ventromedial nucleus (VMN) induces an increase in circulating PRL in the turkey. These increases in PRL do not occur when a selective antagonist blocks the D(1) dopamine (DA) receptors in the infundibular area (INF). In this study, the ICV infusion of (R)(-)-DOI hydrochloride (DOI), a selective 5-HT(2A) eceptor agonist, caused PRL to increase. Pretreatment with Ketanserin tartrate salt (KETAN), a selective 5-HT(2A) receptor antagonist, blocked DOI-induced PRL secretion, attesting to the specificity of the response. DOI-induced PRL secretion was prevented when the D(1) DA receptors in the INF were blocked by the D(1) DA receptor antagonist, R(+)-SCH-23390 hydrochloride microinjection, suggesting that the DAergic activation of the vasoactive intestinal peptide (VIP)/PRL system is mediated by a stimulatory 5-HT(2A) receptor subtype. The DOI-induced PRL increase did not occur when (+/-)-8-OH-DPAT (DPAT) was concurrently infused. DPAT is a 5-T(1A) receptor agonist which appears to mediate the inhibitory influence of 5-HT on PRL secretion. When DPAT was microinjected directly into the VMN, it blocked the PRL release affected by ES in the POM. These data suggested that when 5-HT(2A) receptors are activated, they influence the release of DA to the INF. When 5-HT(1A) receptors are stimulated, they somehow inhibit the PRL-releasing actions of 5-HT(2A) receptors. This inhibition could take place centrally, or it could occur postsynaptically at the pituitary level. It is known that D(2) DA receptors in the pituitary antagonize PRL-releasing effect of VIP. A release of DA to the pituitary, initiated by 5-HT(1A) receptors, could effectively inhibit PRL secretion.
Collapse
|
48
|
Choi K, Ryu SW, Song S, Choi H, Kang SW, Choi C. Caspase-dependent generation of reactive oxygen species in human astrocytoma cells contributes to resistance to TRAIL-mediated apoptosis. Cell Death Differ 2009; 17:833-45. [PMID: 19876066 DOI: 10.1038/cdd.2009.154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF family of cytokines, causes apoptosis by caspase activation in various cell types, particularly in transformed cells. Numerous types of tumors are relatively resistant to TRAIL-induced cytotoxicity; however, the reasons for this are not yet fully understood. We report here a new signal transduction pathway involving protein kinase Cdelta (PKCdelta), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS), that inhibits caspase-dependent cell death induced by TRAIL ligation in human malignant astrocytoma cells. In our experiments, TRAIL ligation-induced generation of intracellular ROS through caspase-dependent proteolytic activation of PKCdelta and subsequent activation of the NOX4 complex. Suppression of intracellular ROS induction using various pharmacological inhibitors or PKCdelta- or NOX4-specific RNA interference enhanced the enzymatic activity of caspase-3 by blocking the oxidative modification of its catalytic cysteine residue, resulting in marked augmentation of TRAIL-mediated cell death. These results collectively indicate that TRAIL-induced activation of PKCdelta and NOX4 can modulate TRAIL-mediated apoptosis by promoting oxidative modification of active caspase-3 in a negative-feedback manner.
Collapse
|
49
|
El Halawani ME, Kang SW, Leclerc B, Kosonsiriluk S, Chaiseha Y. Dopamine-melatonin neurons in the avian hypothalamus and their role as photoperiodic clocks. Gen Comp Endocrinol 2009; 163:123-7. [PMID: 19114045 DOI: 10.1016/j.ygcen.2008.11.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 11/26/2008] [Accepted: 11/27/2008] [Indexed: 11/20/2022]
Abstract
A timing mechanism in the brain governs reproduction in seasonally breeding temperate zone birds by triggering gonad development in response to long days in the spring. The neural mechanism(s) responsible for the timing and induction of reproductive activity by this clock are unknown. Utilizing in situ hybridization, immunocytochemistry and reverse transcriptase-polymerase chain reaction techniques, a group of dopamine (DA) neurons in the premammillary nucleus (PMM) of the caudal turkey hypothalamus that synthesize and colocalize both DA and melatonin (MEL) were identified. In addition, these neurons are found to express clock genes and the circadian photoreceptor melanopsin. DA-MEL neurons reach threshold activation (c-fos expression) when a light pulse is given during the photosensitive phase. This is associated with increases in the number of gonadotropin releasing hormone-I (GnRH-I) neurones activated, as well as an up-regulation of GnRH-I mRNA expression. The expression of tyrosine hydroxylase (TH; the rate limiting enzyme in DA biosynthesis) and tryptophan hydroxylase 1, (TPH1; the first enzyme in MEL biosynthesis) and consequently DAergic-MELergic activities are associated with the daily light-dark cycle. TPH1 mRNA expression shows low levels during the light phase and high levels during the dark phase of the light/dark illumination cycle and is 180 degrees out of phase with the rhythm of TH mRNA expression. Hypothalamic DA-MEL neurons may constitute a critical cellular process involved in the generation and expression of seasonal reproductive rhythms and suggests a previously undescribed mechanism(s) by which light signals gain access to neural targets.
Collapse
|
50
|
Kang SW, Chung SE, Shin WJ, Lee JH. Polypoidal choroidal vasculopathy and late geographic hyperfluorescence on indocyanine green angiography. Br J Ophthalmol 2009; 93:759-64. [DOI: 10.1136/bjo.2008.145862] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|