26
|
O’Malley Y, Coleman MC, Sun X, Lei J, Yao J, Pulliam CF, Kluz P, McCormick ML, Yi Y, Imai Y, Engelhardt JF, Norris AW, Spitz DR, Uc A. Oxidative stress and impaired insulin secretion in cystic fibrosis pig pancreas. ADVANCES IN REDOX RESEARCH 2022; 5:100040. [PMID: 35903252 PMCID: PMC9328447 DOI: 10.1016/j.arres.2022.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic fibrosis-related diabetes (CFRD) is one the most common comorbidities in cystic fibrosis (CF). Pancreatic oxidative stress has been postulated in the pathogenesis of CFRD, but no studies have been done to show an association. The main obstacle is the lack of suitable animal models and no immediate availability of pancreas tissue in humans. In the CF porcine model, we found increased pancreatic total glutathione (GSH), glutathione disulfide (GSSG), 3-nitrotyrosine- and 4-hydroxynonenal-modified proteins, and decreased copper zinc superoxide dismutase (CuZnSOD) activity, all indicative of oxidative stress. CF pig pancreas demonstrated increased DHE oxidation (as a surrogate marker of superoxide) in situ compared to non-CF and this was inhibited by a SOD-mimetic (GC4401). Catalase and glutathione peroxidase activities were not different between CF and non-CF pancreas. Isolated CF pig islets had significantly increased DHE oxidation, peroxide production, reduced insulin secretion in response to high glucose and diminished secretory index compared to non-CF islets. Acute treatment with apocynin or an SOD mimetic failed to restore insulin secretion. These results are consistent with the hypothesis that CF pig pancreas is under significant oxidative stress as a result of increased O2 ●- and peroxides combined with reduced antioxidant defenses against reactive oxygen species (ROS). We speculate that insulin secretory defects in CF may be due to oxidative stress.
Collapse
|
27
|
Cheng B, Hong X, Wang L, Cao Y, Qin D, Zhou H, Gao D. Curzerene suppresses progression of human glioblastoma through inhibition of glutathione S-transferase A4. CNS Neurosci Ther 2022; 28:690-702. [PMID: 35048517 PMCID: PMC8981481 DOI: 10.1111/cns.13800] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022] Open
Abstract
AIMS Glioblastoma is the central nervous system tumor with the highest mortality rate, and the clinical effectiveness of chemotherapy is low. Curzerene can inhibit the progression of non-small-cell lung cancer, but its role in glioma has not been reported. The purpose of this study was to clarify the effect of curzerene on glioma progression and further explore its potential mechanism. METHODS The expression of glutathione S-transferase A4 (GSTA4) in glioblastoma and the effect of curzerene on the expression of GSTA4 and matrix metalloproteinase 9 and the activation of the mTOR pathway were detected by Western blotting and RT-PCR, and the effects of curzerene treatment on glioma malignant character were detected by cell biological assays. The in vivo antitumor effects of curzerene were analyzed in a nude mouse xenograft model. RESULTS Curzerene was found to inhibit the expression of GSTA4 mRNA and protein in U251 and U87 glioma cells, and this effect correlated with a downregulation of the proliferation of these cells in a time- and dose-dependent manner. Invasion and migration were also inhibited, and curzerene treatment correlated with induction of apoptosis. Curzerene inhibited the activation of the mTOR pathway and the expression of matrix metalloproteinase 9, and it correlated with increased 4-hydroxynonenal levels. In vivo, curzerene was found to significantly inhibit tumor growth in nude mice and to prolong the survival time of tumor-bearing nude mice. CONCLUSION In conclusion, inhibition of GSTA4 correlates with positive outcomes in glioma models, and thus, this molecule is a candidate drug for the treatment of glioma.
Collapse
|
28
|
Abstract
Ferroptosis is iron-dependent, lipid peroxidation-driven, regulated cell death that is triggered when cellular glutathione peroxidase 4 (GPX4)-mediated cellular defense is insufficient to prevent pathologic accumulation of toxic lipid peroxides. Ferroptosis is implicated in various human pathologies, including neurodegeneration, chemotherapy-resistant cancers, ischemia-reperfusion injury, and acute and chronic kidney diseases. Despite the fact that the ferroptotic process has been rigorously interrogated in multiple preclinical models, the lack of specific and readily available biomarkers to detect ferroptosis in vivo in mouse models makes it challenging to delineate its contribution to key pathologic events in vivo. Critical steps to practically evaluate ferroptosis include, but are not limited to, detecting increased cell death and pathologic accumulation of toxic lipid peroxides and testing augmentation of observed pathologic events by genetic inhibition of the glutathione-GPX4 axis or mitigation of the pathologic process by ferroptosis inhibitors. Here, we describe methods to evaluate these key features of the ferroptotic process in mice in vivo. Specifically, we describe methods to detect toxic lipid peroxides (4-hydroxynonenal) and cell death (based on terminal deoxynucleotidyl transferase dUTP nick end labeling staining) as well as a protocol to pharmacologically inhibit ferroptotic stress using liproxstatin-1. These protocols provide tools for understanding the ferroptotic process in mouse genetic or disease models. © 2022 Wiley Periodicals LLC. Basic Protocol 1: How to use liproxstatin-1 Basic Protocol 2: How to evaluate ferroptosis in mouse kidneys.
Collapse
|
29
|
Gall Trošelj K, Tomljanović M, Jaganjac M, Matijević Glavan T, Čipak Gašparović A, Milković L, Borović Šunjić S, Buttari B, Profumo E, Saha S, Saso L, Žarković N. Oxidative Stress and Cancer Heterogeneity Orchestrate NRF2 Roles Relevant for Therapy Response. Molecules 2022; 27:1468. [PMID: 35268568 PMCID: PMC8912061 DOI: 10.3390/molecules27051468] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and its end-products, such as 4-hydroxynonenal (HNE), initiate activation of the Nuclear Factor Erythroid 2-Related Factor 2 (NRF2)/Kelch Like ECH Associated Protein 1 (KEAP1) signaling pathway that plays a crucial role in the maintenance of cellular redox homeostasis. However, an involvement of 4-HNE and NRF2 in processes associated with the initiation of cancer, its progression, and response to therapy includes numerous, highly complex events. They occur through interactions between cancer and stromal cells. These events are dependent on many cell-type specific features. They start with the extent of NRF2 binding to its cytoplasmic repressor, KEAP1, and extend to the permissiveness of chromatin for transcription of Antioxidant Response Element (ARE)-containing genes that are NRF2 targets. This review will explore epigenetic molecular mechanisms of NRF2 transcription through the specific molecular anatomy of its promoter. It will explain the role of NRF2 in cancer stem cells, with respect to cancer therapy resistance. Additionally, it also discusses NRF2 involvement at the cross-roads of communication between tumor associated inflammatory and stromal cells, which is also an important factor involved in the response to therapy.
Collapse
|
30
|
Al-Menhali AS, Anderson C, Gourine AV, Abramov AY, D'Souza A, Jaganjac M. Proteomic Analysis of Cardiac Adaptation to Exercise by High Resolution Mass Spectrometry. Front Mol Biosci 2021; 8:723858. [PMID: 34540898 PMCID: PMC8440823 DOI: 10.3389/fmolb.2021.723858] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/05/2021] [Indexed: 12/14/2022] Open
Abstract
Regular exercise has many health benefits, among which is a significant reduction of cardiovascular risk. Although many beneficial effects of exercise are well described, the exact mechanisms by which exercise confers cardiovascular benefits are yet to be fully understood. In the current study, we have used high resolution mass spectrometry to determine the proteomic responses of the heart to exercise training in mice. The impact of exercise-induced oxidative stress on modifications of cardiomyocyte proteins with lipid peroxidation biomarker 4-hydroxynonenal (4-HNE) was examined as well. Fourteen male mice were randomized into the control (sedentary) group and the exercise group that was subjected to a swim exercise training program for 5 days a week for 5 months. Proteins were isolated from the left ventricular tissue, fractionated and digested for shotgun proteomics. Peptides were separated by nanoliquid chromatography and analyzed on an Orbitrap Fusion mass spectrometer using high-energy collision–induced dissociation and electron transfer dissociation fragmentation. We identified distinct ventricular protein signatures established in response to exercise training. Comparative proteomics identified 23 proteins that were upregulated and 37 proteins that were downregulated with exercise, in addition to 65 proteins that were identified only in ventricular tissue samples of exercised mice. Most of the proteins specific to exercised mice are involved in respiratory electron transport and/or implicated in glutathione conjugation. Additionally, 10 proteins were found to be modified with 4-HNE. This study provides new data on the effects of exercise on the cardiac proteome and contributes to our understanding of the molecular mechanisms underlying the beneficial effects of exercise on the heart.
Collapse
|
31
|
Reyes-Jiménez E, Ramírez-Hernández AA, Santos-Álvarez JC, Velázquez-Enríquez JM, Pina-Canseco S, Baltiérrez-Hoyos R, Vásquez-Garzón VR. Involvement of 4-hydroxy-2-nonenal in the pathogenesis of pulmonary fibrosis. Mol Cell Biochem 2021; 476:4405-4419. [PMID: 34463938 DOI: 10.1007/s11010-021-04244-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023]
Abstract
Pulmonary fibrosis is a chronic progressive disease with high incidence, prevalence, and mortality rates worldwide. It is characterized by excessive accumulation of extracellular matrix in the lung parenchyma. The cellular and molecular mechanisms involved in its pathogenesis are complex, and some are still unknown. Several studies indicate that oxidative stress, characterized by overproduction of 4-hydroxy-2-nonenal (4-HNE), is an important player in pulmonary fibrosis. 4-HNE is a highly reactive compound derived from polyunsaturated fatty acids that can react with proteins, phospholipids, and nucleic acids. Thus, many of the altered cellular mechanisms that contribute to this disease can be explained by the participation of 4-HNE. Here, we summarize the current knowledge on the molecular states and signal transduction pathways that contribute to the pathogenesis of pulmonary fibrosis. Furthermore, we describe the participation of 4-HNE in various mechanisms involved in pulmonary fibrosis development, with a focus on the cell populations involved in the initiation, development, and maintenance of the fibrotic process, mainly alveolar cells, endothelial cells, macrophages, and inflammatory cells. Due to its characteristic activity as a second messenger, 4-HNE, in addition to being a consequence of oxidative stress, can support maintenance of the inflammatory and fibrotic process by spreading the effects of reactive oxygen species (ROS). Thus, regulation of 4-HNE levels could be a viable strategy to reduce its effects on the mechanisms involved in pulmonary fibrosis development.
Collapse
|
32
|
Arnaud LC, Gauthier T, Le Naour A, Hashim S, Naud N, Shay JW, Pierre FH, Boutet-Robinet E, Huc L. Short-Term and Long-Term Carcinogenic Effects of Food Contaminants ( 4-Hydroxynonenal and Pesticides) on Colorectal Human Cells: Involvement of Genotoxic and Non-Genomic Mechanisms. Cancers (Basel) 2021; 13:cancers13174337. [PMID: 34503147 PMCID: PMC8431687 DOI: 10.3390/cancers13174337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary One’s environment, including diet, play a major role in the occurrence and the development of colorectal cancer (CRC). In this study, we are interested in two western diet associated food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides to which we are commonly exposed to via fruit and vegetable consumption. The aim of this study was to analyse the impact of acute and long-term exposure to these contaminants, alone or in combination, on colorectal carcinogenesis. We used in vitro models of human colonic cells, either exhibiting or not different genetic susceptibilities to CRC. After acute exposure, we did not observe major alteration. However, long-term exposure to contaminants induce malignant transformation with different cellular mechanisms, depending on genetic susceptibility and contaminants alone or in mixtures. Abstract To investigate environmental impacts upon colorectal carcinogenesis (CRC) by diet, we assessed two western diet food contaminants: 4-hydroxynonenal (HNE), a major lipid peroxidation product neoformed during digestion, and a mixture of pesticides. We used human colonic cell lines ectopically eliciting varied genetic susceptibilities to CRC: the non-transformed human epithelial colonic cells (HCECs) and their five isogenic cell lines with the loss of APC (Adenomatous polyposis coli) and TP53 (Tumor protein 53) and/or ectopic expression of mutated KRAS (Kristen-ras). These cell lines have been exposed for either for a short time (2–24 h) or for a long period (3 weeks) to 1 µM HNE and/or 10 µM pesticides. After acute exposure, we did not observe any cytotoxicity or major DNA damage. However, long-term exposure to pesticides alone and in mixture with HNE induced clonogenic transformation in normal HCECs, as well as in cells representing later stages of carcinogenesis. It was associated with genotoxic and non-genomic mechanisms (cell growth, metabolic reprogramming, cell mobility and epithelial-mesenchymal transition) depending on genetic susceptibility. This study demonstrated a potential initiating and promoting effect of food contaminants on CRC after long-term exposure. It supports that these contaminants can accelerate carcinogenesis when mutations in oncogenes or tumor suppressor genes occur.
Collapse
|
33
|
Niu B, Lei X, Xu Q, Ju Y, Xu D, Mao L, Li J, Zheng Y, Sun N, Zhang X, Mao Y, Li X. Protecting mitochondria via inhibiting VDAC1 oligomerization alleviates ferroptosis in acetaminophen-induced acute liver injury. Cell Biol Toxicol 2021; 38:505-530. [PMID: 34401974 DOI: 10.1007/s10565-021-09624-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Acetaminophen (APAP) overdose is a common cause of drug-induced liver injury (DILI). Ferroptosis has been recently implicated in APAP-induced liver injury (AILI). However, the functional role and underlying mechanisms of mitochondria in APAP-induced ferroptosis are unclear. In this study, the voltage-dependent anion channel (VDAC) oligomerization inhibitor VBIT-12 and ferroptosis inhibitors were injected via tail vein in APAP-injured mice. Targeted metabolomics and untargeted lipidomic analyses were utilized to explore underlying mechanisms of APAP-induced mitochondrial dysfunction and subsequent ferroptosis. As a result, APAP overdose led to characteristic changes generally observed in ferroptosis. The use of ferroptosis inhibitor ferrostatin-1 (or UAMC3203) and iron chelator deferoxamine further confirmed that ferroptosis was responsible for AILI. Mitochondrial dysfunction, which is associated with the tricarboxylic acid cycle and fatty acid β-oxidation suppression, may drive APAP-induced ferroptosis in hepatocytes. APAP overdose induced VDAC1 oligomerization in hepatocytes, and protecting mitochondria via VBIT-12 alleviated APAP-induced ferroptosis. Ceramide and cardiolipin levels were increased via UAMC3203 or VBIT-12 in APAP-induced ferroptosis in hepatocytes. Knockdown of Smpd1 and Taz expression responsible for ceramide and cardiolipin synthesis, respectively, aggravated APAP-induced mitochondrial dysfunction and ferroptosis in hepatocytes, whereas Taz overexpression protected against these processes. By immunohistochemical staining, we found that levels of 4-hydroxynonenal (4-HNE) protein adducts were increased in the liver biopsy samples of patients with DILI compared to that in those of patients with autoimmune liver disease, chronic viral hepatitis B, and non-alcoholic fatty liver disease (NAFLD). In summary, protecting mitochondria via inhibiting VDAC1 oligomerization attenuated hepatocyte ferroptosis by restoring ceramide and cardiolipin content in AILI.
Collapse
|
34
|
Skorokhod O, Barrera V, Mandili G, Costanza F, Valente E, Ulliers D, Schwarzer E. Malaria Pigment Hemozoin Impairs GM-CSF Receptor Expression and Function by 4-Hydroxynonenal. Antioxidants (Basel) 2021; 10:antiox10081259. [PMID: 34439507 PMCID: PMC8389202 DOI: 10.3390/antiox10081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively (n = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte’s surface by 36 ± 11% (n = 6) and in cell lysate by 58 ± 16% (n = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116. The data suggest that defective DC differentiation in malaria is caused by GM-CSF R dysregulation and GM-CSF R modification by lipoperoxidation product 4-HNE via direct interaction with its CD116 subunit.
Collapse
|
35
|
Kovacevic S, Ivanov M, Zivotic M, Brkic P, Miloradovic Z, Jeremic R, Mihailovic-Stanojevic N, Vajic UJ, Karanovic D, Jovovic D, Nesovic Ostojic J. Immunohistochemical Analysis of 4-HNE, NGAL, and HO-1 Tissue Expression after Apocynin Treatment and HBO Preconditioning in Postischemic Acute Kidney Injury Induced in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10081163. [PMID: 34439411 PMCID: PMC8388865 DOI: 10.3390/antiox10081163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress has been considered as a central aggravating factor in the development of postischemic acute kidney injury (AKI). The aim of this study was to perform the immunohistochemical analysis of 4-hydroxynonenal (4-HNE), neutrophil gelatinase-associated lipocalin (NGAL), and heme oxygenase-1 (HO-1) tissue expression after apocynin (APO) treatment and hyperbaric oxygenation (HBO) preconditioning, applied as single or combined protocol, in postischemic acute kidney injury induced in spontaneously hypertensive rats (SHR). Twenty-four hours before AKI induction, HBO preconditioning was carried out by exposing to pure oxygen (2.026 bar) twice a day, for 60 min in two consecutive days. Acute kidney injury was induced by removal of the right kidney while the left renal artery was occluded for 45 min by atraumatic clamp. Apocynin was applied in a dose of 40 mg/kg body weight, intravenously, 5 min before reperfusion. We showed increased 4-HNE renal expression in postischemic AKI compared to Sham-operated (SHAM) group. Apocynin treatment, with or without HBO preconditioning, improved creatinine and phosphate clearances, in postischemic AKI. This improvement in renal function was accompanied with decreased 4-HNE, while HO-1 kidney expression restored close to the control group level. NGAL renal expression was also decreased after apocynin treatment, and HBO preconditioning, with or without APO treatment. Considering our results, we can say that 4-HNE tissue expression can be used as a marker of oxidative stress in postischemic AKI. On the other hand, apocynin treatment and HBO preconditioning reduced oxidative damage, and this protective effect might be expected even in experimental hypertensive condition.
Collapse
|
36
|
4-Hydroxynonenal Contributes to Fibroblast Senescence in Skin Photoaging Evoked by UV-A Radiation. Antioxidants (Basel) 2021; 10:antiox10030365. [PMID: 33670907 PMCID: PMC7997366 DOI: 10.3390/antiox10030365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/26/2022] Open
Abstract
Solar ultraviolet A (UV-A) radiation promotes a huge variety of damages on connective tissues and dermal fibroblasts, including cellular senescence, a major contributor of skin photoaging. The mechanisms of skin photoaging evoked by UV-A partly involve the generation of reactive oxygen species and lipid peroxidation. We previously reported that 4-hydroxynonenal (HNE), a lipid peroxidation-derived aldehyde, forms adducts on elastin in the skins of UV-A irradiated hairless mice, possibly contributing to actinic elastosis. In the present study, we investigated whether and how HNE promotes fibroblast senescence in skin photoaging. Dermal fibroblasts of skins from UV-A-exposed hairless mice exhibited an increased number of γH2AX foci characteristic of cell senescence, together with an accumulation of HNE adducts partly colocalizing with the cytoskeletal protein vimentin. Murine fibroblasts exposed to UV-A radiation (two cycles of 15 J/cm2), or HNE (30 µM, 4 h), exhibited senescence patterns characterized by an increased γH2AX foci expression, an accumulation of acetylated proteins, and a decreased expression of the sirtuin SIRT1. HNE adducts were detected on vimentin in cultured fibroblasts irradiated by UV-A or incubated with HNE. The HNE scavenger carnosine prevented both vimentin modification and fibroblast senescence evoked by HNE in vitro and in the skins of UV-A-exposed mice. Altogether, these data emphasize the role of HNE and lipid peroxidation-derived aldehydes in fibroblast senescence, and confirm the protective effect of carnosine in skin photoaging.
Collapse
|
37
|
Sunjic SB, Gasparovic AC, Jaganjac M, Rechberger G, Meinitzer A, Grune T, Kohlwein SD, Mihaljevic B, Zarkovic N. Sensitivity of Osteosarcoma Cells to Concentration-Dependent Bioactivities of Lipid Peroxidation Product 4-Hydroxynonenal Depend on Their Level of Differentiation. Cells 2021; 10:cells10020269. [PMID: 33572933 PMCID: PMC7912392 DOI: 10.3390/cells10020269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
4-Hydroxynonenal (HNE) is a major aldehydic product of lipid peroxidation known to exert several biological effects. Normal and malignant cells of the same origin express different sensitivity to HNE. We used human osteosarcoma cells (HOS) in different stages of differentiation in vitro, showing differences in mitosis, DNA synthesis, and alkaline phosphatase (ALP) staining. Differentiated HOS cells showed decreased proliferation (3H-thymidine incorporation), decreased viability (thiazolyl blue tetrazolium bromide-MTT), and increased apoptosis and necrosis (nuclear morphology by staining with 4′,6-diamidino-2-phenylindole-DAPI). Differentiated HOS also had less expressed c-MYC, but the same amount of c-FOS (immunocytochemistry). When exposed to HNE, differentiated HOS produced more reactive oxygen species (ROS) in comparison with undifferentiated HOS. To clarify this, we measured HNE metabolism by an HPLC method, total glutathione (GSH), oxidized GSH (ox GSH), glutathione transferase activity (GST), proteasomal activity by enzymatic methods, HNE-protein adducts by genuine ELISA and fatty acid composition by GC-MS in these cell cultures. Differentiated HOS cells had less GSH, lower HNE metabolism, increased formation of HNE-protein adducts, and lower proteasomal activity, in comparison to undifferentiated counterpart cells, while GST and oxGSH were the same. Fatty acids analyzed by GC-MS showed that there is an increase in C20:3 in differentiated HOS while the amount of C20:4 remained the same. The results showed that the cellular machinery responsible for protection against toxicity of HNE was less efficient in differentiated HOS cells. Moreover, differentiated HOS cells contained more C20:3 fatty acid, which might make them more sensitive to free radical-initiated oxidative chain reactions and more vulnerable to the effects of reactive aldehydes such as HNE. We propose that HNE might act as natural promotor of decay of malignant (osteosarcoma) cells in case of their differentiation associated with alteration of the lipid metabolism.
Collapse
|
38
|
Podszun MC, Chung JY, Ylaya K, Kleiner DE, Hewitt SM, Rotman Y. 4-HNE Immunohistochemistry and Image Analysis for Detection of Lipid Peroxidation in Human Liver Samples Using Vitamin E Treatment in NAFLD as a Proof of Concept. J Histochem Cytochem 2021; 68:635-643. [PMID: 32867573 DOI: 10.1369/0022155420946402] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lipid peroxidation is a common feature of liver diseases, especially non-alcoholic fatty liver disease (NAFLD). There are limited validated tools to study intra-hepatic lipid peroxidation, especially for small specimen. We developed a semi-quantitative, fully automated immunohistochemistry assay for the detection of 4-hydroxynoneal (4-HNE) protein adducts, a marker of lipid peroxidation, for adaptation to clinical diagnostics and research. We used Hep G2 cells treated with 4-HNE to validate specificity, sensitivity, and dynamic range of the antibody. Staining and semi-quantitative automated readout were confirmed in human needle-biopsy liver samples from subjects with NAFLD and normal liver histology. The ability to detect changes in lipid peroxidation was tested in paired liver biopsies from NAFLD subjects, obtained before and after 4 weeks of treatment with the antioxidant vitamin E (ClinicalTrials.gov NCT01792115, n=21). The cellular calibrator was linear and NAFLD patients had significantly higher levels of 4-HNE adducts compared to controls (p=0.02). Vitamin E treatment significantly decreased 4-HNE (p=0.0002). Our findings demonstrate that 4-HNE quantification by immunohistochemistry and automated image analysis is feasible and able to detect changes in hepatic lipid peroxidation in clinical trials. This method can be applied to archival and fresh samples and should be considered for use in assessing NAFLD histology.
Collapse
|
39
|
Keller J, Chevolleau S, Noguer-Meireles MH, Pujos-Guillot E, Delosière M, Chantelauze C, Joly C, Blas-y-Estrada F, Jouanin I, Durand D, Pierre F, Debrauwer L, Theodorou V, Guéraud F. Heme-Iron-Induced Production of 4-Hydroxynonenal in Intestinal Lumen May Have Extra-Intestinal Consequences through Protein-Adduct Formation. Antioxidants (Basel) 2020; 9:antiox9121293. [PMID: 33348697 PMCID: PMC7766870 DOI: 10.3390/antiox9121293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023] Open
Abstract
Some epidemiological studies show that heme iron consumption, in red meat, is associated to the development of several chronic diseases, including cancers and cardio-metabolic diseases. As heme iron intestinal absorption is finely regulated, we hypothesized that heme iron may act indirectly, through the peroxidation of dietary lipids, in food or in the intestinal lumen during digestion. This heme-iron-induced lipid peroxidation provokes the generation of toxic lipid oxidation products that could be absorbed, such as 4-hydroxynonenal (HNE). In a first experiment, heme iron given to rats by oral gavage together with the linoleic-acid-rich safflower oil induced the formation of HNE in the intestinal lumen. The HNE major urinary metabolite was elevated in the urine of the treated rats, indicating that this compound has been absorbed. In a second experiment, we showed that stable isotope-labeled HNE given orally to rats was able to reach non-intestinal tissues as a bioactive form and to make protein-adducts in heart, liver and skeletal muscle tissues. The presence of HNE-protein adducts in those tissues suggests a putative biological role of diet-originating HNE in extra-intestinal organs. This finding could have major consequences on the onset/development of chronic diseases associated with red meat over-consumption, and more largely to peroxidation-prone food consumption.
Collapse
|
40
|
Lou B, Boger M, Bennewitz K, Sticht C, Kopf S, Morgenstern J, Fleming T, Hell R, Yuan Z, Nawroth PP, Kroll J. Elevated 4-hydroxynonenal induces hyperglycaemia via Aldh3a1 loss in zebrafish and associates with diabetes progression in humans. Redox Biol 2020; 37:101723. [PMID: 32980661 PMCID: PMC7519378 DOI: 10.1016/j.redox.2020.101723] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Increased methylglyoxal (MG) formation is associated with diabetes and its complications. In zebrafish, knockout of the main MG detoxifying system Glyoxalase 1, led to limited MG elevation but significantly elevated aldehyde dehydrogenases (ALDH) activity and aldh3a1 expression, suggesting the compensatory role of Aldh3a1 in diabetes. To evaluate the function of Aldh3a1 in glucose homeostasis and diabetes, aldh3a1−/− zebrafish mutants were generated using CRISPR-Cas9. Vasculature and pancreas morphology were analysed by zebrafish transgenic reporter lines. Corresponding reactive carbonyl species (RCS), glucose, transcriptome and metabolomics screenings were performed and ALDH activity was measured for further verification. Aldh3a1−/− zebrafish larvae displayed retinal vasodilatory alterations, impaired glucose homeostasis, which can be aggravated via pdx1 silencing induced hyperglycaemia. Unexpectedly, MG was not altered, but 4-hydroxynonenal (4-HNE), another prominent lipid peroxidation RCS exhibited high affinity with Aldh3a1, was increased in aldh3a1 mutants. 4-HNE was responsible for the retinal phenotype via pancreas disruption induced hyperglycaemia and can be rescued via l-Carnosine treatment. Furthermore, in type 2 diabetic patients, serum 4-HNE was increased and correlated with disease progression. Thus, our data suggest impaired 4-HNE detoxification and elevated 4-HNE concentration as biomarkers but also the possible inducers for diabetes, from genetic susceptibility to the pathological progression. Aldh3a1 mutant was generated using CRISPR/Cas9 and displayed impaired glucose homeostasis. Elevated 4-Hydroxynonenal (4-HNE) was responsible for hyperglycaemia in aldh3a1 mutants and was rescued by Carnosine. Patient serum 4-HNE level was correlated with HbA1c and fasting glucose. Impaired 4-HNE detoxification acts as possible inducers for diabetes, from genetic susceptibility to pathological progress.
Collapse
|
41
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
|
42
|
Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin‑induced ototoxicity by inhibiting oxidative stress and TRPV1‑mediated Ca2+‑signaling. Int J Mol Med 2020; 46:806-816. [PMID: 32626955 PMCID: PMC7307815 DOI: 10.3892/ijmm.2020.4633] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cisplatin (CDDP) is widely used in clinical settings for the treatment of various cancers. However, ototoxicity is a major side effect of CDDP, and there is an associated risk of irreversible hearing loss. We previously demonstrated that CDDP could induce ototoxicity via activation of the transient receptor potential vanilloid receptor 1 (TRPV1) pathway and subsequent induction of oxidative stress. The present study investigated whether ursolic acid (UA) treatment could protect against CDDP‑induced ototoxicity. UA is a triterpenoid with strong antioxidant activity widely used in China for the treatment of liver diseases. This traditional Chinese medicine is mainly isolated from bearberry, a Chinese herb. The present results showed that CDDP increased auditory brainstem response threshold shifts in frequencies associated with observed damage to the outer hair cells. Moreover, CDDP increased the expression of TRPV1, calpain 2 and caspase‑3 in the cochlea, and the levels of Ca2+ and 4‑hydroxynonenal. UA co‑treatment significantly attenuated CDDP‑induced hearing loss and inhibited TRPV1 pathway activation. In addition, UA enhanced CDDP‑induced growth inhibition in the human ovarian cancer cell line SKOV3, suggesting that UA synergizes with CDDP in vitro. Collectively, the present data suggested that UA could effectively attenuate CDDP‑induced hearing loss by inhibiting the TRPV1/Ca²+/calpain‑oxidative stress pathway without impairing the antitumor effects of CDDP.
Collapse
|
43
|
Allegra M, Restivo I, Fucarino A, Pitruzzella A, Vasto S, Livrea MA, Tesoriere L, Attanzio A. Proeryptotic Activity of 4-Hydroxynonenal: A New Potential Physiopathological Role for Lipid Peroxidation Products. Biomolecules 2020; 10:biom10050770. [PMID: 32429353 PMCID: PMC7277761 DOI: 10.3390/biom10050770] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Eryptosis is a physiological, apoptosis-like death of injured erythrocytes crucial to prevent premature haemolysis and the pathological sequalae generated by cell-free haemoglobin. When dysregulated, the process is associated to several inflammatory-based pathologies. 4-Hydroxy-trans-2-nonenal (HNE) is an endogenous signalling molecule at physiological levels and, at higher concentrations, is involved in the pathogenesis of several inflammatory-based diseases. This work evaluated whether HNE could induce eryptosis in human erythrocytes. Methods: Measurements of phosphatidylserine, cell volume, intracellular oxidants, Ca++, glutathione, ICAM-1, and ceramide were assessed by flow cytometry. Scanning electron microscopy evaluated morphological alterations of erythrocytes. Western blotting assessed caspases. PGE2 was measured by ELISA. Adhesion of erythrocytes on endothelial cells was evaluated by gravity adherence assay. Results: HNE in the concentration range between 10–100 µM induces eryptosis, morphological alterations correlated to caspase-3 activation, and increased Ca++ levels. The process is not mediated by redox-dependent mechanisms; rather, it strongly depends on PGE2 and ceramide. Interestingly, HNE induces significant increase of erythrocytes adhesion to endothelial cells (ECs) that are in turn dysfunctionated as evident by overexpression of ICAM-1. Conclusions: Our results unveil a new physiopathological role for HNE, provide mechanistic details of the HNE-induced eryptosis, and suggest a novel mechanism through which HNE could exert pro-inflammatory effects.
Collapse
|
44
|
Poganik JR, Van Hall-Beauvais AK, Long MJC, Disare MT, Zhao Y, Aye Y. The mRNA-Binding Protein HuR Is a Kinetically-Privileged Electrophile Sensor. Helv Chim Acta 2020; 103:e2000041. [PMID: 34113045 PMCID: PMC8188987 DOI: 10.1002/hlca.202000041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
The key mRNA-binding proteins HuR and AUF1 are reported stress sensors in mammals. Intrigued by recent reports of sensitivity of these proteins to the electrophilic lipid prostaglandin A2 and other redox signals, we here examined their sensing abilities to a prototypical redox-linked lipid-derived electrophile, 4-hydroxynonenal (HNE). Leveraging our T-REX electrophile delivery platform, we found that only HuR, and not AUF1, is a kinetically-privileged sensor of HNE in HEK293T cells, and sensing functions through a specific cysteine, C13. Cells depleted of HuR, upon treatment with HNE, manifest unique alterations in cell viability and Nrf2-transcription-factor-driven antioxidant response (AR), which our recent work shows is regulated by HuR at the Nrf2-mRNA level. Mutagenesis studies showed that C13-specific sensing alone is not sufficient to explain HuR-dependent stress responsivities, further highlighting a complex context-dependent layer of Nrf2/AR regulation through HuR.
Collapse
|
45
|
Pecorelli A, Ferrara F, Messano N, Cordone V, Schiavone ML, Cervellati F, Woodby B, Cervellati C, Hayek J, Valacchi G. Alterations of mitochondrial bioenergetics, dynamics, and morphology support the theory of oxidative damage involvement in autism spectrum disorder. FASEB J 2020; 34:6521-6538. [PMID: 32246805 DOI: 10.1096/fj.201902677r] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) has been hypothesized to be a result of the interplay between genetic predisposition and increased vulnerability to early environmental insults. Mitochondrial dysfunctions appear also involved in ASD pathophysiology, but the mechanisms by which such alterations develop are not completely understood. Here, we analyzed ASD primary fibroblasts by measuring mitochondrial bioenergetics, ultrastructural and dynamic parameters to investigate the hypothesis that defects in these pathways could be interconnected phenomena responsible or consequence for the redox imbalance observed in ASD. High levels of 4-hydroxynonenal protein adducts together with increased NADPH (nicotinamide adenine dinucleotide phosphateoxidase) activity and mitochondrial superoxide production coupled with a compromised antioxidant response guided by a defective Nuclear Factor Erythroid 2-Related Factor 2 pathway confirmed an unbalanced redox homeostasis in ASD. Moreover, ASD fibroblasts showed overactive mitochondrial bioenergetics associated with atypical morphology and altered expression of mitochondrial electron transport chain complexes and dynamics-regulating factors. We suggest that many of the changes observed in mitochondria could represent compensatory mechanisms by which ASD cells try to adapt to altered energy demand, possibly resulting from a chronic oxinflammatory status.
Collapse
|
46
|
Cafe SL, Nixon B, Dun MD, Roman SD, Bernstein IR, Bromfield EG. Oxidative Stress Dysregulates Protein Homeostasis Within the Male Germ Line. Antioxid Redox Signal 2020; 32:487-503. [PMID: 31830800 DOI: 10.1089/ars.2019.7832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Aims: Oxidative stress is causally linked to male reproductive pathologies, driven primarily by lipid peroxidation and an attendant production of highly reactive lipid aldehydes, such as 4-hydroxynonenal (4HNE) within the male germ line. In somatic cells, 4HNE dysregulates proteostasis via targeting of vulnerable proteins for adduction, causing protein misfolding and eventually aggregation. The aims of this study were to explore whether oxidative stress precipitates an equivalent response in the male germ line and determine the protective mechanisms used by germ cells to prevent this cascade of protein damage. Results: We reveal a causative role for oxidative stress in the accumulation of protein deposits in male germ cells. Specifically, 4HNE treatment resulted in a significant increase in cytosolic protein aggregation within pre- and post-meiotic germ cells as measured by the aggregate-detecting fluorophores ProteoStat and Thioflavin T, and the amyloid-specific anti-A11 and anti-OC antibodies. Our data implicate nucleocytoplasmic transport machinery and molecular chaperones as potential mechanisms for the subcellular compartmentalization and/or suppression of aggregating proteins. Thus, the inhibition of karyopherin transport proteins and molecular chaperones resulted in a significant increase in the accumulation of aggregated cellular protein. Innovation: These data establish the novel paradigm that lipid peroxidation is a key contributor to a decline in proteostasis in developing germ cells. These findings will inform the development of novel strategies to protect germ cells from oxidative stress. Conclusion: Together, these results shed light on proteostasis mechanisms that may assist in the management of misfolded proteins in the male germ line under conditions of acute oxidative stress.
Collapse
|
47
|
Guo J, Wang J, Guo Y, Feng J. Association of aspirin resistance with 4-hydroxynonenal and its impact on recurrent cerebral infarction in patients with acute cerebral infarction. Brain Behav 2020; 10:e01562. [PMID: 32027781 PMCID: PMC7066347 DOI: 10.1002/brb3.1562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES To investigate the association of aspirin resistance (AR) with the plasma 4-hydroxynonenal (4-HNE) level and its impact on recurrent cerebral infarction (CI) in patients with acute cerebral infarction (ACI) who were receiving aspirin therapy. METHODS One hundred and fifty-four ACI patients who previously received aspirin therapy (100 mg/day) were enrolled. Whole urine (for measuring 11dhTXB2 and creatinine) along with blood (for measuring the plasma 4-HNE level) were collected at least 7 days after the patients received aspirin. A cutoff of 1500 pg/mg of 11dhTXB2/ creatinine was used to determine AR. A follow-up period to monitor recurrence CI events was 1 year. In addition, blood testing was performed when the patients were first admitted to hospital. RESULTS Forty-six of the 154 enrolled patients (29.9%) were found to be AR. No statistical difference in age, sex, hypertension, diabetes mellitus, coronary disease, smoking status, NIHSS score, TOAST classification, platelet count, thrombocytocrit, LDL-C, HDL-C, TG, and TC was found between the AR and aspirin-sensitive (AS) patients, but the plasma 4-HNE level was found to be higher in the AR patients than AS patients (p < .05). Multiple logistic regression analysis showed that the 4-HNE level was associated with a higher risk of AR (OR = 1.034; 95% CI = 1.011-1.058; p < .05). Moreover, 1-year follow-up showed that AR was more prevalent in patients with recurrent CI (26 (56.6%)) than those without (20/(43.5%)) (p < .001). CONCLUSIONS The plasma 4-HNE level is strongly associated with AR and thus may be a factor contributing to AR. Patients with AR have a greater risk of recurrence CI.
Collapse
|
48
|
Jaganjac M, Borovic Sunjic S, Zarkovic N. Utilizing Iron for Targeted Lipid Peroxidation as Anticancer Option of Integrative Biomedicine: A Short Review of Nanosystems Containing Iron. Antioxidants (Basel) 2020; 9:E191. [PMID: 32106528 PMCID: PMC7139573 DOI: 10.3390/antiox9030191] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Traditional concepts of life sciences consider oxidative stress as a fundamental process of aging and various diseases including cancer, whereas traditional medicine recommends dietary intake of iron to support physiological functions of the organism. However, due to its strong pro-oxidative capacity, if not controlled well, iron can trigger harmful oxidative stress manifested eventually by toxic chain reactions of lipid peroxidation. Such effects of iron are considered to be major disadvantages of uncontrolled iron usage, although ferroptosis seems to be an important defense mechanism attenuating cancer development. Therefore, a variety of iron-containing nanoparticles were developed for experimental radio-, chemo-, and photodynamic as well as magnetic dynamic nanosystems that alter redox homeostasis in cancer cells. Moreover, studies carried over recent decades have revealed that even the end products of lipid peroxidation, represented by 4-hydroxynonenal (4-HNE), could have desirable effects even acting as kinds of selective anticancer substances produced by non-malignant cells for defense again invading cancer. Therefore, advanced nanotechnologies should be developed for using iron to trigger targeted lipid peroxidation as an anticancer option of integrative biomedicine.
Collapse
|
49
|
The Exacerbation of Aging and Oxidative Stress in the Epididymis of Sod1 Null Mice. Antioxidants (Basel) 2020; 9:antiox9020151. [PMID: 32054065 PMCID: PMC7071042 DOI: 10.3390/antiox9020151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/13/2020] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
There is growing evidence that the quality of spermatozoa decreases with age and that children of older fathers have a higher incidence of birth defects and genetic mutations. The free radical theory of aging proposes that changes with aging are due to the accumulation of damage induced by exposure to excess reactive oxygen species. We showed previously that absence of the superoxide dismutase 1 (Sod1) antioxidant gene results in impaired mechanisms of repairing DNA damage in the testis in young Sod1−/− mice. In this study, we examined the effects of aging and the Sod−/− mutation on mice epididymal histology and the expression of markers of oxidative damage. We found that both oxidative nucleic acid damage (via 8-hydroxyguanosine) and lipid peroxidation (via 4-hydroxynonenal) increased with age and in Sod1−/− mice. These findings indicate that lack of SOD1 results in an exacerbation of the oxidative damage accumulation-related aging phenotype.
Collapse
|
50
|
In Vitro Aging of Human Skin Fibroblasts: Age-Dependent Changes in 4-Hydroxynonenal Metabolism. Antioxidants (Basel) 2020; 9:antiox9020150. [PMID: 32053996 PMCID: PMC7070748 DOI: 10.3390/antiox9020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that the increased production of free radicals and reactive oxygen species lead to cellular aging. One of the consequences is lipid peroxidation generating reactive aldehydic products, such as 4-hydroxynonenal (HNE) that modify proteins and form adducts with DNA bases. To prevent damage by HNE, it is metabolized. The primary metabolic products are the glutathione conjugate (GSH-HNE), the corresponding 4-hydroxynonenoic acid (HNA), and the alcohol 1,4-dihydroxynonene (DHN). Since HNE metabolism can potentially change during in vitro aging, cell cultures of primary human dermal fibroblasts from several donors were cultured until senescence. After different time points up to 30 min of incubation with 5 µM HNE, the extracellular medium was analyzed for metabolites via liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI-MS). The metabolites appeared in the extracellular medium 5 min after incubation followed by a time-dependent increase. But, the formation of GSH-HNL and GSH-DHN decreased with increasing in vitro age. As a consequence, the HNE levels in the cells increase and there is more protein modification observed. Furthermore, after 3 h of incubation with 5 µM HNE, younger cells showed less proliferative capacity, while in older cells slight increase in the mitotic index was noticed.
Collapse
|