26
|
Jia B, Zhang J, Hong S, Chang X, Li X. Sublethal effects of chlorfenapyr on Plutella xylostella (Lepidoptera: Plutellidae). PEST MANAGEMENT SCIENCE 2023; 79:88-96. [PMID: 36087295 DOI: 10.1002/ps.7175] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/26/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The diamondback moth (DBM), Plutella xylostella (L.), is the most destructive pest of cruciferous vegetables worldwide. Chlorfenapyr is an important insecticide for controlling DBM. The impacts of three sublethal doses (LC1 , LC10 and LC30 ) of chlorfenapyr on the chlorfenapyr-exposed DBM individuals and their unexposed F1 and F2 offspring were investigated in order to reveal the non-lethal deleterious effects of chlorfenapyr and its potential hormetic effects. RESULTS LC1 significantly increased female pupa weight of F0 and F1 generations, and F0 fecundity as well as F1 gross reproduction rate (GRR). The LC1 -elicited rise in emergency rate and fecundity was significantly greater in F0 than in F1 . By contrast, LC30 significantly decreased age-specific survival rates, pupation rate, male pupal weight, emergence rate and fecundity of F0 and F1 generations as well as female adult proportion and GRR, net reproduction rate (R0 ), intrinsic rate of increase (rm ) and finite rate of increase (λ) of F1 generation. The LC30 -induced reductions in pupation rate, adult emergence rate, male and female pupa weight, and fecundity were greater in F1 than in F0 . While LC10 elicited only a mild inhibition (extension of pupal duration) in F0 , it yielded both deleterious (drops in female proportion and age-specific survivals) and hormetic effects (ups in male longevity and female fecundity) in F1 . CONCLUSION The results demonstrate that the sublethal effects of chlorfenapyr on DBM vary from inhibition to stimulatory hormesis, depending on the dose and generation. © 2022 Society of Chemical Industry.
Collapse
|
27
|
Zheng X, Liu X, Li X, Quan C, Li P, Chang X, Gu J, Khaskheli MI, Gong G. Pestalotiopsis Species Associated with Blueberry Leaf Spots and Stem Cankers in Sichuan Province of China. PLANT DISEASE 2023; 107:149-156. [PMID: 35666222 DOI: 10.1094/pdis-07-21-1550-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Blueberry leaf spots and stem cankers caused by Pestalotiopsis spp. have become a serious threat for the production of blueberry in Sichuan Province. To characterize the etiology of the diseases connected with these fungi, samples showing leaf spot and stem canker symptoms were collected from the 12 main blueberry-growing areas of Sichuan Province from 2015 to 2020 and used for pathogen isolation. In total, 91 fungal isolates were obtained with preliminary morphological identification and 48 representative strains were selected for further pathogenicity test and molecular identification. Four species, including Pestalotiopsis clavispora (Neopestalotiopsis clavispora) (57.14%), P. trachicarpicola (28.57%), P. chamaeropis (13.19%), and P. adusta (1.10%), were identified based on conidial morphology, cultural characteristics, and phylogenetic analysis of the internal transcribed spacer region, partial sequence of the β-tubulin gene, and the translation elongation factor 1-α. Pathogenicity tests showed that four species were pathogenic to leaves and stems of blueberry. Among them, P. clavispora (N. clavispora) was the most aggressive as the predominant species to cause both leaf spot and stem canker. P. trachicarpicola and P. chamaeropis were mainly isolated from leaves but also pathogenic to stems. P. adusta was only isolated from stems but also pathogenic to leaves. To the best of our knowledge, this is the first report of P. chamaeropis and P. adusta as pathogens causing leaf spots and stem canker on blueberry. The results provide helpful information in disease diagnosis and management of blueberry.
Collapse
|
28
|
Lan X, Sun W, Guo Y, Chang X, Wang G, Hu R. Better prognosis in POEMS patients with cerebral infarction before polyneuropathy. Heliyon 2022; 8:e12201. [PMID: 36578403 PMCID: PMC9791334 DOI: 10.1016/j.heliyon.2022.e12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/14/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
POEMS syndrome is a plasma cell disease. Clinical manifestations and clinical onset are variable. In recent years, more and more cases of POEMS syndrome with cerebrovascular disease and ischemic stroke have been reported. However, it is rare for patients with POEMS syndrome to present with a cerebrovascular accident as the first clinical manifestation. We presented three cases of POEMS syndrome with cerebral infarction in different phases of the disease. We then searched the literature for studies involving POEMS syndrome complicated with cerebral infarction. There were 81 cases in total. In nine patients, cerebral infarctions occurred before polyneuropathy. Patients with cerebral infarction before polyneuropathy have better prognosis of POEMS than those with cerebral infarction after polyneuropathy.
Collapse
|
29
|
Chang X, Huang L, Liu J, Cao Y, Chang J. Using EBT3 Films and Monte Carlo Simulations to Determine the Percent Depth Dose of a New Y-90 Disc Source for Episcleral Brachytherapy. Int J Radiat Oncol Biol Phys 2022. [DOI: 10.1016/j.ijrobp.2022.07.2174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Yang C, Ran X, Zhou Y, Huang Y, Yue G, Zhang M, Gong G, Chang X, Qiu X, Chen H. Study on the relationship of Hsp70 with the temperature sensitivity of pedunsaponin A poisoning Pomacea canaliculata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105243. [PMID: 36464353 DOI: 10.1016/j.pestbp.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have found that temperature influences molluscicidal the activity of pedunsaponin A (PA), which may be related to the expression of Hsp70, a cold-tolerance gene in Pomacea canaliculata. We determined the temperature effect of PA and the relationship between Hsp70 and temperature sensitivity of P. canaliculata poisoned by PA. Toxicity tests resulted in LC50 values of 17.7239 mg⋅L-1 at 10 °C, which decreased to 2.5774 mg⋅L-1 at 30 °C, implying a positive correlation between toxicity of PA and temperature. After Hsp70 being interfered, the mortality rate of P. canaliculata treated with PA for 72 h was 70%, which was significantly higher than that of snails treated with PA for 72 h without interfering (56.7%). Meanwhile, immune enzyme activities such as SOD, ACP and AKP were significantly increased in the interfered group and expression level of PcAdv in the gill was also significantly increased. These results suggest that deletion of Hsp70 promotes the activation of some immune enzymes of P. canaliculata and elevates the content of target proteins to cope with the dual stresses of low temperatures and molluscicides. These findings indicate that the Hsp70 plays an important role in influencing the temperature sensitivity of P. canaliculata when treated with PA.
Collapse
|
31
|
Chang X, Wei D, Zeng Y, Zhao X, Hu Y, Wu X, Song C, Gong G, Chen H, Yang C, Zhang M, Liu T, Chen W, Yang W. Maize-soybean relay strip intercropping reshapes the rhizosphere bacterial community and recruits beneficial bacteria to suppress Fusarium root rot of soybean. Front Microbiol 2022; 13:1009689. [PMID: 36386647 PMCID: PMC9643879 DOI: 10.3389/fmicb.2022.1009689] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Rhizosphere microbes play a vital role in plant health and defense against soil-borne diseases. Previous studies showed that maize-soybean relay strip intercropping altered the diversity and composition of pathogenic Fusarium species and biocontrol fungal communities in the soybean rhizosphere, and significantly suppressed soybean root rot. However, whether the rhizosphere bacterial community participates in the regulation of this intercropping on soybean root rot is not clear. In this study, the rhizosphere soil of soybean healthy plants was collected in the continuous cropping of maize-soybean relay strip intercropping and soybean monoculture in the fields, and the integrated methods of microbial profiling, dual culture assays in vitro, and pot experiments were employed to systematically investigate the diversity, composition, and function of rhizosphere bacteria related to soybean root rot in two cropping patterns. We found that intercropping reshaped the rhizosphere bacterial community and increased microbial community diversity, and meanwhile, it also recruited much richer and more diverse species of Pseudomonas sp., Bacillus sp., Streptomyces sp., and Microbacterium sp. in soybean rhizosphere when compared with monoculture. From the intercropping, nine species of rhizosphere bacteria displayed good antagonism against the pathogen Fusarium oxysporum B3S1 of soybean root rot, and among them, IRHB3 (Pseudomonas chlororaphis), IRHB6 (Streptomyces), and IRHB9 (Bacillus) were the dominant bacteria and extraordinarily rich. In contrast, MRHB108 (Streptomyces virginiae) and MRHB205 (Bacillus subtilis) were the only antagonistic bacteria from monoculture, which were relatively poor in abundance. Interestingly, introducing IRHB3 into the cultured substrates not only significantly promoted the growth and development of soybean roots but also improved the survival rate of seedlings that suffered from F. oxysporum infection. Thus, this study proves that maize-soybean relay strip intercropping could help the host resist soil-borne Fusarium root rot by reshaping the rhizosphere bacterial community and driving more beneficial microorganisms to accumulate in the soybean rhizosphere.
Collapse
|
32
|
Chang X, Li X, Meng H, Li H, Wu X, Gong G, Chen H, Yang C, Zhang M, Liu T, Chen W, Yang W. Physiological and metabolic analyses provide insight into soybean seed resistance to fusarium fujikuroi causing seed decay. FRONTIERS IN PLANT SCIENCE 2022; 13:993519. [PMID: 36340362 PMCID: PMC9630849 DOI: 10.3389/fpls.2022.993519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Seed-borne pathogens cause diverse diseases at the growth, pre- and post-harvest stage of soybean resulting in a large reduction in yield and quality. The physiological and metabolic aspects of seeds are closely related to their defense against pathogens. Recently, Fusarium fujikuroi has been identified as the dominant seed-borne fungi of soybean seed decay, but little information on the responses of soybean seeds induced by F. fujikuroi is available. In this study, a time-course symptom development of seed decay was observed after F. fujikuroi inoculation through spore suspension soaking. The germination rate and the contents of soluble sugar and soluble protein were significantly altered over time. Both chitinase and β-1,3-glucanase as important fungal cell wall-degrading enzymes of soybean seeds were also rapidly and transiently activated upon the early infection of F. fujikuroi. Metabolic profile analysis showed that the metabolites in glycine, serine, and threonine metabolism and tryptophan metabolism were clearly induced by F. fujikuroi, but different metabolites were mostly enriched in isoflavone biosynthesis, flavone biosynthesis, and galactose pathways. Interestingly, glycitein and glycitin were dramatically upregulated while daidzein, genistein, genistin, and daidzin were largely downregulated. These results indicate a combination of physiological responses, cell wall-related defense, and the complicated metabolites of soybean seeds contributes to soybean seed resistance against F. fujikuroi, which are useful for soybean resistance breeding.
Collapse
|
33
|
Huang X, Yang H, Tan D, Ge L, Fan Y, Chang X, Yang Z, Xiong H. VP.78 Clinical and genetic study of LAMA2-related muscular dystrophy patients with seizures. Neuromuscul Disord 2022. [DOI: 10.1016/j.nmd.2022.07.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Jin S, Wang X, Dong Y, Li G, Chang X, Zhang L, Jin S. The gene LpBCP increased NaHCO 3 resistance by enhancing lignin or ROS scavenging in the Nicotiana benthamiana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:1057-1065. [PMID: 35976073 DOI: 10.1111/plb.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Lilium pumilum is an excellent wildflower germplasm resource with high resistance to salinity stress. The gene LpBCP plays an important role in salinity tolerance of L. pumilum. Studying the molecular mechanism of salinity resistance in L. pumilum will provide insights into multiple aspects, including breeding better varieties, environmental protection, improving soil conditions, etc. Conventional methods were used to determine different physiological indicators of Nicotiana benthamiana after NaHCO3 treatment, i.e. chlorophyll content, soluble phenol content and lignin content. RT-qPCR was carried out to find expression of LpBCP in different organs and under abiotic stresses. DAB was used to detect H2 O2 in leaves in situ. A yeast two-hybrid system was used to screen for LpBCP interacting proteins. LpBCP was cloned from bulbs of L. pumilum. The highest expression of LpBCP was in roots and bulbs of transgenic plants. LpBCP-overexpressed plants showed less wilting, compared to WT plants. LpBCP transgenic plants have higher chlorophyll, soluble phenol and lignin content, and lower relative conductivity under 500 mM NaHCO3 stress. In addition, H2 O2 scavenging in transgenic plants was much improved, indicating increased resistance to NaHCO3 stress. Thirteen LpBCP-interacting proteins were screened using the yeast two-hybrid method and five were associated with salt stress. Based on our findings, LPBCP could be a key gene that can be used to improve L. pumilum salt tolerance.
Collapse
|
35
|
Chen H, Zhao Y, Qin G, Bi Y, Yue G, Zhang M, Chang X, Qiu X, Luo L, Yang C. Antifungal Effects and Active Components of Ligusticum chuanxiong. Molecules 2022; 27:4589. [PMID: 35889462 PMCID: PMC9320862 DOI: 10.3390/molecules27144589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
The separation of chemical components from wild plants to develop new pesticides is a hot topic in current research. To evaluate the antimicrobial effects of metabolites of Ligusticum chuanxiong (CX), we systematically studied the antimicrobial activity of extracts of CX, and the active compounds were isolated, purified and structurally identified. The results of toxicity measurement showed that the extracts of CX had good biological activities against Botrytis cinerea, Sclerotinia sclerotiorum, Alternaria alternata and Pythium aphanidermatum, and the value of EC50 were 130.95, 242.36, 332.73 and 307.29 mg/L, respectively. The results of in vivo determination showed that under the concentration of 1000 mg/L, the control effect of CX extract on Blumeria graminis was more than 40%, and the control effect on Botrytis cinerea was 100%. The antifungal active components of CX were identified as Senkyunolide A and Ligustilide by mass spectrometry and nuclear magnetic resonance. The MIC (minimum inhibitory concentration) value of Senkyunolide A and Ligustilide against Fusarium graminearum were 7.81 and 62.25 mg/L, respectively. As a new botanical fungicide with a brightly exploitative prospect, CX extract has potential research value in the prevention and control of plant diseases.
Collapse
|
36
|
Chen H, Ma Y, Zhou Y, Yue G, Yang C, Zhang M, Jiang C, Qiu X, Luo L, Chang X. Pharmacophore identification, virtual screening and activity verification of pedunsaponin A on target proteins PcAdv and PcnWAS of Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2022; 78:3098-3107. [PMID: 35439342 DOI: 10.1002/ps.6936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Target-protein-based pesticide screening has attracted wide-ranging attention on pesticide science. Pedunsaponin A (PA) is a compound isolated from the root of Pueraria peduncularis, and it has a strong toxic effect on Pomacea canaliculata. Previous studies found that Advlin (PcAdv) and neural Wiskott-Aldrich syndrome isoform X1(PcnWAS) are target proteins of PA when interacted with P. canaliculata. In this study, we modeled the two target proteins through I-Tasser and identified the pharmacophore of PA binding to the two target proteins by molecular docking. Furthermore, through virtual screening, potassium alginate was found to strongly bind to the target proteins in theory. In vivo bioassay showed that, similar to PA treatment, potassium alginate was able to induce typical poisoning symptoms on P. canaliculata, which were characterized by abnormal increase of excreta, weakening of climbing capacity, loss of gill cilia and decrease in hemocyanin content, and even cause death of P. canaliculata with a 13.33% mortality rate under 100 mg L-1 concentration. Furthermore, the treatment of potassium alginate also decreased the gene expression level of PcAdv and PcnWAS. These findings indicate that potassium alginate can affect the living state of P. canaliculata, and that it is feasible to develop new molluscicides based on PcAdv and PcnWAS by virtual screening. © 2022 Society of Chemical Industry.
Collapse
|
37
|
Wang X, Xue H, Chang X, Jin Z. Gastrointestinal: Epithelioid angiomyolipoma of the pancreas. J Gastroenterol Hepatol 2022; 37:781. [PMID: 34978112 DOI: 10.1111/jgh.15739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 12/09/2022]
|
38
|
Xu H, Yan L, Zhang M, Chang X, Zhu D, Wei D, Naeem M, Song C, Wu X, Liu T, Chen W, Yang W. Changes in the Density and Composition of Rhizosphere Pathogenic Fusarium and Beneficial Trichoderma Contributing to Reduced Root Rot of Intercropped Soybean. Pathogens 2022; 11:pathogens11040478. [PMID: 35456153 PMCID: PMC9031213 DOI: 10.3390/pathogens11040478] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The dynamic of soil-borne disease is closely related to the rhizosphere microbial communities. Maize–soybean relay strip intercropping has been shown to significantly control the type of soybean root rot that tends to occur in monoculture. However, it is still unknown whether the rhizosphere microbial community participates in the regulation of intercropped soybean root rot. In this study, rhizosphere Fusarium and Trichoderma communities were compared in either healthy or root-rotted rhizosphere soil from monocultured and intercropped soybean, and our results showed the abundance of rhizosphere Fusarium in intercropping was remarkably different from monoculture. Of four species identified, F. oxysporum was the most aggressive and more frequently isolated in diseased soil of monoculture. In contrast, Trichoderma was largely accumulated in healthy rhizosphere soil of intercropping rather than monoculture. T. harzianum dramatically increased in the rhizosphere of intercropping, while T. virens and T. afroharzianum also exhibited distinct isolation frequency. For the antagonism test in vitro, Trichoderma strains had antagonistic effects on F. oxysporum with the percentage of mycelial inhibition ranging from 50.59–92.94%, and they displayed good mycoparasitic abilities against F. oxysporum through coiling around and entering into the hyphae, expanding along the cell–cell lumen and even dissolving cell walls of the target fungus. These results indicate maize–soybean relay strip intercropping significantly increases the density and composition proportion of beneficial Trichoderma to antagonize the pathogenic Fusarium species in rhizosphere, thus potentially contributing to the suppression of soybean root rot under the intercropping.
Collapse
|
39
|
Song C, Wang W, Gan Y, Wang L, Chang X, Wang Y, Yang W. Growth promotion ability of phosphate-solubilizing bacteria from the soybean rhizosphere under maize-soybean intercropping systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1430-1442. [PMID: 34389997 DOI: 10.1002/jsfa.11477] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/13/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Optimum cultivation and management measures are needed to increase the phosphorus (P) absorption efficiency of crops for sustainable agricultural production. Previous studies indicated that leguminous crops can promote P absorption by neighboring gramineous crops. In this study, we isolated and screened the phosphate-solubilizing bacteria (PSB) from soybean rhizosphere under a maize-soybean intercropping system in Southwest China, and nine PSBs with high P-solubilizing ability were identified. RESULTS 16S rDNA sequencing and phylogenetic analysis showed that these PSBs belong mainly to Bacillus and Pseudomonas. The phosphate solubility of Bacillus aryabhattai B8W22 reached 388.62 μg mL-1 . High-performance liquid chromatographic analysis showed that each strain could secrete a large quantity of organic acids, including oxalic acid, malonic acid, citric acid and succinic acid. In addition, all strains produced indole acetic acid (IAA) and siderophores that could promote plant growth. Seed germination experiments testified that PSBs isolated in this study have an innate ability to promote plant growth. The plant culture pot experiment further illustrated that soil acid phosphatase (ACP) activity and available P content, as well as plant P uptake, increased significantly with PSBs inoculation. CONCLUSION PSBs from the rhizosphere soil of intercropped soybean could secrete organic acids that increase the solubilization of unavailable P, improve soil ACP activity and P availability, and produce IAA and siderophores that promote maize seed germination and seedling growth. Our findings indicate the PSBs from soybean rhizosphere have significant potential to reduce the application of chemical phosphate fertilizers and to promote sustainable agricultural development. © 2021 Society of Chemical Industry.
Collapse
|
40
|
Wang D, Lv W, Yuan Y, Zhang T, Teng H, Losey JE, Chang X. Effects of insecticides on malacostraca when managing diamondback moth (Plutella xylostella) in combination planting-rearing fields. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113090. [PMID: 34929500 DOI: 10.1016/j.ecoenv.2021.113090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The combination of crop planting and animal rearing in the same area is popular. However, if the methods of planting and rearing are not appropriate, it will result in losses and the disruption of pest management. The toxicities of 17 insecticides to Plutella xylostella, Eriocheir sinensis, and Procambarus clarkii were tested. The recommended maximum field doses were used in 2 d and 4 d bioassays, and the levels of resistance of P. xylostella to insecticides were determined. Of five insecticides that had relatively low toxicity to E. sinensis and P. clarkii, spinetoram and MbNPV showed the best control efficacy of P. xylostella, followed by tetrachlorantraniliprole, chlorantraniliprole, and avermectin. P. xylostella had relatively little resistance to spinetoram, MbNPV, chlorantraniliprole, and avermectin. Therefore, we concluded that the best insecticides suitable for combination planting and rearing fields (cauliflower-crab or cauliflower-crayfish) were spinetoram and MbNPV, followed by chlorantraniliprole and avermectin. Other insecticides, such as emamectin benzoate, indoxacarb, and chlorfenapyr were effective at controlling P. xylostella, but they were not suitable for use in combination planting and rearing fields because of their high toxicity to crabs and crayfish.
Collapse
|
41
|
Chang X, Deng W, Wenjie N, Li C, Han W, Gao L, Wang S, Zhou Z, Chen D, Qinfu F, Bi N, Lin Y, Gao S, Chen J, Xiao Z. Comparison of Two Major Staging Systems in Predicting Survival and Recommendation of Postoperative Radiotherapy Based on the 11th Japanese Classification for Esophageal Carcinoma After Curative Resection. Int J Radiat Oncol Biol Phys 2021. [DOI: 10.1016/j.ijrobp.2021.07.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Yang C, Xie L, Ma Y, Cai X, Yue G, Qin G, Zhang M, Gong G, Chang X, Qiu X, Luo L, Chen H. Study on the fungicidal mechanism of glabridin against Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104963. [PMID: 34802513 DOI: 10.1016/j.pestbp.2021.104963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Glabridin is a natural plant-derived compound that has been widely used in medicine and cosmetic applications. However, the fungicidal mechanism of glabridin against phytopathogens remains unclear. In this study, we determined the biological activity and physiological effects of glabridin against F. graminearum. Then the differentially expressed proteins of F. graminearum were screened. The EC50 values of glabridin in inhibiting the mycelial growth and conidial germination of F. graminearum were 110.70 mg/L and 40.47 mg/L respectively. Glabridin-induced cell membrane damage was indicated by morphological observations, DiBAC4(3) and PI staining, and measurements of relative conductivity, ergosterol content and respiratory rates. These assays revealed that the integrity of the membrane was destroyed, the content of ergosterol decreased, and the respiratory rate was inhibited. A proteomics analysis showed that 186 proteins were up-regulated and 195 proteins were down-regulated. Mechanically sensitive ion channel proteins related to transmembrane transport and ergosterol biosynthesis ERG4/ERG24, related to ergosterol synthesis were blocked. It is speculated that glabridin acts on ergosterol synthesis-related proteins to destroy the integrity of the cell membrane, resulting in abnormal transmembrane transport and an increased membrane potential. Finally, the morphology of mycelia was seriously deformed, growth and development were inhibited. As a result death was even induced.
Collapse
|
43
|
Xie D, Cai X, Yang C, Xie L, Qin G, Zhang M, Huang Y, Gong G, Chang X, Chen H. Studies on the control effect of Bacillus subtilis on wheat powdery mildew. PEST MANAGEMENT SCIENCE 2021; 77:4375-4382. [PMID: 33966348 DOI: 10.1002/ps.6471] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wheat powdery mildew is a worldwide fungal disease and one of the main diseases harming wheat production. Bacillus subtilis is a vital biocontrol bacteria with broad-spectrum antimicrobial activity. In this study, we systematically studied the control effect of B. subtilis on wheat powdery mildew. RESULTS The control efficiency of 4 × 105 CFU ml-1 B. subtilis on wheat leaves was 71.75% in vitro and 70.31% in a pot experiment. Application of 4 × 105 CFU ml-1 B. subtilis significantly inhibited spore germination (spore germination rate of 22.23%) and increased appressorium deformity (appressorium deformity rate of 69.33%). This was significantly different from the results in the sterile water treatment. Through transcriptome sequencing analysis, we found that differentially expressed genes were mainly enriched in the biosynthesis and metabolism of amino acids (including phenylalanine), carbon metabolism, the pentose phosphate pathway and other pathways. In particular, the plant hormone signal pathway gene nonexpressor of pathogenesis-related genes 1 (NPR1) was significantly upregulated. CONCLUSION B. subtilis at concentrations of 4 × 105 CFU ml-1 had a significant control effect on wheat powdery mildew and can inhibit germination of the conidial germ tubes and the normal development of appressorium. B. subtilis may induce disease resistance in wheat to control wheat powdery mildew, and this effect is related to the salicylic acid-dependent signal pathway. © 2021 Society of Chemical Industry.
Collapse
|
44
|
Wang D, Lv W, Yuan Y, Zhang T, Teng H, Losey JE, Chang X. Assessing the risk of insecticides to Actinopterygii in the combination of ecological planting and rearing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116702. [PMID: 33636557 DOI: 10.1016/j.envpol.2021.116702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
In order to study the co-existing environment of pests and economic animals, the toxicity of 15 insecticides to Plutella xylostella, Monopterus albus, and Paramisgurnus dabryanus was tested. Combined with the recommended maximum doses in the field and bioassay, the results showed that for the three insecticides that were of relatively low toxicity to M. albus and P. dabryanus, spinetoram showed the best control effect on P. xylostella, followed by chlorfenapyr and chlorantraniliprole. However, P. xylostella showed a relatively high resistance to chlorfenapyr. Therefore, the best insecticide suitable for the fields with the cauliflower-finless eel or cauliflower-loach planting and rearing combination was spinetoram, followed by chlorantraniliprole and chlorfenapyr. Other insecticides such as emamectin benzoate, Bacillus thuringiensis (Bt), matrine, and so on were effective against the diamondback moth, but they were not suitable for use because of their high toxicity to the finless eel and loach.
Collapse
|
45
|
Wang W, Wang B, Sun X, Qi X, Zhao C, Chang X, Khaskheli MI, Gong G. Symptoms and pathogens diversity of Corn Fusarium sheath rot in Sichuan Province, China. Sci Rep 2021; 11:2835. [PMID: 33531583 PMCID: PMC7854677 DOI: 10.1038/s41598-021-82463-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
To elucidate the symptoms and pathogens diversity of corn Fusarium sheath rot (CFSR), diseased samples were collected from 21 county-level regions in 12 prefecture-level districts of Sichuan Province from 2015 to 2018 in the present study. In the field, two symptom types appeared including small black spots with a linear distribution and wet blotches with a tawny or brown color. One hundred thirty-seven Fusarium isolates were identified based on morphological characteristics and phylogenetic analysis (EF1-α), and Koch's postulates were also assessed. The results identified the isolates as 8 species in the Fusarium genus, including F. verticillioides, F. proliferatum, F. fujikuroi, F. asiaticum, F. equiseti, F. meridionale, F. graminearum and F. oxysporum, with isolation frequencies of 30.00, 22.67, 15.33, 7.33, 6.00, 5.33, 3.33 and 1.33%, respectively. Fusarium verticillioides and F. proliferatum were the dominant and subdominant species, respectively. Two or more Fusarium species such as F. verticillioides and F. proliferatum were simultaneously identified at a mixed infection rate of 14.67% in the present study. The pathogenicity test results showed that F. proliferatum and F. fujikuroi exhibited the highest virulence, with average disease indices of 30.28 ± 2.87 and 28.06 ± 1.96, followed by F. equiseti and F. verticillioides, with disease indices of 21.48 ± 2.14 and 16.21 ± 1.84, respectively. Fusarium asiaticum, F. graminearum and F. meridonale showed lower virulence, with disease indices of 13.80 ± 2.07, 11.57 ± 2.40 and 13.89 ± 2.49, respectively. Finally, F. orysporum presented the lowest virulence in CFSR, with a disease index of 10.14 ± 1.20. To the best of our knowledge, this is the first report of F. fujikuroi, F. meridionale and F. asiaticum as CFSR pathogens in China.
Collapse
|
46
|
Fraser MD, Vallin HE, Davies JRT, Rowlands GE, Chang X. Integrating Narcissus-derived galanthamine production into traditional upland farming systems. Sci Rep 2021; 11:1389. [PMID: 33446764 PMCID: PMC7809449 DOI: 10.1038/s41598-021-81042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/23/2020] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease (AD) is a disorder associated with progressive degeneration of memory and cognitive function. Galantamine is a licenced treatment for AD but supplies of the plant alkaloid that it is produced from, galanthamine, are limited. This three-year system study tested the potential to combine Narcissus-derived galanthamine production with grassland-based ruminant production. Replicate plots of permanent pasture were prepared with and without bulbs of Narcissus pseudonarcissus sown as lines into the sward. Two different fertiliser regimes were imposed. The above-ground green biomass of N. pseudonarcissus was harvested in early spring and the galanthamine yield determined. In the second harvest year a split-plot design was implemented with lines of N. pseudonarcissus cut annually and biennially. All plots were subsequently grazed by ewes and lambs and animal performance recorded. Incorporation of N. pseudonarcissus into grazed permanent pasture had no detrimental effects on the health or performance of the sheep which subsequently grazed the pasture. There was no consistency to the effects of fertiliser rates on galanthamine yields. There was no difference in overall galanthamine yield if N. pseudonarcissus was cut biennially (1.64 vs. 1.75 kg galanthamine/ha for annual combined vs biennial cuts respectively; s.e.d = 0.117 kg galanthamine/ha; ns). This study verified the feasibility of a dual cropping approach to producing plant-derived galanthamine.
Collapse
|
47
|
Zhou XY, Xu LF, Chang X, Sun L, Guo Z. [Application of autologous platelet-rich plasma separation in cardiac valve replacement: a random clinical trial]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2020; 58:924-928. [PMID: 33249810 DOI: 10.3760/cma.j.cn112139-20191231-00647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To examine the blood protective effect of autologous platelet-rich plasma separation for cardiac valve replacement under cardiopulmonary bypass. Methods: Sixty patients who underwent cardiac valve replacement under cardiopulmonary bypass from August 2018 to May 2019 in Shanghai Chest Hospital, Shanghai Jiao Tong University were randomly divided into control and treatment groups(each 30 cases). There were 33 males and 27 females, aged (52.0±8.4) years (range: 35 to 65 years). Autologous platelet separation was performed in the treatment group after anaesthesia administration and was completed before systemic heparinisation. Platelet separation was not performed in the control group. The thromboelastogram, blood routine, blood coagulation, perioperative fluid infusion, allogeneic blood transfusion, postoperative pleural fluid volume and postoperative fibrinogen were recorded before the operation, and 1 hour and 24 hours post operation. The two groups' data was compared by t test, Kruskal-Wallis test, Mann-Whitney U test or χ(2) test. Repeated measurement analysis of variance was used to compare platelet and coagulation indexes at different times. Results: The perioperative red blood cell transfusion of 0, 1~2, 3~4,>4 units with 6, 11, 1, 12 cases in treatment group and 14, 8, 6, 2 cases in control group (Z=-2.516, P=0.012). The postoperative fibrinogen of 0, 1, 2 units with 19, 2, 9 cases in treat group and 26, 2, 2 cases in control group (Z=-2.190, P=0.029). There was no significant difference in the cost of blood transfusion between the two groups during admission ((1 732±1 275) yuan vs. (1 176±941) yuan; t=-1.570, P=0.125). Conclusion: The use of autologous platelet-rich plasma separation can reduce the amount of allogeneic blood transfusion during valvular surgery under cardiopulmonary bypass.
Collapse
|
48
|
Zhang C, Yuan J, Lin Q, Li M, Wang L, Wang R, Chen X, Jiang Z, Zhu K, Chang X, Wang B, Dong J. Ghrelin in the lateral parabrachial nucleus influences the excitability of glucosensing neurons, increases food intake and body weight. Endocr Connect 2020; 9:1168-1177. [PMID: 33112816 PMCID: PMC7774750 DOI: 10.1530/ec-20-0285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023]
Abstract
Ghrelin plays a pivotal role in the regulation of food intake, body weight and energy metabolism. However, these effects of ghrelin in the lateral parabrachial nucleus (LPBN) are unexplored. C57BL/6J mice and GHSR-/- mice were implanted with cannula above the right LPBN and ghrelin was microinjected via the cannula to investigate effect of ghrelin in the LPBN. In vivo electrophysiological technique was used to record LPBN glucose-sensitive neurons to explore potential udnderlying mechanisms. Microinjection of ghrelin in LPBN significantly increased food intake in the first 3 h, while such effect was blocked by [D-Lys3]-GHRP-6 and abolished in GHSR-/- mice. LPBN ghrelin microinjection also significantly increased the firing rate of glucose-excited (GE) neurons and decreased the firing rate of glucose-inhibited (GI) neurons. Additionally, LPBN ghrelin microinjection also significantly increased c-fos expression. Chronic ghrelin administration in the LPBN resulted in significantly increased body weight gain. Meanwhile, no significant changes were observed in both mRNA and protein expression levels of UCP-1 in BAT. These results demonstrated that microinjection of ghrelin in LPBN could increase food intake through the interaction with growth hormone secretagogue receptor (GHSR) in C57BL/6J mice, and its chronic administration could also increase body weight gain. These effects might be associated with altered firing rate in the GE and GI neurons.
Collapse
|
49
|
Teng H, Yuan Y, Zhang T, Chang X, Wang D. Evaluation of the sublethal effect of tetrachlorantraniliprole on Spodoptera exigua and its potential toxicity to two non-target organisms. PLoS One 2020; 15:e0242052. [PMID: 33166345 PMCID: PMC7652279 DOI: 10.1371/journal.pone.0242052] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Tetrachlorantraniliprole (TCAP) is a novel anthranilic diamide insecticide that specifically targets the ryanodine receptors of lepidopteran insect species with excellent insecticidal activity. Previous studies have reported the sublethal effects of multiple diamides on several lepidopteran species, whereas the sublethal and non-target effects of TCAP remain largely unknown. We assessed the sublethal effects of TCAP on Spodoptera exigua. We also investigated the effects of TCAP on non-target Harmonia axyridis and Eisenia fetida, S. exigua was more sensitive to TCAP than to chlorantraniliprole, as the LC50 (10.371 μg L-1 at 72 h) of TCAP was relatively lower. Compared with those of the control, sublethal concentrations of TCAP (LC10 and LC30) not only prolonged the duration of the larval and pupal stages as well as the mean generation time but also reduced certain population parameters. On the other hand, TCAP exposure, even at the highest concentration, did not induce toxic effects in H. axyridis ladybugs (1st instar larvae and adults) or E. fetida earthworms. Taken together, our results suggest that TCAP can be used as a novel and promising component of the integrated pest management (IPM) program against S. exigua due to its robust target effects and negligible non-target risks.
Collapse
|
50
|
Malkani AS, Li J, Oliveira NJ, He M, Chang X, Xu B, Lu Q. Understanding the electric and nonelectric field components of the cation effect on the electrochemical CO reduction reaction. SCIENCE ADVANCES 2020; 6:6/45/eabd2569. [PMID: 33158873 PMCID: PMC7673714 DOI: 10.1126/sciadv.abd2569] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/22/2020] [Indexed: 05/31/2023]
Abstract
Electrolyte cations affect the activity of surface-mediated electrocatalytic reactions; however, understanding the modes of interaction between cations and reaction intermediates remains lacking. We show that larger alkali metal cations (excluding the thickness of the hydration shell) promote the electrochemical CO reduction reaction on polycrystalline Cu surfaces in alkaline electrolytes. Combined reactivity and in situ surface-enhanced spectroscopic investigations show that changes to the interfacial electric field strength cannot solely explain the reactivity trend with cation size, suggesting the presence of a nonelectric field strength component in the cation effect. Spectroscopic investigations with cation chelating agents and organic molecules show that the electric and nonelectric field components of the cation effect could be affected by both cation identity and composition of the electrochemical interface. The interdependent nature of interfacial species indicates that the cation effect should be considered an integral part of the broader effect of composition and structure of the electrochemical interface on electrode-mediated reactions.
Collapse
|