26
|
Moriyama K, Kukita A, Li YJ, Uehara N, Zhang JQ, Takahashi I, Kukita T. Regulation of osteoclastogenesis through Tim-3: possible involvement of the Tim-3/galectin-9 system in the modulation of inflammatory bone destruction. J Transl Med 2014; 94:1200-11. [PMID: 25264706 DOI: 10.1038/labinvest.2014.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 11/09/2022] Open
Abstract
Galectins are a unique family of lectins bearing one or two carbohydrate recognition domains (CRDs) that have the ability to bind molecules with β-galactoside-containing carbohydrates. It has been shown that galectins regulate not only cell growth and differentiation but also immune responses, as well as inflammation. Galectin-9, a tandem repeat type of galectin, was originally identified as a chemotactic factor for eosinophils, and is also involved in the regulatory process of inflammation. Here, we examined the involvement of galectin-9 and its receptor, T-cell immunoglobulin- and mucin-domain-containing molecule 3 (Tim-3), in the control of osteoclastogenesis and inflammatory bone destruction. Expression of Tim-3 was detected in osteoclasts and its mononuclear precursors in vivo and in vitro. Galectin-9 markedly inhibited osteoclastogenesis as evaluated in osteoclast precursor cell line RAW-D cells and primary bone marrow cells of mice and rats. The inhibitory effects of galectin-9 on osteoclastogenesis was negated by the addition of β-lactose, an antagonist for galectin binding, suggesting that the inhibitory effect of galectin-9 was mediated through CRD. When galectin-9 was injected into rats with adjuvant-induced arthritis, marked suppression of bone destruction was observed. Inflammatory bone destruction could be efficiently ameliorated by controlling the Tim-3/galectin-9 system in rheumatoid arthritis.
Collapse
|
27
|
Takano T, Li YJ, Kukita A, Yamaza T, Ayukawa Y, Moriyama K, Uehara N, Nomiyama H, Koyano K, Kukita T. Mesenchymal stem cells markedly suppress inflammatory bone destruction in rats with adjuvant-induced arthritis. J Transl Med 2014; 94:286-96. [PMID: 24395111 DOI: 10.1038/labinvest.2013.152] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/13/2013] [Accepted: 09/29/2013] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potential to differentiate into multiple cell lineages. Recently, it was shown that MSCs also have anti-inflammatory and immunomodulatory functions. In this report, we investigated the regulatory function of MSCs in the development of inflammatory bone destruction in rats with adjuvant-induced arthritis (AA rats). MSCs were isolated from rat bone marrow tissues, expanded in the presence of basic FGF, and intraperitoneally injected into AA rats. MSC administration significantly suppressed inflammatory parameters: swelling score, swelling width, and thickness of hind paw. Radiographic evaluation indicated that MSC significantly suppressed bone destruction. Histological analysis showed that administration of MSCs markedly suppressed osteoclastogenesis in AA rats. To further delineate their effects on osteoclastogenesis, MSCs were added to in vitro bone marrow cultures undergoing osteoclastogenesis. MSCs significantly suppressed osteoclastogenesis in this system. Chemokine receptor expression in MSCs was assessed by RT-PCR, and a chemotactic assay was performed using a transwell culture system. MSCs showed significant chemotaxis to MIP-1α (CCL3) and SDF-1α (CXCL12), chemokines preferentially expressed in the area of inflammatory bone destruction. Furthermore, MSCs expressed IL-10 and osteoprotegerin, cytokines that suppress osteoclastogenesis. These data suggest that recruitment of MSC to the area of bone destruction in AA rats could suppress inflammatory bone destruction and raise the possibility that MSCs may have potential for the treatment of inflammatory bone destruction in arthritis.
Collapse
|
28
|
Takiguchi S, Korenaga N, Inoue K, Sugi E, Kataoka Y, Matsusue K, Futagami K, Li YJ, Kukita T, Teramoto N, Iguchi H. Involvement of CXCL14 in osteolytic bone metastasis from lung cancer. Int J Oncol 2014; 44:1316-24. [PMID: 24534874 DOI: 10.3892/ijo.2014.2293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
To investigate the molecular mechanisms of lung cancer-induced bone metastasis, we established a bone-seeking subclone (HARA-B4) from a human squamous lung cancer cell line (HARA) using an in vivo selection method. We compared comprehensive gene expression profiles between HARA and HARA-B4, and identified the critical factors for the formation of bone metastasis using in vitro and in vivo assays. The number of bone metastatic colonies in the hind legs was significantly higher in HARA-B4-inoculated mice than in HARA-inoculated mice at 4 weeks after inoculation. In addition, visceral (adrenal) metastases were not found in HARA-B4-inoculated mice at autopsy, suggesting an increase in cancer cell tropism to bone in HARA-B4. Based on a comprehensive gene expression analysis, the expression level of CXC chemokine ligand 14 (CXCL14) was 5-fold greater in HARA-B4 than in HARA. Results of a soft agar colony formation assay showed that anchorage-independent growth ability was 4.5-fold higher with HARA-B4 than with HARA. The murine pre-osteoblast cell line MC3T3-E1 and the pre-osteoclast/macrophage cell line RAW264.7 migrated faster toward cultured HARA-B4 cells than toward HARA cells in a transwell cell migration assay. Interestingly, CXCL14 was shown to be involved in all events (enhancement of cancer cell tropism to the bone, anchorage-independent growth and/or recruitment of bone marrow cells) based on siRNA experiments in HARA-B4 cells. Furthermore, in clinical specimens of lung cancer-induced bone metastasis, expression of CXCL14 was observed in the tumor cells infiltrated in bone marrow in all specimens examined. CXCL14 was able to promote bone metastasis through enhancement of cancer cell tropism to the bone and/or recruitment of bone marrow cells around metastatic cancer cells.
Collapse
|
29
|
Kukita A, Kukita T. Multifunctional properties of RANKL/RANK in cell differentiation, proliferation and metastasis. Future Oncol 2013; 9:1609-22. [DOI: 10.2217/fon.13.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
It is known that there are close relationships between bone destruction and tumor growth in bone metastasis. RANKL is a central factor in bone metastasis, inducing osteoclastogenesis mediated by its receptor RANK. Recent reports demonstrate that RANKL has important roles in organogenesis stimulating proliferation and differentiation of epithelial and stroma cells. RANKL is induced not only by cytokines and hormones but also by UV-irradiation, inflammation and carcinogens. Expression of RANK and RANKL is found in several human cancer cell lines, and RANK signaling stimulates proliferation, migration and epithelial–mesenchymal transition of cancer cells, which may be involved in metastasis via an autocrine/paracrine mechanism. RANKL regulates the number of Tregs that produce RANKL, which may affect cancer metastasis. In this review we discuss the multifunctional roles of RANKL/RANK in osteoclastogenesis, organogenesis, and the metastasis and tumorigenesis of cancer cells.
Collapse
|
30
|
Makino Y, Yamaza H, Akiyama K, Ma L, Hoshino Y, Nonaka K, Terada Y, Kukita T, Shi S, Yamaza T. Immune therapeutic potential of stem cells from human supernumerary teeth. J Dent Res 2013; 92:609-15. [PMID: 23697344 DOI: 10.1177/0022034513490732] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Discoveries of immunomodulatory functions in mesenchymal stem cells (MSCs) have suggested that they might have therapeutic utility in treating immune diseases. Recently, a novel MSC population was identified from dental pulp of human supernumerary teeth, and its multipotency characterized. Herein, we first examined the in vitro and in vivo immunomodulatory functions of human supernumerary tooth-derived stem cells (SNTSCs). SNTSCs suppressed not only the viability of T-cells, but also the differentiation of interleukin 17 (IL-17)-secreting helper T (Th17)-cells in in vitro co-culture experiments. In addition, systemic SNTSC transplantation ameliorated the shortened lifespan and elevated serum autoantibodies and nephritis-like renal dysfunction in systemic lupus erythematosus (SLE) model MRL/lpr mice. SNTSC transplantation also suppressed in vivo increased levels of peripheral Th17 cells and IL-17, as well as ex vivo differentiation of Th17 cells in MRL/lpr mice. Adoptive transfer experiments demonstrated that SNTSC-transplanted MRL/lpr mouse-derived T-cell-adopted immunocompromised mice showed a longer lifespan in comparison with non-transplanted MRL/lpr mouse-derived T-cell-adopted immunocompromised mice, indicating that SNTSC transplantation suppresses the hyper-immune condition of MRL/lpr mice through suppressing T-cells. Analysis of these data suggests that SNTSCs are a promising MSC source for cell-based therapy for immune diseases such as SLE.
Collapse
|
31
|
Takahashi A, Kukita A, Li YJ, Zhang JQ, Nomiyama H, Yamaza T, Ayukawa Y, Koyano K, Kukita T. Tunneling nanotube formation is essential for the regulation of osteoclastogenesis. J Cell Biochem 2013; 114:1238-47. [DOI: 10.1002/jcb.24433] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023]
|
32
|
Teramachi J, Kukita A, Qu P, Wada N, Li YJ, Nakamura S, Kukita T. Adenosine blocks aminopterin-induced suppression of osteoclast differentiation. J Bone Miner Metab 2013; 31:64-70. [PMID: 23111587 DOI: 10.1007/s00774-012-0388-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
To search cell surface molecules involved in the regulation of osteoclastogenesis, especially in fusion process, it is one powerful approach to obtain monoclonal antibodies bearing ability to block formation of multinucleated osteoclasts. Ideally, direct bio-assay of hybridoma supernatants is quite convenient to screen monoclonal antibodies of interest from numerous culture wells. However, addition of hybridoma supernatant containing hypoxanthine-aminopterin-thymidine (HAT), components of the selection medium, to whole bone marrow cultures strikingly suppressed osteoclastogenesis. Here we clarified aminopterin is the responsible component in HAT medium to inhibit osteoclastogenesis. Methotrexate (MTX), mono-methylated aminopterin, showed similar suppressive effect on osteoclastogenesis. When bone marrow cells were cultured in the presence of all nucleosides, aminopterin and MTX-induced suppression of osteoclastogenesis was abrogated. Among four nucleosides only adenosine canceled aminopterin-induced suppression of osteoclastogenesis. Direct bio-assay of hybridoma supernatant containing HAT selection medium is now available to screen monoclonal antibodies if adenosine-containing culture medium was utilized for evaluating osteoclastogenesis.
Collapse
|
33
|
Li YJ, Kukita A, Watanabe T, Takano T, Qu P, Sanematsu K, Ninomiya Y, Kukita T. Nordihydroguaiaretic acid inhibition of NFATc1 suppresses osteoclastogenesis and arthritis bone destruction in rats. J Transl Med 2012; 92:1777-87. [PMID: 23044922 DOI: 10.1038/labinvest.2012.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nordihydroguaiaretic acid (NDGA) is known to have prominent anticancer activity against several cancers, and is also known to be an inhibitor of 5-lipoxygenase (5-LO). In this study, we investigated the regulatory function of NDGA on inflammatory bone destruction mediated by osteoclasts. NDGA markedly inhibited receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL)-induced formation of osteoclasts in cultures of murine osteoclast precursor cell line RAW-D cells and primary bone marrow-derived macrophages culture systems. The inhibitory effect of NDGA on osteoclastogenesis did not arise from the inhibition of 5-LO activity. NDGA did not affect MAPKs, such as p38, JNK, and NF-κB, but significantly inhibited the induction of NFATc1, a key transcription factor for osteoclastogenesis. NDGA also suppressed activation of ERK in osteoclast precursors. RANKL-induced calcium oscillation observed in osteoclast precursors was completely diminished by the addition of NDGA. In mature osteoclasts, RANKL-induced nuclear translocation of NFATc1 was clearly inhibited by NDGA treatment. Finally, in vivo studies demonstrated that administration of NDGA significantly reduced severe bone destruction and osteoclast recruitment in the ankle joint of rats with adjuvant-induced arthritis. These results indicate the potential utility of NDGA as a therapeutic agent for ameliorating inflammatory bone destruction in rheumatoid arthritis.
Collapse
|
34
|
Kukita A, Ichigi Y, Takigawa I, Watanabe T, Kukita T, Miyamoto H. Infection of RANKL-primed RAW-D macrophages with Porphyromonas gingivalis promotes osteoclastogenesis in a TNF-α-independent manner. PLoS One 2012; 7:e38500. [PMID: 22723864 PMCID: PMC3377672 DOI: 10.1371/journal.pone.0038500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022] Open
Abstract
Infection of macrophages with bacteria induces the production of pro-inflammatory cytokines including TNF-α. TNF-α directly stimulates osteoclast differentiation from bone marrow macrophages in vitro as well as indirectly via osteoblasts. Recently, it was reported that bacterial components such as LPS inhibited RANKL-induced osteoclastogenesis in early stages, but promoted osteoclast differentiation in late stages. However, the contribution to osteoclast differentiation of TNF-α produced by infected macrophages remains unclear. We show here that Porphyromonas gingivalis, one of the major pathogens in periodontitis, directly promotes osteoclastogenesis from RANKL-primed RAW-D (subclone of RAW264) mouse macrophages, and we show that TNF-α is not involved in the stimulatory effect on osteoclastogenesis. P. gingivalis infection of RANKL-primed RAW-D macrophages markedly stimulated osteoclastogenesis in a RANKL-independent manner. In the presence of the TLR4 inhibitor, polymyxin B, infection of RANKL-primed RAW-D cells with P. gingivalis also induced osteoclastogenesis, indicating that TLR4 is not involved. Infection of RAW-D cells with P. gingivalis stimulated the production of TNF-α, whereas the production of TNF-α by similarly infected RANKL-primed RAW-D cells was markedly down-regulated. In addition, infection of RANKL-primed macrophages with P. gingivalis induced osteoclastogenesis in the presence of neutralizing antibody against TNF-α. Inhibitors of NFATc1 and p38MAPK, but not of NF-κB signaling, significantly suppressed P. gingivalis-induced osteoclastogenesis from RANKL-primed macrophages. Moreover, re-treatment of RANKL-primed macrophages with RANKL stimulated osteoclastogenesis in the presence or absence of P. gingivalis infection, whereas re-treatment of RANKL-primed macrophages with TNF-α did not enhance osteoclastogenesis in the presence of live P. gingivalis. Thus, P. gingivalis infection of RANKL-primed macrophages promoted osteoclastogenesis in a TNF-α independent manner, and RANKL but not TNF-α was effective in inducing osteoclastogenesis from RANKL-primed RAW-D cells in the presence of P. gingivalis.
Collapse
|
35
|
Sandra F, Kukita T, Tang QY, Iijima T. Caffeic Acid Inhibits NFkappaB Activation of Osteoclastogenesis Signaling Pathway. INDONESIAN BIOMEDICAL JOURNAL 2011. [DOI: 10.18585/inabj.v3i3.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND: Caffeic acid (3,4-dihydroxycinnamic acids) is involved in various green plants. Based on our previous report, a major component of sweet potato extracts, possibly caffeic acid, was shown as a promising inhibitor of osteoclastogenesis. However, the effect of caffeic acid in inhibiting osteoclastogenesis needs to be confirmed. The underlying mechanism needs to be disclosed as well.METHODS: Caffeic acid in various concentrations was added to in vitro osteoclastogenesis of receptor activator nuclear factor kB ligand (RANKL)-tumor necrosis factor alpha (TNF-α)-macrophage colony stimulating factor (M-CSF)-induced bone marrow-derived monocyte/macrophage precursor cells (BMMs) and RANKL-TNF-α-induced RAW264 cells D-Clone (RAW-D cells). Tartrate resistant acid phosphatase (TRAP) staining was performed and TRAP-positive polynucleated cells (PNCs) were counted. For apoptosis analysis, caffeic acid-treated BMMs, RAW-D cells and osteoclast-like PNCs were subjected to Sub-G1 Apoptosis and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. To measure NFkB activity, RAW-D cells were transfected with pNFkB-TA-Luc and subjected to Dual Luciferase Reporter Assay System.RESULTS: Caffeic acid inhibited osteoclastogenesis of RANKL-TNF-α-M-CSF-induced BMMs as well as RANKL-TNF-α-induced RAW-D cells in a dose dependent manner. Caffeic acid did not induce apoptosis in BMMs, RAW-D cells and osteoclast-like PNCs. RANKL-TNF-α-induced NFkB activity in RAW-D was diminished by caffeic acid in a dose dependent manner. Significant NFkB activity inhibtion was observed starting from 1 µg/mL caffeic acid. CONCLUSIONS: Caffeic acid could be a potent osteoclastogenesis inhibitor through inhibition of NFkB activity. Our present study should be further followed up to disclose caffeic acid's possible overlying signaling pathways in inhibiting osteoclastogenesis.KEYWORDS: caffeic acid, osteoclastogenesis, NFkB, RANKL, TNF-α
Collapse
|
36
|
Kukita A, Kukita T, Nagata K, Teramachi J, Li YJ, Yoshida H, Miyamoto H, Gay S, Pessler F, Shobuike T. The transcription factor FBI-1/OCZF/LRF is expressed in osteoclasts and regulates RANKL-induced osteoclast formation in vitro and in vivo. ACTA ACUST UNITED AC 2011; 63:2744-54. [PMID: 21590684 DOI: 10.1002/art.30455] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Since transcription factors expressed in osteoclasts are possible targets for regulation of bone destruction in bone disorders, we investigated the expression of the transcription factor FBI-1/OCZF/LRF (in humans, factor that binds to inducer of short transcripts of human immunodeficiency virus type 1; in rats, osteoclast-derived zinc finger; in mice, leukemia/lymphoma-related factor) in patients with rheumatoid arthritis (RA), and assessed its role in osteoclastogenesis in vivo. METHODS Expression of FBI-1/OCZF was investigated in subchondral osteoclasts in human RA and in rat adjuvant-induced arthritis (AIA) using immunostaining and in situ hybridization, respectively. Transgenic mice overexpressing OCZF (OCZF-Tg) under the control of the cathepsin K promoter were generated, and bone mineral density and bone histomorphometric features were determined by peripheral quantitative computed tomography, calcein double-labeling, and specific staining for osteoclasts and osteoblasts. LRF/OCZF expression and the consequence of LRF inhibition were assessed in vitro with RANKL-induced osteoclast differentiation. RESULTS FBI-1/OCZF was detected in the nuclei of osteoclasts in rat AIA and human RA. RANKL increased the levels of LRF messenger RNA and nuclear-localized LRF protein in primary macrophages. In OCZF-Tg mice, bone volume was significantly decreased, the number of osteoclasts, but not osteoblasts, was increased in long bones, and osteoclast survival was promoted. Conversely, inhibition of LRF expression suppressed the formation of osteoclasts from macrophages in vitro. CONCLUSION FBI-1/OCZF/LRF regulates osteoclast formation and apoptosis in vivo, and may become a useful marker and target in treating disorders leading to reduced bone density, including chronic arthritis.
Collapse
|
37
|
Teramachi J, Kukita A, Li YJ, Ushijima Y, Ohkuma H, Wada N, Watanabe T, Nakamura S, Kukita T. Adenosine abolishes MTX-induced suppression of osteoclastogenesis and inflammatory bone destruction in adjuvant-induced arthritis. J Transl Med 2011; 91:719-31. [PMID: 21339747 DOI: 10.1038/labinvest.2011.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Methotrexate (MTX) is widely utilized for the treatment of patients with rheumatoid arthritis (RA); however, recent observation of the MTX-resistant patients proposed some difficulty in MTX-dependent therapeutic approach for RA. To access cellular events related to MTX resistance in RA in respect to inflammatory bone destruction, we investigated on an involvement of the potent inflammatory mediator adenosine in the regulation of osteoclastogenesis and inflammatory bone destruction. In rats with adjuvant-induced arthritis (AA rats), MTX efficiently suppressed bone destruction when it was administrated within 3 days after adjuvant injection, while it could not suppress inflammatory bone destruction if MTX was injected at the time of onset of inflammation (at day 10 after adjuvant injection). Time-course change in the level of plasma adenosine of AA rats was estimated by use of high-performance liquid chromatography and elucidated that adenosine level was markedly elevated till 10 days after adjuvant injection. In vitro bone marrow culture system for evaluating osteoclastogenesis, MTX markedly suppressed osteoclastogenesis in a stromal cell-dependent manner. This MTX-induced suppression of osteoclastogenesis was abrogated by the addition of adenosine. MTX suppressed the expression of mRNA for the receptor activator NF-κB ligand (RANKL), but it did not suppress the expression of osteoprotegerin (OPG). The addition of MTX and adenosine together markedly suppressed the level of OPG expression. Abolishment of MTX action by adenosine was significantly blocked by MRS1754, a highly selective antagonist for the A(2b) adenosine receptor (A(2b)AR), but not by caffeine, an antagonist for A₁, A(2a), A₃ AR (A₁AR, A(2a)AR, and A₃AR), which suggests that adenosine acts through A(2b)AR. Immunohistochemical studies showed abundant expression of A(2b)AR in cells localized in the bone-bone marrow boundary of the distal tibia in AA rats but not in control rats. When adenosine was injected in the ankle joints of MTX-treated AA rats, the suppressive effects of MTX on bone destruction was abolished. The current data therefore suggest that upregulation of adenosine production abolished the suppressive effect of MTX on osteoclastic bone destruction. Involvement of the adenosine-A(2b)AR system may explain MTX resistance in RA.
Collapse
|
38
|
Wu Z, Ma HM, Kukita T, Nakanishi Y, Nakanishi H. Phosphatidylserine-containing liposomes inhibit the differentiation of osteoclasts and trabecular bone loss. THE JOURNAL OF IMMUNOLOGY 2010; 184:3191-201. [PMID: 20176740 DOI: 10.4049/jimmunol.0803609] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liposomes containing phosphatidylserine (PS) are engulfed by phagocytes including macrophages, microglia, and dendritic cells. PS liposomes (PSLs) mimic the effects of apoptotic cells on these phagocytes to induce the secretion of anti-inflammatory molecules and to inhibit the maturation of dendritic cells. However, the effects of PSLs on osteoclasts, which are also differentiated from the common myeloid precursors, remain to be determined. This study investigated the effects of PSLs on the osteoclastogenesis. In the rat bone marrow culture system, osteoclast precursors phagocytosed PSLs to secrete TGF-beta1 and PGE(2), which in turn inhibited osteoclastogenesis through the downregulation of receptor activator for NF-kappaB ligand, receptor activator of NF-kappaB, ICAM-1, and CD44. Consistent with these in vitro observations, i.m. injection of PSLs significantly increased the plasma level of TGF-beta1 and PGE(2) and decreased the expression of receptor activator for NF-kappaB ligand, receptor activator of NF-kappaB, and ICAM-1 in the skeletal tissues of ankle joints of rats with adjuvant arthritis (AA). A quantitative analysis using microcomputed tomography revealed that PSLs as well as TGF-beta1 together with PGE(2) significantly inhibited AA-induced trabecular bone loss. These observations strongly suggest that PSLs generate TGF-beta1 and PGE(2) release, leading to inhibit osteoclastogenesis and AA-induced trabecular bone loss. Because PS is a component of the cell membrane, PSLs therefore can be a potentially effective pharmacological intervention against abnormal bone loss, such as osteoporosis without deleterious side effects.
Collapse
|
39
|
Ogino Y, Ayukawa Y, Kukita T, Atsuta I, Koyano K. Platelet-rich plasma suppresses osteoclastogenesis by promoting the secretion of osteoprotegerin. J Periodontal Res 2009; 44:217-24. [DOI: 10.1111/j.1600-0765.2008.01109.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Liu J, Shiono J, Shimizu K, Kukita A, Kukita T, Kondo R. Ganoderic acid DM: anti-androgenic osteoclastogenesis inhibitor. Bioorg Med Chem Lett 2009; 19:2154-7. [PMID: 19289282 DOI: 10.1016/j.bmcl.2009.02.119] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 02/16/2009] [Accepted: 02/27/2009] [Indexed: 11/17/2022]
Abstract
Prostate cancer is the most common cancer in men in Western countries, with a high incidence of bone metastasis. Ganoderic acid DM, with 5alpha-reductase inhibitory and androgen receptor (AR) binding activity, isolated from the ethanol extracts of Ganoderma lucidum, can inhibit prostate cancer cell growth and block osteoclastogenesis.
Collapse
|
41
|
Inoue K, Ohashi T, Kukita T, Watanebe K, Hayashi S, Honjo T, Takesue H. Differential-phase-shift quantum secret sharing. OPTICS EXPRESS 2008; 16:15469-15476. [PMID: 18825184 DOI: 10.1364/oe.16.015469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A quantum secret sharing (QSS) protocol based on a differential-phase-shift scheme is proposed, which quantum mechanically provides a full secret key to one party and partial keys to two other parties. A weak coherent pulse train is utilized instead of individual photons as in conventional schemes. Compared with previous QSS protocols, the present one features a simple setup, is suitable for fiber transmission, and offers the possibility for a high key creation rate. An experiment is also carried out to demonstrate the operation.
Collapse
|
42
|
Yamaguchi N, Kukita T, Li YJ, Kamio N, Fukumoto S, Nonaka K, Ninomiya Y, Hanazawa S, Yamashita Y. Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett 2008; 582:451-6. [PMID: 18201570 DOI: 10.1016/j.febslet.2007.12.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 12/19/2007] [Accepted: 12/22/2007] [Indexed: 12/13/2022]
Abstract
We investigated here whether adiponectin can exhibit an inhibitory effect on tumor necrosis factor-alpha (TNF-alpha)- and receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis by using RAW264 cell D clone with a high efficiency to form osteoclasts. Globular adiponectin (gAd) strongly inhibited TNF-alpha/RANKL-induced differentiation of osteoclasts by interfering with TNF receptor-associated factor 6 production and calcium signaling; consequently, the induction of nuclear factor of activated T cells c1 (NFATc1) was strongly inhibited. Moreover, we observed that inhibition of AMP-activated protein kinase abrogated gAd inhibition for TNF-alpha/RANKL-induced NFATc1 expression. Our data suggest that adiponectin acts as a potent regulator of bone resorption observed in diseases associated with cytokine activation.
Collapse
|
43
|
Yamaguchi N, Kukita T, Li YJ, Martinez Argueta JG, Saito T, Hanazawa S, Yamashita Y. Adiponectin inhibits osteoclast formation stimulated by lipopolysaccharide fromActinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2007; 49:28-34. [PMID: 17094790 DOI: 10.1111/j.1574-695x.2006.00164.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous epidemiologic studies have suggested that periodontal disease is closely related to obesity and glucose tolerance. As the level of adiponectin, an adipocyte-derived cytokine, in plasma had been reported to decrease in obese and type 2 diabetes patients, we explored the role of adiponectin in the etiology of periodontitis using the D clone of RAW264, a clone that exhibits highly efficient osteoclast formation, to determine whether adiponectin acts as a regulatory molecule in osteoclast formation stimulated by lipopolysaccharide of periodontopathic bacteria. We observed that adiponectin acted as a potent inhibitor of osteoclast formation stimulated by Toll-like receptor 4 (TLR4) ligand and receptor activator of NF-kappaB ligand (RANKL). Because NF-kappaB is an important transcription factor in osteoclast formation, we examined the effect of adiponectin on its transcriptional activity. A luciferase assay showed that adiponectin was able to inhibit the TLR4-mediated NF-kappaB activity in RAW264 cells. In addition, we observed that the cytokine was actually able to inhibit TLR4-mediated expression of the gene for inducible nitric oxide synthase and production of nitric oxide in the cells. These observations strongly suggest that adiponectin may function as a negative regulator of lipopolysaccharide/RANKL-mediated osteoclast formation in periodontal disease.
Collapse
|
44
|
Ogino Y, Ayukawa Y, Kukita T, Koyano K. The contribution of platelet-derived growth factor, transforming growth factor-beta1, and insulin-like growth factor-I in platelet-rich plasma to the proliferation of osteoblast-like cells. ACTA ACUST UNITED AC 2006; 101:724-9. [PMID: 16731390 DOI: 10.1016/j.tripleo.2005.08.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/14/2005] [Accepted: 08/15/2005] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effect of platelet-rich plasma (PRP) on the proliferation of osteoblast-like cells in vitro. PRP was prepared using a centrifuge; the number of platelets (n = 32) and the levels of platelet-derived growth factor-AB (PDGF-AB), transforming growth factor-beta1 (TGF-beta1), and insulin-like growth factor-I (IGF-I) were measured (n = 16). For the proliferation assay, SaOS-2 was cultured in the presence of platelet-poor plasma (PPP), whole blood, or PRP. The cell number was counted after 36 and 72 hours. To investigate the effect of each growth factor, the cells were cultured with PRP in the absence or presence of neutralizing antibodies, and counted as described. The mean platelet count of PRP was 1546.36 +/- 382.25 x 10(3)/microL, and the mean levels of PDGF-AB, TGF-beta1 and IGF-I were 0.271 +/- 0.043, 0.190 +/- 0.039, and 0.110 +/- 0.039 ng/1500 x 10(3) platelets, respectively. Cell proliferation was enhanced in all PRP groups in a dose-dependent manner, and all neutralizing antibodies significantly suppressed proliferation compared with the PRP group, lacking antibody, at 36 hours. However, at 72 hours, the neutralizing antibodies of PDGF and TGF-beta1, but not IGF-I, significantly suppressed proliferation. These results show the beneficial abilities of PRP in the proliferation of osteoblast-like cells from the standpoint of growth factors, including the contribution of each factor.
Collapse
|
45
|
Nakamura T, Kukita T, Shobuike T, Nagata K, Wu Z, Ogawa K, Hotokebuchi T, Kohashi O, Kukita A. Inhibition of histone deacetylase suppresses osteoclastogenesis and bone destruction by inducing IFN-beta production. THE JOURNAL OF IMMUNOLOGY 2005; 175:5809-16. [PMID: 16237073 DOI: 10.4049/jimmunol.175.9.5809] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are bone-resorptive multinucleated cells that are differentiated from hemopoietic cell lineages of monocyte/macrophages in the presence of receptor activator of NF-kappaB ligand (RANKL) and M-CSF. Downstream signaling molecules of the receptor of RANKL, RANK, modulate the differentiation and the activation of osteoclasts. We recently found that histone deacetylase inhibitors (HDIs), known as anticancer agents, selectively suppressed osteoclastogenesis in vitro. However, the molecular mechanism underlying inhibitory action of HDIs in osteoclastogenesis and the effect of HDIs on pathological bone destruction are still not remained to be elucidated. In this study, we show that a depsipeptide, FR901228, inhibited osteoclast differentiation by not only suppressing RANKL-induced nuclear translocation of NFATc1 but also increasing the mRNA level of IFN-beta, an inhibitor of osteoclastogenesis. The inhibition of osteoclast formation by FR901228 was abrogated by the addition of IFN-beta-neutralizing Ab. In addition, treatment of adjuvant-induced arthritis in rats revealed that FR901228 inhibited not only disease development in a prophylactic model but also bone destruction in a therapeutic model. Furthermore, immunostaining of the joints of therapeutically treated rats revealed significant production of IFN-beta in synovial cells. Taken together, these data suggest that a HDI inhibits osteoclastogenesis and bone destruction by a novel action to induce the expression of osteoclast inhibitory protein, IFN-beta.
Collapse
|
46
|
Tang QY, Kukita T, Ushijima Y, Kukita A, Nagata K, Sandra F, Watanabe T, Toh K, Okuma Y, Kawasaki S, Rasubala L, Teramachi J, Miyamoto I, Wu Z, Iijima T. Regulation of osteoclastogenesis by Simon extracts composed of caffeic acid and related compounds: successful suppression of bone destruction accompanied with adjuvant-induced arthritis in rats. Histochem Cell Biol 2005; 125:215-25. [PMID: 16205940 DOI: 10.1007/s00418-005-0062-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2005] [Indexed: 02/01/2023]
Abstract
Simon extracts are vitamin K(1)-rich food materials extracted from the leaves of the Simon sweet potato. Although vitamin K is known to stimulate bone formation, we postulated that Simon extracts also contain unknown biological compounds having the ability to regulate bone resorption. Here we prepared the vitamin K-free fraction from the Simon extracts and investigated the ability of this fraction on the differentiation of osteoclasts. A remarkable inhibitory effect of osteoclastogenesis was observed when osteoclast precursors were treated with this fraction in rat bone marrow culture systems as well as in a pure differentiation system using murine osteoclast precursor cell line. The vitamin K-free Simon extracts markedly suppressed severe bone destruction mediated by abundant osteoclasts associated with adjuvant-induced arthritis in rats. High performance liquid chromatography (HPLC) analysis revealed that the vitamin K-free Simon extracts contained three types of low molecular weight inhibitors for osteoclastogenesis; caffeic acid, chlorogenic acids and isochlorogenic acids. Among these substances, caffeic acid showed the most powerful inhibitory effects on osteoclastogenesis. Caffeic acid significantly suppressed expression of NFATc1, a key transcription factor for the induction of osteoclastogenesis. Our current study enlightened a high utility of the Simon extracts and their chemical components as effective regulators for bone resorption accompanied with inflammation and metabolic bone diseases.
Collapse
|
47
|
Nomiyama H, Egami K, Wada N, Tou K, Horiuchi M, Matsusaki H, Miura R, Yoshie O, Kukita T. Identification of genes differentially expressed in osteoclast-like cells. J Interferon Cytokine Res 2005; 25:227-31. [PMID: 15812249 DOI: 10.1089/jir.2005.25.227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homeostasis of the skeletal system is maintained by a balance between bone formation and resorption. The receptor activator of NF-kappaB ligand (RANKL) induces the differentiation of bone-resorbing cells, osteoclasts. To identify genes regulated during osteoclast differentiation, we constructed a subtraction cDNA library using a mouse RAW264 macrophage cell line that differentiates into osteoclast-like multinucleated cells after treatment with RANKL. Northern blot analysis showed that RANKL treatment upregulated expression of 17 genes. Among these were the genes for five H(+)-ATPase subunits, two chemokines, and the osteoclast marker cathepsin K. In addition, a mouse homolog of human dendritic cell (DC)-specific transmembrane protein (DCSTAMP), whose function in osteoclastogenesis was recently revealed, was also included in the induced genes. Characterization of these inducible genes will provide an insight into the biology of osteoclasts and the mechanism of bone-related diseases.
Collapse
|
48
|
Sandra F, Hendarmin L, Kukita T, Nakao Y, Nakamura N, Nakamura S. Ameloblastoma induces osteoclastogenesis: a possible role of ameloblastoma in expanding in the bone. Oral Oncol 2005; 41:637-44. [PMID: 15935726 DOI: 10.1016/j.oraloncology.2005.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Accepted: 02/11/2005] [Indexed: 10/25/2022]
Abstract
Ameloblastoma, a tumor located in bone, when neglected, can perforate the bone and, ultimately, spread into the soft tissues. To expand in the bone, ameloblastoma must have a mechanism of resorbing the surrounding bone. However, the mechanism for bone resorption is poorly understood. In the present study, we found that RANKL and TNFalpha were expressed and secreted by ameloblastoma cells, and was proven to induce osteoclastogenesis. Our present results also showed that phosphorylation of p38, SAPK, p44/42 and Akt were upregulated under treatment of 10xCM (concentrated conditioned media of AM-1 cells). We also noticed formation of resorption lacunae on dentin slice by 10xCM-induced osteoclast-like MNCs. These results suggested that ameloblastoma by secreting RANKL and TNFalpha could induce osteoclastogenesis.
Collapse
|
49
|
Ohishi M, Matsumura Y, Aki D, Mashima R, Taniguchi K, Kobayashi T, Kukita T, Iwamoto Y, Yoshimura A. Suppressors of Cytokine Signaling-1 and -3 Regulate Osteoclastogenesis in the Presence of Inflammatory Cytokines. THE JOURNAL OF IMMUNOLOGY 2005; 174:3024-31. [PMID: 15728516 DOI: 10.4049/jimmunol.174.5.3024] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bone metabolism and the immune system have a correlative relationship, and both are controlled by various common cytokines, such as IFNs and ILs, produced in the bone microenvironments. The suppressor of cytokine signaling-1 (SOCS1) and SOCS3 are negative regulators of such cytokines. Although SOCSs are shown to be induced during osteoclast differentiation, their physiological roles in osteoclast differentiation and function have not been clarified. Thus, we examined the roles of SOCS1 and SOCS3 in osteoclastogenesis using SOCS1- and SOCS3-deficient mice. IFN-gamma-mediated inhibition of osteoclast differentiation from bone marrow-derived monocytes (BMMs) was strongly enhanced in SOCS1-deficient BMMs, but was diminished in SOCS1-overexpressing BMMs. Moreover, LPS-induced osteoclastogenesis and bone destruction in vivo were suppressed in SOCS1(+/-) mice compared with those in wild-type mice, suggesting that SOCS1 antagonizes the inhibitory effect of IFN-gamma on osteoclastogenesis. SOCS3 did not alter the inhibitory effect of IFNs in osteoclastogenesis in both gain and loss of functional assays; however, the suppressive effect of IL-6 on osteoclast differentiation was greater in SOCS3-deficient BMMs than in wild-type BMMs in vitro. In addition, IL-6 significantly prevented LPS-induced bone destruction in SOCS3-deficient mice, although it failed in wild-type mice in vivo. In SOCS3-deficient BMMs, expression levels of TNF-receptor-associated factor-6 and IkappaB were drastically reduced and receptor activator of the NF-kappaB ligand-induced IkappaB phosphorylation was severely impaired in the presence of IL-6. These data suggest that both SOCS1 and SOCS3 regulate osteoclastogenesis by blocking the inhibitory effect of inflammatory cytokines on receptor activator of the NF-kappaB ligand-mediated osteoclast differentiation signals. Selective suppression of SOCS1 and SOCS3 in osteoclast precursors may be a possible therapeutic strategy for inflammatory bone destruction.
Collapse
|
50
|
Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, Nagata K, Iijima T, Horiuchi M, Matsusaki H, Hieshima K, Yoshie O, Nomiyama H. RANKL-induced DC-STAMP is essential for osteoclastogenesis. ACTA ACUST UNITED AC 2004; 200:941-6. [PMID: 15452179 PMCID: PMC2213286 DOI: 10.1084/jem.20040518] [Citation(s) in RCA: 276] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteoclasts are bone-resorbing, multinucleated giant cells that are essential for bone remodeling and are formed through cell fusion of mononuclear precursor cells. Although receptor activator of nuclear factor-kappaB ligand (RANKL) has been demonstrated to be an important osteoclastogenic cytokine, the cell surface molecules involved in osteoclastogenesis are mostly unknown. Here, we report that the seven-transmembrane receptor-like molecule, dendritic cell-specific transmembrane protein (DC-STAMP) is involved in osteoclastogenesis. Expression of DC-STAMP is rapidly induced in osteoclast precursor cells by RANKL and other osteoclastogenic stimulations. Targeted inhibition of DC-STAMP by small interfering RNAs and specific antibody markedly suppressed the formation of multinucleated osteoclast-like cells. Overexpression of DC-STAMP enhanced osteoclastogenesis in the presence of RANKL. Furthermore, DC-STAMP directly induced the expression of the osteoclast marker tartrate-resistant acid phosphatase. These data demonstrate for the first time that DC-STAMP has an essential role in osteoclastogenesis.
Collapse
|