26
|
Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday GK, Gardner G, Roux SJ. Role for apyrases in polar auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1985-95. [PMID: 23071251 PMCID: PMC3510125 DOI: 10.1104/pp.112.202887] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/10/2012] [Indexed: 05/20/2023]
Abstract
Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.
Collapse
|
27
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
|
28
|
Clark GB, Morgan RO, Fernandez MP, Roux SJ. Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. THE NEW PHYTOLOGIST 2012; 196:695-712. [PMID: 22994944 DOI: 10.1111/j.1469-8137.2012.04308.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/29/2012] [Indexed: 05/04/2023]
Abstract
Annexins are an homologous, structurally related superfamily of proteins known to associate with membrane lipid and cytoskeletal components. Their involvement in membrane organization, vesicle trafficking and signaling is fundamental to cellular processes such as growth, differentiation, secretion and repair. Annexins exist in some prokaryotes and all eukaryotic phyla within which plant annexins represent a monophyletic clade of homologs descended from green algae. Genomic, proteomic and transcriptomic approaches have provided data on the diversity, cellular localization and expression patterns of different plant annexins. The availability of 35 complete plant genomes has enabled systematic comparative analysis to determine phylogenetic relationships, characterize structures and observe functional specificity between and within individual subfamilies. Short amino termini and selective erosion of the canonical type 2 calcium coordinating sites in domains 2 and 3 are typical of plant annexins. The convergent evolution of alternate functional motifs such as 'KGD', redox-sensitive Cys and hydrophobic Trp/Phe residues argues for their functional relevance and contribution to mechanistic diversity in plant annexins. This review examines recent findings and advances in plant annexin research with special focus on their structural diversity, cellular and molecular interactions and their potential integrated functions in the broader context of physiological responses.
Collapse
|
29
|
Jami SK, Clark GB, Ayele BT, Roux SJ, Kirti PB. Identification and characterization of annexin gene family in rice. PLANT CELL REPORTS 2012; 31:813-825. [PMID: 22167239 DOI: 10.1007/s00299-011-1201-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/24/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Plant annexins are Ca(2+)-dependent phospholipid-binding proteins and are encoded by multigene families. They are implicated in the regulation of plant development as well as protection from drought and other stresses. They are well characterized in Arabidopsis, however no such characterization of rice annexin gene family has been reported thus far. With the availability of the rice genome sequence information, we have identified ten members of the rice annexin gene family. At the protein level, they share 16-64% identity with predicted molecular masses ranging from 32 to 40 kDa. Phylogenetic analysis of rice annexins together with annexins from other monocots led to their classification into five different orthologous groups and share similar motif patterns in their protein sequences. Expression analysis by real-time RT-PCR revealed differential temporal and spatial regulation of these genes. The rice annexin genes are also found to be regulated in seedling stage by various abiotic stressors including salinity, drought, heat and cold. Additionally, in silico analysis of the putative upstream sequences was analyzed for the presence of stress-responsive cis-elements. These results provide a basis for further functional characterization of specific rice annexin genes at the tissue/developmental level and in response to abiotic stresses.
Collapse
|
30
|
Clark G, Roux SJ. Apyrases, extracellular ATP and the regulation of growth. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:700-6. [PMID: 21855397 DOI: 10.1016/j.pbi.2011.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/15/2011] [Accepted: 07/23/2011] [Indexed: 05/07/2023]
Abstract
Although no definitive receptor for extracellular ATP (eATP) has been identified in plants, there is now stronger physiological evidence that the effects of eATP on plant growth are mediated by a receptor, or, as in animals, by multiple receptors. Recent papers clarify how extracellular nucleotides induce changes in [Ca(2+)](cyt), and the production of nitric oxide (NO) and reactive oxygen species. They document links between eATP signaling and the synthesis or transport of hormones, and they reveal that applied nucleotides can regulate the aperture of stomates, which release ATP when stimulated by light and hormones. Ectoapyrases (ecto-nucleoside triphosphate-diphosphohydrolase) help control both the diverse signaling changes and downstream growth changes induced by extracellular nucleotides by limiting their concentration in the extracellular matrix (ECM).
Collapse
|
31
|
Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres J, Tang W, Kim J, Roux SJ. Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1740-53. [PMID: 21636723 PMCID: PMC3149927 DOI: 10.1104/pp.111.174466] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/31/2011] [Indexed: 05/19/2023]
Abstract
This study investigates the role of extracellular nucleotides and apyrase enzymes in regulating stomatal aperture. Prior data indicate that the expression of two apyrases in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, is strongly correlated with cell growth and secretory activity. Both are expressed strongly in guard cell protoplasts, as determined by reverse transcription-polymerase chain reaction and immunoblot analyses. Promoter activity assays for APY1 and APY2 show that expression of both apyrases correlates with conditions that favor stomatal opening. Correspondingly, immunoblot data indicate that APY expression in guard cell protoplasts rises quickly when these cells are moved from darkness into light. Both short-term inhibition of ectoapyrase activity by polyclonal antibodies and long-term suppression of APY1 and APY2 transcript levels significantly disrupt normal stomatal behavior in light. Stomatal aperture shows a biphasic response to applied adenosine 5'-[γ-thio]triphosphate (ATPγS) or adenosine 5'-[β-thio] diphosphate, with lower concentrations inducing stomatal opening and higher concentrations inducing closure. Equivalent concentrations of adenosine 5'-O-thiomonophosphate have no effect on aperture. Two mammalian purinoceptor inhibitors block ATPγS- and adenosine 5'-[β-thio] diphosphate-induced opening and closing and also partially block the ability of abscisic acid to induce stomatal closure and of light to induce stomatal opening. Treatment of epidermal peels with ATPγS induces increased levels of nitric oxide and reactive oxygen species, and genetically suppressing the synthesis of these agents blocks the effects of nucleotides on stomatal aperture. A luciferase assay indicates that treatments that induce either the closing or opening of stomates also induce the release of ATP from guard cells. These data favor the novel conclusion that ectoapyrases and extracellular nucleotides play key roles in regulating stomatal functions.
Collapse
|
32
|
Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM. Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. PLANTA 2011. [PMID: 21234599 DOI: 10.1007/s00425-010-1343-1342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca(2+)) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time. These experiments revealed that the direction of the gravity-dependent polar calcium current is reversed in less than 25 s when the cells are inverted, and that changes in the magnitude of the calcium current parallel rapidly changing g-forces during parabolic flight on the NASA C-9 aircraft. The data also revealed a hysteresis in the response of cells in the transition from 2g to micro-g in comparison to cells in the micro-g to 2-g transition, a result consistent with a role for mechanosensitive ion channels in the gravity response. The calcium current is suppressed by either nifedipine (calcium-channel blocker) or eosin yellow (plasma membrane calcium pump inhibitor). Nifedipine disrupts gravity-directed cell polarity, but not spore germination. These results indicate that gravity perception in single plant cells may be mediated by mechanosensitive calcium channels, an idea consistent with some previously proposed models of plant gravity perception.
Collapse
|
33
|
Salmi ML, ul Haque A, Bushart TJ, Stout SC, Roux SJ, Porterfield DM. Changes in gravity rapidly alter the magnitude and direction of a cellular calcium current. PLANTA 2011; 233:911-20. [PMID: 21234599 DOI: 10.1007/s00425-010-1343-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 12/21/2010] [Indexed: 05/21/2023]
Abstract
In single-celled spores of the fern Ceratopteris richardii, gravity directs polarity of development and induces a directional, trans-cellular calcium (Ca(2+)) current. To clarify how gravity polarizes this electrophysiological process, we measured the kinetics of the cellular response to changes in the gravity vector, which we initially estimated using the self-referencing calcium microsensor. In order to generate more precise and detailed data, we developed a silicon microfabricated sensor array which facilitated a lab-on-a-chip approach to simultaneously measure calcium currents from multiple cells in real time. These experiments revealed that the direction of the gravity-dependent polar calcium current is reversed in less than 25 s when the cells are inverted, and that changes in the magnitude of the calcium current parallel rapidly changing g-forces during parabolic flight on the NASA C-9 aircraft. The data also revealed a hysteresis in the response of cells in the transition from 2g to micro-g in comparison to cells in the micro-g to 2-g transition, a result consistent with a role for mechanosensitive ion channels in the gravity response. The calcium current is suppressed by either nifedipine (calcium-channel blocker) or eosin yellow (plasma membrane calcium pump inhibitor). Nifedipine disrupts gravity-directed cell polarity, but not spore germination. These results indicate that gravity perception in single plant cells may be mediated by mechanosensitive calcium channels, an idea consistent with some previously proposed models of plant gravity perception.
Collapse
|
34
|
Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. PLANT MOLECULAR BIOLOGY 2010; 74:423-35. [PMID: 20820881 DOI: 10.1007/s11103-010-9683-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/24/2010] [Indexed: 05/20/2023]
Abstract
Root hairs secrete ATP as they grow, and extracellular ATP and ADP can trigger signaling pathways that regulate plant cell growth. In several plant tissues the level of extracellular nucleotides is limited in part by ectoapyrases (ecto-NTPDases), and the growth of these tissues is strongly influenced by their level of ectoapyrase expression. Both chemical inhibition of ectoapyrase activity and suppression of the expression of two ectoapyrase enzymes by RNAi in Arabidopsis resulted in inhibition of root hair growth. As assayed by a dose-response curve, different concentrations of the poorly hydrolysable nucleotides, ATPγS and ADPβS, could either stimulate (at 7.5-25 μM) or inhibit (at ≥ 150 μM) the growth rate of root hairs in less than an hour. Equal amounts of AMPS, used as a control, had no effect on root hair growth. Root hairs of nia1nia2 mutants, which are suppressed in nitric oxide (NO) production, and of atrbohD/F mutants, which are suppressed in the production of H(2)O(2), did not show growth responses to applied nucleotides, indicating that the growth changes induced by these nucleotides in wild-type plants were likely transduced via NO and H(2)O(2) signals. Consistent with this interpretation, treatment of root hairs with different concentrations of ATPγS induced different accumulations of NO and H(2)O(2) in root hair tips. Two mammalian purinoceptor antagonists also blocked the growth responses induced by extracellular nucleotides, suggesting that they were initiated by a receptor-based mechanism.
Collapse
|
35
|
Roux SJ, McEntire K, Slocum RD, Cedel TE, Hale CC. Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats. Proc Natl Acad Sci U S A 2010; 78:283-7. [PMID: 16592951 PMCID: PMC319037 DOI: 10.1073/pnas.78.1.283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have indicated that phytochrome regulates Ca(2+) fluxes across the plasma membrane of plant cells. In this study we investigated whether phytochrome can also regulate such fluxes across mitochondrial membranes, using the Ca(2+)-sensitive dye murexide to monitor the uptake and release of Ca(2+) by mitochondria. The results showed that Ca(2+) fluxes in these organelles could be photoreversibly altered, red light diminishing the net uptake rate and far-red light restoring this rate to its dark control level. Treatment of the mitochondria with ruthenium red blocked their Ca(2+) uptake. In the presence of this inhibitor, red light induced a net efflux of Ca(2+) from the mitochondria, and subsequent far-red light reduced this efflux to nearly zero, the dark control level. Light-induced rate changes in Ca(2+) flux, both with and without the inhibitor, persisted for several minutes in the dark and remained photoreversible through several irradiations for as long as 30 min. The purity of the mitochondrial preparation was judged to be about 80% by electron microscopic morphometry; most of the phytochrome present was localized on the mitochondria in the preparation by using immunocytochemical methods. Taken together with previous findings, the results suggest that red light activation of phytochrome would initiate an increase in the cytosolic Ca(2+) concentration. The results are integrated with the fact that calmodulin is a component of plant cell cytoplasms to construct a model postulating that phytochrome directs photomorphogenesis in part through its regulation of Ca(2+) and calmodulin-controlled enzyme activities.
Collapse
|
36
|
Georgevich G, Cedel TE, Roux SJ. Use of I-labeled phytochrome to quantitate phytochrome binding to membranes of Avena sativa. Proc Natl Acad Sci U S A 2010; 74:4439-43. [PMID: 16592450 PMCID: PMC431958 DOI: 10.1073/pnas.74.10.4439] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purified oat phytochrome was labeled with (125)I without altering the photoreversibility or absorbance properties of the pigment. The radiolabeled phytochrome was used in experiments in vitro to quantitate the binding of the pigment to both crude and purified membrane preparations from oat tissue. After the membranes were allowed to react with (125)I-labeled phytochrome, washed free of unbound material, and pelleted, they were found to have significant levels of radioactivity bound to them. Qualitative identification of phytochrome as the bound radioactive species was confirmed by autoradiography of sodium dodecyl sulfate gels after electrophoresis of the proteins contained in the washed membranes. Data supporting the specificity of the binding are that the binding shows saturation kinetics and that unlabeled phytochrome, but not bovine serum albumin, will competitively inhibit the binding of labeled phytochrome. This technique permits the detection of less than a nanogram of phytochrome and provides a new method for quantifying bound phytochrome that is independent of the spectral detectability of the pigment. It should be useful in elucidating the nature of phytochrome attachment to cellular membranes.
Collapse
|
37
|
Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. PLANT PHYSIOLOGY 2010; 152:1073-83. [PMID: 20018604 PMCID: PMC2815863 DOI: 10.1104/pp.109.147637] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/08/2009] [Indexed: 05/20/2023]
Abstract
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPgammaS and ADPbetaS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5'-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPgammaS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway.
Collapse
|
38
|
Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2129-38. [PMID: 19363208 PMCID: PMC2682505 DOI: 10.1093/jxb/erp091] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.
Collapse
|
39
|
Salmi ML, Roux SJ. Gene expression changes induced by space flight in single-cells of the fern Ceratopteris richardii. PLANTA 2008; 229:151-9. [PMID: 18807069 DOI: 10.1007/s00425-008-0817-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/03/2008] [Indexed: 05/10/2023]
Abstract
This work describes a rare high-throughput evaluation of gene expression changes induced by space flight in a single plant cell. The cell evaluated is the spore of the fern Ceratopteris richardii, which exhibits both perception and response to gravity. cDNA microarray and Q RT-PCR analysis of spores germinating in microgravity onboard NASA space shuttle flight STS-93 revealed changes in the mRNA expression of roughly 5% of genes analyzed. These gene expression changes were compared with gene expression changes that occur during gravity perception and response in animal cells and multicellular plants. Our data contribute to a better understanding of the impact of space flight conditions, including microgravity, on cellular growth and development, and provide insights into the adaptive strategies of individual cells in response to these conditions.
Collapse
|
40
|
Torres J, Rivera A, Clark G, Roux SJ. PARTICIPATION OF EXTRACELLULAR NUCLEOTIDES IN THE WOUND RESPONSE OF DASYCLADUS VERMICULARIS AND ACETABULARIA ACETABULUM (DASYCLADALES, CHLOROPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:1504-11. [PMID: 27039864 DOI: 10.1111/j.1529-8817.2008.00602.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
As assayed by fluorescent reporter dyes, nitric oxide (NO) and H2 O2 , two downstream signaling agents induced by wounding in the alga Dasycladus vermicularis (Scop.) Krasser, can also be induced in unwounded Dasycladus cells by μM Adenosine 5'[γ-thio]triphosphate (ATPγS) and Adenosine 5'-[β-thio]diphosphate (ADPβS), but not by Adenosine 5'-O-thiomonophosphate (AMPS). These nucleotide-induced responses are blocked by pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS), an antagonist of animal purinoceptors, and by adenosine, a feed-back inhibitor of extracellular nucleotide responses in animals. Similar nucleotide- and nucleotide-antagonist responses were observed in Acetabularia acetabulum (L.) P. C. Silva. Significant levels of ATP released from Dasycladus cells were measured at wound sites by a sensitive luciferin-luciferase assay. Additionally, the normal wound-induced production of NO and H2 O2 in Dasycladus can be blocked by pretreating the cells with PPADS. Our results indicate that nucleotides released from wounds can serve as a signal to trigger wound responses in algae, and that coordinated signaling between extracellular nucleotides and the NO pathway may have been established early during the evolution of plants.
Collapse
|
41
|
Jami SK, Clark GB, Turlapati SA, Handley C, Roux SJ, Kirti PB. Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1019-30. [PMID: 18768323 DOI: 10.1016/j.plaphy.2008.07.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 07/10/2008] [Indexed: 05/18/2023]
Abstract
Plant annexins belong to a multigene family and are suggested to play a role in stress responses. A full-length cDNA for a gene encoding an annexin protein was isolated and characterized from Brassica juncea (AnnBj1). AnnBj1 message levels were regulated by abscisic acid, ethephon, salicylic acid, and methyl jasmonate as well as chemicals that induce osmotic stress (NaCl, Mannitol or PEG), heavy metal stress (CdCl(2)) and oxidative stress (methyl viologen or H(2)O(2)). In order to determine if AnnBj1 functions in protection against stress, we generated transgenic tobacco plants ectopically expressing AnnBj1 under the control of constitutive CaMV 35S promoter. The transgenic tobacco plants showed significant tolerance to dehydration (mannitol), salt (NaCl), heavy metal (CdCl(2)) and oxidative stress (H(2)O(2)) at the seedling stage and retained higher chlorophyll levels in response to the above stresses as determined in detached leaf senescence assays. The transgenic plants also showed decreased accumulation of thiobarbituric acid-reactive substances (TBARS) compared to wild-type plants in response to mannitol treatments in leaf disc assays. AnnBj1 recombinant protein exhibited low levels of peroxidase activity in vitro and transgenic plants showed increased total peroxidase activity. Additionally, the transgenic plants showed enhanced resistance to the oomycete pathogen, Phytophthora parasitica var. nicotianae, and increased message levels for several pathogenesis-related proteins. Our results demonstrate that ectopic expression of AnnBj1 in tobacco provides tolerance to a variety of abiotic and biotic stresses.
Collapse
|
42
|
Yao J, Chang C, Salmi ML, Hung YS, Loraine A, Roux SJ. Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient. BMC Bioinformatics 2008; 9:288. [PMID: 18564431 PMCID: PMC2459189 DOI: 10.1186/1471-2105-9-288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 06/18/2008] [Indexed: 11/10/2022] Open
Abstract
Background Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. Results In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. Conclusion This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.
Collapse
|
43
|
Roux SJ, Steinebrunner I. Extracellular ATP: an unexpected role as a signaler in plants. TRENDS IN PLANT SCIENCE 2007; 12:522-527. [PMID: 17928260 DOI: 10.1016/j.tplants.2007.09.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 05/04/2023]
Abstract
ATP and other nucleoside triphosphates not only drive energy-dependent reactions inside cells, but can also function outside the plasma membrane in the extracellular matrix, where they function as agonists that can induce diverse physiological responses without being hydrolyzed. This external role of ATP is well established in animal cells but only recently has it become apparent that extracellular ATP (eATP) can also function as a signaling agent in plants. Recent data have shown that eATP and other nucleotides can induce an increase in the cytosolic Ca(2+) concentration and diverse downstream changes that influence plant growth and defense responses. Ectoapyrase enzymes that regulate the eATP concentration also have an impact on plant growth. These results beg the question of whether there is a receptor that can bind to eATP and transduce this into signaling changes. Answering this will be key to understanding how eATP and ectoapyrases influence plant growth and development.
Collapse
|
44
|
Lee Y, Roux SJ, Kim SH. Biochemical characterization of a family of proteins that stabilizes a plant Ran protein in its GTP-bound conformation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2007; 45:515-20. [PMID: 17433702 DOI: 10.1016/j.plaphy.2007.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
Ran-binding proteins (RanBP) are a group of proteins that bind to Ran (Ras-related nuclear small G-protein) and thus control the GTP/GDP-bound states of the Ran and couple the Ran GTPase cycle to cellular processes. In an effort to identify potential downstream effectors for PsRan1-dependent cellular processes, we detected a group of pea Ran (PsRan1)-binding proteins and characterized their biochemical activities. A Ran overlay assay using [(32)P-GTP]-labeled PsRan1 revealed three PsRan1-binding proteins (33, 45, and 85kDa in size) from total protein extracts of dark-grown pea plumules. These proteins bound preferentially to the Ran-GTP over Ran-GDP conformation and subsequently stabilized its GTP-bound status. We propose that they are a family of proteins that maintain the Ran protein in the active conformation and are potential downstream mediators for PsRan1-dependent cellular processes. Our report provides the basis for characterizing and dissecting Ran downstream targets and Ran-mediated events, and it thus facilitates our understanding about the roles played by Ran/RanBP signaling pathways during plant growth and development.
Collapse
|
45
|
Wu J, Steinebrunner I, Sun Y, Butterfield T, Torres J, Arnold D, Gonzalez A, Jacob F, Reichler S, Roux SJ. Apyrases (nucleoside triphosphate-diphosphohydrolases) play a key role in growth control in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:961-75. [PMID: 17434987 PMCID: PMC1914212 DOI: 10.1104/pp.107.097568] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Expression of two Arabidopsis (Arabidopsis thaliana) apyrase (nucleoside triphosphate-diphosphohydrolase) genes with high similarity, APY1 and APY2, was analyzed during seedling development and under different light treatments using beta-glucuronidase fusion constructs with the promoters of both genes. As evaluated by beta-glucuronidase staining and independently confirmed by other methods, the highest expression of both apyrases was in rapidly growing tissues and/or tissues that accumulate high auxin levels. Red-light treatment of etiolated seedlings suppressed the protein and message level of both apyrases at least as rapidly as it inhibited hypocotyl growth. Adult apy1 and apy2 single mutants had near-normal growth, but apy1apy2 double-knockout plants were dwarf, due primarily to reduced cell elongation. Pollen tubes and etiolated hypocotyls overexpressing an apyrase had faster growth rates than wild-type plants. Growing pollen tubes released ATP into the growth medium and suppression of apyrase activity by antiapyrase antibodies or by inhibitors simultaneously increased medium ATP levels and inhibited pollen tube growth. These results imply that APY1 and APY2, like their homologs in animals, act to reduce the concentration of extracellular nucleotides, and that this function is important for the regulation of growth in Arabidopsis.
Collapse
|
46
|
Salmi ML, Morris KE, Roux SJ, Porterfield DM. Nitric oxide and cGMP signaling in calcium-dependent development of cell polarity in Ceratopteris richardii. PLANT PHYSIOLOGY 2007; 144:94-104. [PMID: 17351052 PMCID: PMC1913794 DOI: 10.1104/pp.107.096131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Single-celled spores of the fern Ceratopteris richardii undergo gravity-directed cell polarity development that is driven by polar calcium currents. Here we present results that establish a role for nitric oxide (NO)/cGMP signaling in transducing the stimulus of gravity to directed polarization of the spores. Application of specific NO donors and scavengers inhibited the calcium-dependent gravity response in a dose-dependent manner. The effects of NO donor exposure were antagonized by application of NO scavenger compounds. Similarly, the guanylate cyclase inhibitors 6-anilino-5,8-quinolinedione and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin, and the phosphodiesterase inhibitor Viagra, which modulate NO-dependent cGMP levels in the cells, disrupted gravity-directed cell polarity in a dose-dependent manner. Viagra effects were antagonized by application of NO scavengers, consistent with the postulate that NO and cGMP are linked in the signaling pathway. To identify other components of the signaling system we analyzed gene expression changes induced by Viagra treatment using microarrays and quantitative real-time reverse transcription-polymerase chain reaction. Preliminary microarray analysis revealed several genes whose expression was significantly altered by Viagra treatment. Three of these genes had strong sequence similarity to key signal transduction or stress response genes and quantitative real-time reverse transcription-polymerase chain reaction was used to more rigorously quantify the effects of Viagra on their expression in spores and to test how closely these effects could be mimicked by treatment with dibutyryl cGMP. Taken together our results implicate NO and cGMP as downstream effectors that help link the gravity stimulus to polarized growth in C. richardii spores. Sequence data from this article can be found in the GenBank/EMBL data libraries under accession numbers BE 640669 to BE 643506, BQ 086920 to BQ 087668, and CV 734654 to CV 736151.
Collapse
|
47
|
Bushart TJ, Roux SJ. Conserved features of germination and polarized cell growth: a few insights from a pollen-fern spore comparison. ANNALS OF BOTANY 2007; 99:9-17. [PMID: 16867999 PMCID: PMC2802967 DOI: 10.1093/aob/mcl159] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/12/2006] [Indexed: 05/11/2023]
Abstract
BACKGROUND The germination of both pollen and fern spores results in the emergence of a cell-pollen tube from pollen, rhizoid from spore-that grows in a polar fashion, primarily at its apical end. In both of these tip-growing cells, the delivery of secretory vesicles to the growing end is guided in part by a calcium gradient, with calcium entering at the tip where it is most highly concentrated. The similarities between the two systems extend beyond tip-focused calcium gradients to encompass signalling pathways and elements including calmodulin, nitric oxide, annexins and Rop-GTPases. SCOPE AND AIMS This review is limited to those pathways and elements that function similarly in fern and pollen systems based on currently available evidence. The aim is to illustrate the common mechanisms by which tip growth occurs, facilitate further investigations into this area, and examine the implications for the evolutionarily conserved control of tip growth. CONCLUSIONS The interplay of calcium, nitric oxide and other effectors in both pollen and fern spores suggests certain signalling pathways became important regulators of germination and growth early in the evolution of land plants. Both large- and small-scale comparative genomic methods have shown to be promising in their ability to find new and relevant comparisons for further research. Cross-species comparisons may serve to speed up this process by highlighting both basic pathways and system-specific deviations.
Collapse
|
48
|
Jeter CR, Roux SJ. Plant responses to extracellular nucleotides: Cellular processes and biological effects. Purinergic Signal 2006; 2:443-9. [PMID: 18404482 PMCID: PMC2254475 DOI: 10.1007/s11302-005-3981-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 08/26/2005] [Indexed: 11/26/2022] Open
Abstract
Higher plants exhibit cellular responsiveness to the exogenous application of purine nucleotides in a manner consistent with a cell–cell signaling function for these molecules. Like animals, plants respond to extracellular ATP, ADP, and stable analogues (e.g., ATPγS and ADPβS) by increasing the cytoplasmic concentration of calcium. Agonist substrate specificity and concentration dependency suggest receptor mediation of these events, and, although the identity of the plant receptor is currently unknown, pharmacological analysis points to the involvement of a plasma membrane-localized calcium channel. Extracellular ATP can also induce the production of reactive oxygen species and stimulate an increase in the mRNA levels of a number of stress- and calcium-regulated genes, suggesting a role for nucleotide-based signaling in plant wound and defense responses. Furthermore, the growth and development of plants can also be altered by the application of external ATP. Recent studies are only beginning to uncover the complexities of plant signaling networks activated in response to extracellular ATP and how these might interact to affect plant physiological processes.
Collapse
|
49
|
Haque AU, Rokkam M, Carlo ARD, Wereley ST, Wells HW, McLamb WT, Roux SJ, Irazoqui PP, Porterfield DM. Design, Fabrication and Characterization of anIn SilicoCell Physiology lab for Bio Sensing Applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/1742-6596/34/1/122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1222-32. [PMID: 16428598 PMCID: PMC1435826 DOI: 10.1104/pp.105.073072] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Extracellular ATP can serve as a signaling agent in animal cells, and, as suggested by recent reports, may also do so in plant cells. In animal cells it induces the production of reactive oxygen species through the mediation of NADPH oxidase. Similarly, here we report that in leaves of Arabidopsis (Arabidopsis thaliana), applied ATP, but not AMP or phosphate, induces the accumulation of superoxide (O2-) in a biphasic, dose-dependent manner, with a threshold at 500 nm ATP. This effect did not require ATP hydrolysis for it was mimicked by ATPgammaS. ATP also induced increased levels of Arabidopsis respiratory burst oxidase homolog D (AtrbohD) mRNA, but ATP-treated plants that had disrupted AtrbohD and AtrbohF genes did not accumulate O2-, indicating that NADPH oxidases are responsible for the induced O2- accumulation. Inhibitors of mammalian P2-type ATP receptors abolished ATP-induced O2- production, suggesting that the ATP effects may be mediated through P2-like receptors in plants. Cytosolic Ca2+ and calmodulin are likely to help transduce the ATP responses, as they do in animal cells, because a Ca2+ channel blocker, a Ca2+ chelator, and calmodulin antagonist all reduced ATP-induced O2- accumulation. Furthermore, ATP treatment enhanced the expression of genes that are induced by wounds and other stresses. The ATP measured at wound sites averaged 40 microm, well above the level needed to induce O2- accumulation and gene expression changes. Transgenic plants overexpressing an apyrase gene had reduced O2- production in response to applied ATP and wounding. Together, these data suggest a possible role for extracellular ATP as a signal potentially in wound and stress responses.
Collapse
|