26
|
Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci U S A 2002; 99:14356-61. [PMID: 12391333 PMCID: PMC137888 DOI: 10.1073/pnas.212527699] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2002] [Indexed: 01/13/2023] Open
Abstract
To shed light on the origin of adaptive immunity, a cDNA library was prepared from purified lymphocyte-like cells of a jawless vertebrate, the sea lamprey (Petromyzon marinus). Randomly selected cDNA clones were sequenced, and their homologies to proteins in the databases were determined. Of the sequences homologous to proteins involved in immune responses, five were selected for further characterization. Their encoding genes corresponded to loci that in jawed vertebrates are essential for activities of lymphocytes. These activities include regulation of T and B cell stimulation and proliferation (CD45); stabilization of molecular complexes involved in lymphocyte activation, adhesion, migration, and differentiation (CD9/CD81); adaptor functions in signaling leading to the activation of B lymphocytes (BCAP) and T lymphocytes (CAST); and amino acid transport associated with cell activation (CD98). The presence of these genes in the lamprey genome and their expression in lymphocyte-like cells support the notion that these cells perform many of the functions of gnathostome lymphocytes. It reopens the question of the stage jawless fishes reached in the evolution of their immune system.
Collapse
|
27
|
Samonte IE, Sato A, Mayer WE, Shintani S, Klein J. Linkage relationships of genes coding for alpha2-macroglobulin, C3 and C4 in the zebrafish: implications for the evolution of the complement and Mhc systems. Scand J Immunol 2002; 56:344-52. [PMID: 12234255 DOI: 10.1046/j.1365-3083.2002.01154.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The alpha2-macroglobulin (A2M) and the complement components C3 and C4 are related proteins derived from a common ancestor. Theoretically, this derivation could have occurred either by tandem duplications of their encoding genes or by polyploidization involving chromosomal segments, a chromosome or the whole genome. In tetrapods the A2M-, C3- and C4-encoding genes are generally each located on a different chromosome. This observation has been interpreted as supporting their origin by polyploidization. We identified and mapped (with the help of a radiation hybrid panel of cell lines) the A2M, C3 and C4 loci in the zebrafish, Danio rerio. Each of the three types of loci is present in the zebrafish in multiple copies, but all of the identified copies of a given type map to the same region in linkage groups 1 (C3) and 15 (A2M, C4). The A2M and C4 loci are mapped in the same region not linked to any of the class I or class II major histocompatibility complex (Mhc) loci. These observations are interpreted as supporting the origin of the A2M family of genes by tandem duplications, followed by the dispersal of the copies to different chromosomes. It is also argued that the association of C4 with the class I/II loci in tetrapods is accidental and without functional significance.
Collapse
|
28
|
Mayer WE, O'Huigin C, Tichy H, Terzic J, Saraga-Babic M. Identification of two Ikaros-like transcription factors in lamprey. Scand J Immunol 2002; 55:162-70. [PMID: 11896932 DOI: 10.1046/j.1365-3083.2002.01026.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The jawless Agnatha (lampreys and hagfishes) represent the phylogenetically oldest order of vertebrates that are believed to lack the adaptive immune system of jawed vertebrates. In order to search for molecular markers specific for cellular components of the adaptive immune system in lampreys, we used the polymerase chain reaction (PCR) to identify genes for transcription factors of the Ikaros family in genomic DNA and cDNA libraries from two species of lampreys, Petromyzon marinus and Lampetra fluviatilis. The mammalian Ikaros-like family of transcription factors consists of five members, Ikaros, Helios, Aiolos, Eos and Pegasus, of which the first three appear to be essential for lymphocyte development. Two different Ikaros-like genes, named IKLF1 and IKLF2, were identified in lamprey. They both have the conserved exon-intron structure of seven exons and show alternative splicing like their counterparts in jawed vertebrates. The genes code for predicted proteins of 589 and 513 amino acid residues, respectively. The proteins contain six highly conserved zinc finger motifs that are 83-91% identical to the mammalian members of the Ikaros-like family. The remaining parts of the sequences are, however, mostly unalignable. Phylogenetic analysis based on the alignable segments of the sequences does not identify the orthologous gene in jawed vertebrates but rather shows equidistance of the lamprey Ikaros-like factors to each other and to Ikaros, Helios, Aiolos and Eos. Expression studies by reverse transcription (RT)-PCR and in situ hybridization (ISH), however, provide evidence for moderate expression in presumed lymphoid tissues like the gut epithelium and for high levels of expression in the gonads, especially in the ovary.
Collapse
|
29
|
Sato A, Mayer WE, Tichy H, Grant PR, Grant BR, Klein J. Evolution of Mhc class II B genes in Darwin's finches and their closest relatives: birth of a new gene. Immunogenetics 2001; 53:792-801. [PMID: 11862412 DOI: 10.1007/s00251-001-0393-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2001] [Revised: 10/26/2001] [Indexed: 11/27/2022]
Abstract
The 15 extant species of Darwin's finches on the Galápagos and Cocos Islands are the products of an unfinished adaptive radiation from a founder flock of birds related to the South American species Tiaris obscura. Molecular characterization of their major histocompatibility complex ( Mhc) class II B genes has revealed the existence of several related groups of sequences (presumably encoded in distinct loci) from which one (group 5) stands out because of its low divergence over extended time periods. Analysis of group 5 exon 2 and intron 2 sequences has revealed that the encoding locus apparently arose 2-3 million years ago in the Tiaris group of South and Central American Thraupini. The locus shows no evidence of inactivation, but displays a very low degree of polymorphism, both in terms of number of alleles and genetic distances between alleles. Some of the polymorphism, however, appears to be trans-specific. All the observed intergenic differences can be explained by point mutations and most of the exon 2 changes represent non-synonymous substitutions, although the rate of non-synonymous and synonymous substitutions appears to be the same. The origin of the new locus is explained by the birth-and-death model of Mhc evolution with two important extensions. First, the ancestor of the group 5 genes may have arisen without new gene duplication and second, the birth of the new group may have been brought about by a switch from balancing to directional selection. The ancestor of the group 5 genes may have been a classical class II B allele (one of many) which directional selection fixed in the ancestral population and drove into the category of nonclassical genes.
Collapse
|
30
|
Mayer WE, Klein J. Is tapasin a modified Mhc class I molecule? Immunogenetics 2001; 53:719-23. [PMID: 11862402 DOI: 10.1007/s00251-001-0403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Accepted: 11/16/2001] [Indexed: 11/28/2022]
|
31
|
Figueroa F, Mayer WE, Sato A, Zaleska-Rutczynska Z, Hess B, Tichy H, Klein J. Mhc class I genes of swordtail fishes, Xiphophorus: variation in the number of loci and existence of ancient gene families. Immunogenetics 2001; 53:695-708. [PMID: 11797104 DOI: 10.1007/s00251-001-0378-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2001] [Revised: 09/13/2001] [Indexed: 10/27/2022]
Abstract
Swordtail fishes and platies in the genus Xiphophorus (order Cyprinodontiformes, Teleostei) encompass 22 closely related species which are the products of a recent adaptive radiation in the streams of Central America. To investigate the evolution of the major histocompatibility complex (Mhc) genes in the period immediately following speciation, the class I genes from 20 of the 22 species were cloned and characterized by sequencing. The analysis revealed the existence of multiple loci (at least seven in some individuals) whose numbers vary among the different species and probably also among individuals of the same species. The variation does not seem to bear any relationship to the taxonomy of the genus. Genes at the different loci are distinguished by their intron sequences and by the presence of characteristic motifs in exons 2 and 3. The variation in copy number of loci may have been effected in part by unequal crossing over occurring between introns of misaligned closely related genes. The sequences of the genes fall into two groups, A and B, which represent ancient lineages. The groups define two families of loci, which diverged from each other an estimated 85 million years ago, before the separation of the Acanthopterygii from the Paracanthopterygii of the advanced bony fishes. Evolution of the genes within each family can be explained by the birth-and-death process driven by gene duplications and mutational differentiation.
Collapse
|
32
|
Nagl S, Tichy H, Mayer WE, Samonte IE, McAndrew BJ, Klein J. Classification and phylogenetic relationships of African tilapiine fishes inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 2001; 20:361-74. [PMID: 11527464 DOI: 10.1006/mpev.2001.0979] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
African cichlid fishes are composed of two major lineages, the haplochromines and the tilapiines. Whereas the phylogenetic relationships of the haplochromines have been studied extensively, primarily because of their spectacular adaptive radiations in the Great Lakes of East Africa, little is known about the relationships among the tilapiine species, despite the fact that they have become an important component of African, indeed world, aquaculture. To remedy this situation, molecular phylogenetic analysis of tilapiine fishes was undertaken. A segment of mitochondrial DNA encompassing the terminal part of the tRNA(Pro) gene and the most variable part of the control region was amplified by the polymerase chain reaction with DNA samples isolated from 42 tilapiine species, and the amplification products were subjected to heteroduplex analysis and sequencing. Phylogenetic trees based on 68 sequences revealed the existence of 11 sequence groups and 11 single-sequence branches. The groups, designated Ti1 through Ti11, were distinguished by specific combinations of diagnostic substitutions, formation of monophyletic clusters, and separation by genetic distances in excess of 0.04. Although the relationships among the groups could not be resolved, the sequences separated Oreochromis and Sarotherodon from Tilapia, as defined by Trewavas. The Oreochromis sequences clustered with the Sarotherodon sequences and thus supported the hypothesis that the mouthbrooding behavior of the tilapiine fishes evolved only once from the substrate-spawning behavior. Since on phylogenetic trees the O. alcalicus (sub)species were always separated from O. amphimelas by other Oreochromis species, it was concluded that the adaptation to life in water with a high salt concentration and high pH values evolved independently at least twice in the tilapiine fishes. The tilapiines diverged from the haplochromines more than 8 million years ago; most of the intragroup divergences among the tilapiines took place an estimated 1.1 to 6 million years ago.
Collapse
|
33
|
Nagl S, Mayer WE, Klein J. Isolation and sequencing of cDNA clones coding for the catalytic unit of glucose-6-phosphatase from two haplochromine cichlid fishes. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:25-9. [PMID: 10565541 DOI: 10.3109/10425179909033932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Complementary DNA clones coding for the catalytic unit of the enzyme glucose-6-phosphatase (G6Pase) were obtained from Haplochromis nubilus and Haplochromis xenognathus, two cichlid fish species from Lake Victoria. The translated sequence of these two cDNAs identifies a polypeptide consisting of 352 amino acid residues and showing a 54.4% similarity to the human form of G6Pase. The amino acid sequences of the two fish species are identical. The comparison of the fish amino acid sequence with the corresponding sequences of rat, mouse, and human G6Pase revealed that the amino acid residues, which are involved in G6Pase catalysis in humans, are also conserved in fish G6Pase. Northern blot analysis showed that G6Pase is expressed at the same level in 6- and 10-day-old fish. A three base pair insertion/deletion polymorphism was found in the 3'-untranslated region of the fish G6Pase gene. The polymorphism will be a useful marker in a phylogenetic study of Lake Victoria cichlids.
Collapse
|
34
|
Figueroa F, Mayer WE, Sültmann H, O'hUigin C, Tichy H, Satta Y, Takezaki N, Takahata N, Klein J. Mhc class II B gene evolution in East African cichlid fishes. Immunogenetics 2000; 51:556-75. [PMID: 10912507 DOI: 10.1007/s002510000181] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A distinctive feature of essential major histocompatibility complex (Mhc) loci is their polymorphism characterized by large genetic distances between alleles and long persistence times of allelic lineages. Since the lineages often span several successive speciations, we investigated the behavior of the Mhc alleles during or close to the speciation phase. We sequenced exon 2 of the class II B locus 4 from 232 East African cichlid fishes representing 32 related species. The divergence times of the (sub)species ranged from 6,000 to 8.4 million years. Two types of evolutionary analysis were used to elucidate the pattern of exon 2 sequence divergence. First, phylogenetic methods were applied to reconstruct the most likely evolutionary pathways leading from the last common ancestor of the set to the extant sequences, and to assess the probable mechanisms involved in allelic diversification. Second, pairwise comparisons of sequences were carried out to detect differences seemingly incompatible with origin by nonparallel point mutations. The analysis revealed point mutations to be the most important mechanism behind allelic divergences, with recombination playing only an auxiliary part. Comparison of sequences from related species revealed evidence of random allelic (lineage) losses apparently associated with speciation. Sharing of identical alleles could be demonstrated between species that diverged 2 million years ago. The phylogeny of the exon was incongruent with that of the flanking introns, indicating either a high degree of convergent evolution at the peptide-binding region-encoding sites, or intron homogenization.
Collapse
|
35
|
Nagl S, Tichy H, Mayer WE, Takezaki N, Takahata N, Klein J. The origin and age of haplochromine fishes in Lake Victoria, east Africa. Proc Biol Sci 2000; 267:1049-61. [PMID: 10874756 PMCID: PMC1690633 DOI: 10.1098/rspb.2000.1109] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to a widely held view, the more than 300 species of haplochromine cichlid fishes in Lake Victoria (LV), East Africa, originated from a single founder species in less than 12,000 years. This view, however, does not follow from the published geological and molecular evidence. The former does indeed suggest that the LV basin dried out less than 15,000 years ago, but it does not provide any information about the species that re-colonized the new lake or that remained in the rivers draining the area. The molecular evidence is inconclusive with respect to the origin of the LV haplochromines because cichlids from critical regions around LV were not adequately sampled; and as far as the age of the LV haplochromines is concerned, it in fact led to an estimate of 250,000-750,000 years old. In the present study, mitochondrial DNA (control region) variation was determined by heteroduplex and sequencing analyses of more than 670 specimens collected at widely distributed East African riverine and lacustrine localities. The analyses revealed the existence of seven haplogroups (I-VII) distinguishable by characteristic substitutions. All endemic LV samples tested fell into one of these haplogroups (V) which, however, was also found to be present at various other localities, both riverine and lacustrine, outside LV. Within this haplogroup, four subgroups (VA through VD) could be distinguished, two of which (VB and VC) were represented in LV and at other localities. The great majority of the LV haplochromine species could be classified as belonging to the VC subgroup, which was found only in LV and in the rivers draining into it. Hence, while the endemic haplochromine species of LV could not have originated from a single founding population, the lake does harbour a large species flock which probably arose in situ.
Collapse
|
36
|
Samonte IE, Pagulayan RC, Mayer WE. Molecular phylogeny of Philippine freshwater sardines based on mitochondrial DNA analysis. J Hered 2000; 91:247-53. [PMID: 10833053 DOI: 10.1093/jhered/91.3.247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The commercially important Sardinella species (family Clupeidae or herrings) usually thrive in marine environments. An exception is Sardinella tawilis of Taal Lake, Batangas, Philippines, the only known freshwater sardine. This species is believed to have immigrated from Balayan Bay to the lake when it was formed in the course of volcanic eruptions some 240 years ago. To determine the relationship of S. tawilis to the marine species S. albella, S. fimbriata, and S. longiceps from the Balayan Bay we sequenced 358 bp of the cytochrome b gene and the mitochondrial control region. The cytochrome b gene was highly conserved and contained little phylogenetic information. The control region sequences, however, demonstrated two highly diversified main haplotypes grouping S. tawilis with S. albella, as shown by maximum parsimony and neighbor-joining analysis. The haplotypes are characterized by the presence of an 81 bp indel and up to eight 35 bp tandem repeat elements. The repeat copy number varied within individuals of S. tawilis and S. albella, thus showing heteroplasmy in these two species only. The analysis of two subpopulations of S. tawilis revealed restricted substitutions that may indicate the beginning of genetic differentiation of the two subpopulations.
Collapse
|
37
|
|
38
|
Takami K, Figueroa F, Mayer WE, Klein J. Ancient allelism at the cytosolic chaperonin-alpha-encoding gene of the zebrafish. Genetics 2000; 154:311-22. [PMID: 10628990 PMCID: PMC1460920 DOI: 10.1093/genetics/154.1.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The T-complex protein 1, TCP1, gene codes for the CCT-alpha subunit of the group II chaperonins. The gene was first described in the house mouse, in which it is closely linked to the T locus at a distance of approximately 11 cM from the Mhc. In the zebrafish, Danio rerio, in which the T homolog is linked to the class I Mhc loci, the TCP1 locus segregates independently of both the T and the Mhc loci. Despite its conservation between species, the zebrafish TCP1 locus is highly polymorphic. In a sample of 15 individuals and the screening of a cDNA library, 12 different alleles were found, and some of the allelic pairs were found to differ by up to nine nucleotides in a 275-bp-long stretch of sequence. The substitutions occur in both translated and untranslated regions, but in the former they occur predominantly at synonymous codon sites. Phylogenetically, the alleles fall into two groups distinguished also by the presence or absence of a 10-bp insertion/deletion in the 3' untranslated region. The two groups may have diverged as long as 3.5 mya, and the polymorphic differences may have accumulated by genetic drift in geographically isolated populations.
Collapse
|
39
|
Figueroa F, Mayer WE, Lom J, Dyková I, Weller M, Pecková H, Klein J. Fish trypanosomes: their position in kinetoplastid phylogeny and variability as determined from 12S rRNA kinetoplast sequences. J Eukaryot Microbiol 1999; 46:473-81. [PMID: 10519215 DOI: 10.1111/j.1550-7408.1999.tb06064.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fish trypanosomes have traditionally been classified according to the host species from which they were isolated, each isolate being regarded as a distinct species. To test the soundness of this practice, the genetic variabilities of the kinetoplast 12S rRNA-encoding genes of different fish trypanosomes isolates were compared. The DNAs were extracted from trypanosomes cloned from blood samples of 15 donors representing ten different fish species in four orders from waters of three major river systems of Central and Northern Europe. Comparison with other trypanosomatid sequences revealed that the fish trypanosomes form a monophyletic group with Trypanosoma brucei as a sister group. Pairwise comparisons of genetic distances yielded a wide range of continuous variation with no indication of any discontinuities attributable to barriers to gene flow. The genetic distances did not correlate with either the identity of the host species or geography. The host specificity of fish trypanosomes appears to be limited.
Collapse
|
40
|
Sato A, Sültmann H, Mayer WE, Figueroa F, Tichy H, Klein J. cDNA sequence coding for the alpha'-chain of the third complement component in the African lungfish. Scand J Immunol 1999; 49:367-75. [PMID: 10219761 DOI: 10.1046/j.1365-3083.1999.00512.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNA clones coding for almost the entire C3 alpha-chain of the African lungfish (Protopterus aethiopicus), a representative of the Sarcopterygii (lobe-finned fishes), were sequenced and characterized. From the sequence it is deduced that the lungfish C3 molecule is probably a disulphide-bonded alpha:beta dimer similar to that of the C3 components of other jawed vertebrates. The deduced sequence contains conserved sites presumably recognized by proteolytic enzymes (e.g. factor I) involved in the activation and inactivation of the component. It also contains the conserved thioester region and the putative site for binding properdin. However, the site for the interaction with complement receptor 2 and factor H are poorly conserved. Either complement receptor 2 and factor H are not present in the lungfish or they bind to different residues at the same or a different site than mammalian complement receptor 2 and factor H. The C3 alpha-chain sequences faithfully reflect the phylogenetic relationships among vertebrate classes and can therefore be used to help to resolve the long-standing controversy concerning the origin of the tetrapods.
Collapse
|
41
|
Nagl S, Tichy H, Mayer WE, Takahata N, Klein J. Persistence of neutral polymorphisms in Lake Victoria cichlid fish. Proc Natl Acad Sci U S A 1998; 95:14238-43. [PMID: 9826684 PMCID: PMC24357 DOI: 10.1073/pnas.95.24.14238] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic trees for groups of closely related species often have different topologies, depending on the genes used. One explanation for the discordant topologies is the persistence of polymorphisms through the speciation phase, followed by differential fixation of alleles in the resulting species. The existence of transspecies polymorphisms has been documented for alleles maintained by balancing selection but not for neutral alleles. In the present study, transspecific persistence of neutral polymorphisms was tested in the endemic haplochromine species flock of Lake Victoria cichlid fish. Putative noncoding region polymorphisms were identified at four randomly selected nuclear loci and tested on a collection of 12 Lake Victoria species and their putative riverine ancestors. At all loci, the same polymorphism was found to be present in nearly all the tested species, both lacustrine and riverine. Different polymorphisms at these loci were found in cichlids of other East African lakes (Malawi and Tanganyika). The Lake Victoria polymorphisms must have therefore arisen after the flocks now inhabiting the three great lakes diverged from one another, but before the riverine ancestors of the Lake Victoria flock colonized the Lake. Calculations based on the mtDNA clock suggest that the polymorphisms have persisted for about 1.4 million years. To maintain neutral polymorphisms for such a long time, the population size must have remained large throughout the entire period.
Collapse
|
42
|
Mayer WE, Tichy H, Klein J. Phylogeny of African cichlid fishes as revealed by molecular markers. Heredity (Edinb) 1998; 80 ( Pt 6):702-14. [PMID: 9675872 DOI: 10.1046/j.1365-2540.1998.00347.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The species flocks of cichlid fish in the three great East African Lakes, Victoria, Malawi, and Tanganyika, have arisen in each lake by explosive adaptive radiation. Various questions concerning their phylogeny have not yet been answered. In particular, the identity of the ancestral founder species and the monophyletic origin of the haplochromine cichlids from the East African lakes have not been established conclusively. In the present study, we used the anonymous nuclear DNA marker DXTU1 as a step towards answering these questions. A 280 bp-fragment of the DXTU1 locus was amplified by the polymerase chain reaction from East African lacustrine species, the East African riverine cichlid species Haplochromis bloyeti, H. burtoni and H. sparsidens, and other African cichlids. Sequencing revealed several indels and substitutions that were used as cladistically informative markers to support a phylogenetic tree constructed by the neighbor-joining method. The topology, although not supported by high bootstrap values, corresponds well to the geographical distribution and previous classification of the cichlids. Markers could be defined that: (i) differentiate East African from West African cichlids; (ii) distinguish the riverine and Lake Victoria/Malawi haplochromines from Lake Tanganyika cichlids; and (iii) indicate the existence of a monophyletic Lake Victoria cichlid superflock which includes haplochromines from satellite lakes and East African rivers. In order to resolve further the relationship of East African riverine and lacustrine species, mtDNA cytochrome b and control region segments were sequenced. The mtDNA-based trees support the notion of the monophyly of the Lake Victoria superflock but are ambiguous with respect to the phylogenetic position of the Lake Malawi flock.
Collapse
|
43
|
Trachtulec Z, Mnuková-Fajdelová M, Hamvas RM, Gregorová S, Mayer WE, Lehrach HR, Vincek V, Forejt J, Klein J. Isolation of candidate hybrid sterility 1 genes by cDNA selection in a 1.1 megabase pair region on mouse chromosome 17. Mamm Genome 1997; 8:312-6. [PMID: 9107673 DOI: 10.1007/s003359900430] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Hybrid sterility 1 (Hst1) gene causes male infertility in crosses between certain inbred strains of the laboratory and wild mouse, Mus musculus. To identify the causative gene, we have searched YAC clones encompassing the Hst1 region for testis-expressed sequences, using the cDNA selection method. We isolated 12 non-overlapping cDNA clones, sequenced them, and placed them on a physical map based on the analysis of YAC clones and total genomic DNA. The cDNA clones map to ten loci. Three cDNA sequences correspond to the proteasome subunit C5 (locus Psmb1), ornithine decarboxylase (Odc-rs15), and penta-zinc finger (Zfp91-rs1) transcripts. Three of the ten testis-expressed loci described in this report (D17Ph4e, Psmb1, and Zfp91-rs1) co-segregate with all Hst1 recombinants and, together with the Tbp gene, are therefore potential candidates for the Hst1 gene. The presented physical and genetic mapping data indicate there are no gross rearrangements distinguishing the Hst1(f) and Hst1(s) alleles.
Collapse
MESH Headings
- Animals
- Chromosome Mapping
- Cloning, Molecular
- Crosses, Genetic
- DNA, Complementary/genetics
- Electrophoresis, Gel, Pulsed-Field
- Female
- Gene Expression
- Hybridization, Genetic
- Infertility, Male/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muridae
Collapse
|
44
|
Satta Y, Mayer WE, Klein J. HLA-DRB intron 1 sequences: implications for the evolution of HLA-DRB genes and haplotypes. Hum Immunol 1996; 51:1-12. [PMID: 8911992 DOI: 10.1016/s0198-8859(96)00155-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human DRB genes encode beta chains of the major histocompatibility complex (MHC) class II molecules. Although nine DRB loci have been mapped to the short arm of chromosome 6, an individual chromosome contains only one to five loci and is classified into one of five major haplotypes. To elucidate the origin of human DRB loci and haplotypes, intron 1 sequences approximately 5000 bp in length were determined for three DRB1 alleles (DRB1*03, DRB1*04, and DRB1*15) and five DRB genes (DRB2, DRB3, DRB4, DRB5, and DRB7). The sequences were subjected to phylogenetic analyses together with previously determined intron 4 and 5 sequences. The sequences provided two sources of information: Nucleotide substitutions that could be used to construct phylogenetic trees and to estimate divergence times and a set of insertions (mostly Alu elements) that reveal the order of splitting of duplicated genes. The combined data indicate that the ancestor of the human DRB genes was HLA-DRB1*04-like and that the DRB2, DRB7, DRB5, and DRB3 genes arose from this ancestor by four rounds of duplication 58, 56, 53, and 36 million years (MY) ago, respectively. The DRB4 gene may have arisen 46 MY ago by a deletion from the DRB1 and DRB2 genes and the DRB6 gene is probably an allele at the DRB2 locus. During the course of its evolution, the DRB1*04 gene acquired an intron 1 segment (including two Alu elements) from a gene that became the ancestor of DRB1*03. The present-day HLA-DR haplotypes were derived from three principal ancestral haplotypes: DRB1-DRB2, DRB1-DRB5, and DRB1-DRB7.
Collapse
|
45
|
Satta Y, Mayer WE, Klein J. Evolutionary relationship of HLA-DRB genes inferred from intron sequences. J Mol Evol 1996; 42:648-57. [PMID: 8662017 DOI: 10.1007/bf02338798] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major histocompatibility complex (Mhc) consists of class I and class II genes. In the human Mhc (HLA) class II genes, nine DRB loci have been identified. To elucidate the origin of these duplicated loci and allelic divergences at the most polymorphic DRB1 locus, introns 4 and 5 as well as the 3' untranslated region (altogether approximately 1,000 base pairs) of seven HLA-DRB loci, three HLA-DRB1 alleles, and nine nonhuman primate DRB genes were examined. It is shown that there were two major diversification events in HLA-DRB genes, each involving gene duplications and allelic divergences. Approximately 50 million years (my) ago, DRB1*04 and an ancestor of the DRB1*03 cluster (DRB1*03, DRB1*15, and DRB3) diverged from each other and DRB5, DRB7, DRB8, and an ancestor of the DRB2 cluster (DRB2, DRB4, and DRB6) arose by gene duplication. Later, about 25 my ago, DRB1*15 diverged from DRB1*03, and DRB3 was duplicated from DRB1*03. Then, some 20 my ago, the lineage leading to the DRB2 cluster produced two new loci, DRB4 and DRB6. The DRB1*03 and DRB1*04 allelic lineages are extraordinarily old and have persisted longer than some duplicated genes. The orthologous relationships of DRB genes between human and Old World monkeys are apparent, but those between Catarrhini and New World monkeys are equivocal because of a rather rapid expansion and contraction of primate DRB genes by duplication and deletion.
Collapse
|
46
|
Seeger A, Mayer WE, Klein J. A complement factor B-like cDNA clone from the zebrafish (Brachydanio rerio). Mol Immunol 1996; 33:511-20. [PMID: 8700167 DOI: 10.1016/0161-5890(96)00002-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An important molecule in the activation of the complement system in vertebrates is factor B, a serine protease with a molecular mass of 95,000. Factor B and the complement component C2 are thought to have arisen by gene duplication. In mammals and in Xenopus the factor B gene is linked to the major histocompatibility complex (MHC), whereas in domestic fowl it segregates independently of the MHC. Here we describe the isolation of a cDNA clone coding for factor B in the zebrafish, Brachydanio rerio. The deduced protein sequence exhibits a characteristic mosaic structure consisting of the short consensus repeat (SCR), the von Willebrand factor, and the serine protease domains. The estimated time of factor B and C2 divergence (approximately 350 million years ago), combined with the fact that C2 has thus far been found only in mammals, suggest that the factor B-C2 gene duplication occurred after the divergence of mammal-like reptiles from other reptiles and hence also birds. After the duplication, the C2 component evolved significantly faster than factor B.
Collapse
|
47
|
Trtkova K, Mayer WE, O'Huigin C, Klein J. Mhc-DRB genes and the origin of New World monkeys. Mol Phylogenet Evol 1995; 4:408-19. [PMID: 8747297 DOI: 10.1006/mpev.1995.1038] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major histocompatibility complex (Mhc) is a family of loci characterized by its relatively rapid evolutionary turnover, large genetic distances between genes, and long persistence of allelic lineages effected by balancing selection. These features render the Mhc highly suitable for answering questions concerning speciation and adaptive radiation. The aim of the present study was to use Mhc-DRB genes to make inferences about the founding population of the Platyrrhini. Three segments, each approximately 300 base pairs in length, of the platyrrhine DRB genes were amplified by the polymerase chain reaction and sequenced. The segments were derived from intron 2, exon 3, and exon 6 of DRB genes from different species of New World monkeys. The results of the study have revealed that on a phylogenetic tree, all of the tested platyrrhine genes appear to form a single cluster, while all catarrhine DRB genes form a distinct cluster, although the bootstrap values fail to provide statistically significant support for the separation of these two clades. This observation suggests that the multiple platyrrhine genes originated from a single ancestral gene after the divergence of the Platyrrhini and Catarrhini and thus contradicts the results of an earlier study in which some exon 2 DRB sequences appeared to predate the split of the two primate groups. The inconsistency in the DRB gene phylogeny can be explained by postulating convergent evolution for the peptide-binding region of the DRB exon 2 sequences. The phylogeny of the platyrrhine DRB genes (except for exon 2) is relatively "shallow"; the distances between genes are relatively short (in comparison to the catarrhine DRB genes), and there is a tendency for sequences of individual species to cluster together. The phylogeny of the platyrrhine DRB genes is consistent with the postulate that a small population founded the group and that there is an ongoing adaptive radiation from small, relatively isolated founding populations.
Collapse
|
48
|
Sültmann H, Mayer WE, Figueroa F, Tichy H, Klein J. Phylogenetic analysis of cichlid fishes using nuclear DNA markers. Mol Biol Evol 1995; 12:1033-47. [PMID: 8524038 DOI: 10.1093/oxfordjournals.molbev.a040279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The recent explosive adaptive radiation of cichlids in the great lakes of Africa has attracted the attention of both morphologists and molecular biologists. To decipher the phylogenetic relationships among the various taxa within the family Cichlidae is a prerequisite for answering some fundamental questions about the nature of the speciation process. In the present study, we used the random amplification of polymorphic DNA (RAPD) technique to obtain sequence differences between selected cichlid species. We then designed specific primers based on these sequences and used them to amplify template DNA from a large number of species by the polymerase chain reaction (PCR). We sequenced the amplified products and searched the sequences for indels and shared substitutions. We identified a number of such characters at three loci--DXTU1, DXTU2, and DXTU3--and used them for phylogenetic and cladistic analysis of the relationships among the various cichlid groups. Our studies assign an outgroup position to Neotropical cichlids in relation to African cichlids, provide evidence for a sister-group relationship of tilapiines to the haplochromines, group Cyphotilapia frontosa with the lamprologines of Lake Tanganyika, place Astatoreochromis alluaudi to an outgroup position with respect to other haplochromines of Lakes Victoria and Malawi, and provide additional support for the monophyly of the remaining Lake Victoria haplochromines and the Lake Malawi haplochromines. The described approach holds great promise for further resolution of cichlid phylogeny.
Collapse
|
49
|
Mayer WE, Tichy H. A cDNA clone from the sea lamprey Petromyzon marinus coding for a scavenger receptor Cys-rich (SRCR) domain protein. Gene 1995; 164:267-71. [PMID: 7590341 DOI: 10.1016/0378-1119(95)94092-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our knowledge of the immune system in the early vertebrates, the Agnatha, and the molecules involved in their immune reactions is fragmentary. By serendipity we discovered a cDNA clone in a library made from gut poly(A)+RNA of the sea lamprey, Petromyzon marinus (Pema), that translates into the SREG (SRCR-EGF, see below) protein which resembles cell-membrane proteins of mammalian immune cells. The putative translated product is a type-I integral membrane glycoprotein which contains two scavenger receptor Cys-rich (SRCR) domains flanking five epidermal growth factor (EGF)-like repeats. The two SRCR domains are closely related to CD6 (expressed on human lymphocytes), WC1 (expressed on mammalian CD4-CD8(-)-gamma delta T cells) and M130 (expressed on human macrophages). The Pema-SREG may therefore be involved in intercellular contacts and cell activation or differentiation in the immune system. It is thus a potential marker that can be used to investigate the lamprey immune system.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/chemistry
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/chemistry
- Base Sequence
- Cell Membrane/immunology
- Cloning, Molecular
- Consensus Sequence
- Cysteine
- DNA, Complementary/metabolism
- Epidermal Growth Factor/chemistry
- Gene Library
- Humans
- Lampreys/genetics
- Macrophages/immunology
- Mammals
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Proteins
- Molecular Sequence Data
- Phylogeny
- Protein Biosynthesis
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Lipoprotein
- Receptors, Scavenger
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Scavenger Receptors, Class B
- Sequence Homology, Amino Acid
- T-Lymphocytes/immunology
Collapse
|
50
|
Tacchini-Cottier F, Mayer WE, Begovich AB, Jones PP. Inactivation of E alpha and E beta expression in inbred and wild mice by multiple distinct mutations, some of which predate speciation within Mus species. Int Immunol 1995; 7:1459-71. [PMID: 7495754 DOI: 10.1093/intimm/7.9.1459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The H-2 MHC of mice encodes two functional class II heterodimeric proteins: A alpha A beta (A) and E alpha E beta (E). While failure to express the A protein has not been reported, a significant proportion of of H-2 haplotypes in both inbred and wild mice do not express E proteins. We and others have previously characterized the molecular basis for defective E expression in haplotypes from Mus domesticus (b, f, q, s, from inbred strains) and M. castaneus (w17, wild-derived) species, identifying six distinct defects in the genes for E alpha or E beta. In this report we have extended these studies to other E- haplotypes, including several from t-haplotype-bearing M. domesticus mice (w29, w57, w302) and one derived from the Asian species M. bactrianus (w301). Analyses at the protein, RNA and DNA levels were employed to identify the defects in the genes for Ea and Eb. At least one new defect was identified that prevents E beta expression in a t-associated H-2 haplotypes (w57), bringing the number of distinct mutations causing the E- phenotype to seven. Another t-associated haplotype, w302, was found to share the same E beta defect with mice of the inbred q haplotype and of the w17 haplotype from M. castaneus, while its Ea gene contains the deletion carried also by the inbred b and s haplotypes and by a number of wild haplotypes. The mutations in the Ea and Eb genes of the w301 haplotype from M. bactrianus were found to be identical to those of the inbred f haplotype. This indicates that the origin of the mutations in the Eb genes of the q, w17 and w302 haplotypes and in the Ea and Eb genes of the f and w301 haplotypes, predated speciation within Mus, thought to have occurred approximately 0.35-1 million years ago. Their maintenance in mouse populations suggests that in certain conditions the failure to express E alpha E beta proteins may be advantageous and selected for.
Collapse
|