26
|
Buckow R, Jankowiak L, Knorr D, Versteeg C. Pressure-temperature phase diagrams of maize starches with different amylose contents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:11510-11516. [PMID: 19916500 DOI: 10.1021/jf902246t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The amylose/amylopectin ratio in starch granules has a distinct impact on the physicochemical properties of starches. In this study the effects of high pressure and temperature combinations on the gelatinization of four maize starches with different amylose contents were investigated in an excess of water (90% w/w). Microscopy was used to determine the loss of birefringence in starch granules. Experiments were undertaken in the pressure range of 0.1-750 MPa and temperature range of 30-110 degrees C, holding the conditions constant for 5 min. Temperature and pressure stabilities of high amylose starches were found to be significantly higher than those of waxy and normal maize starch. Thermodynamic models are proposed to describe the loss in birefringence as a function of pressure and temperature. From the pressure-temperature phase diagrams constructed it was evident that maize starch gelatinization is not accelerated at pressures below 300-400 MPa. However, at higher pressures the threshold temperature to initiate starch granule hydration and gelatinization is significantly reduced for all starches investigated. This study extends the knowledge of the impact of high pressure on food components and will possibly make the technology more attractive to use as a substitute for or in combination with conventional food-processing methods.
Collapse
|
27
|
Olanipekun BF, Otunola ET, Adelakun OE, Oyelade OJ. Effect of fermentation with Rhizopus oligosporus on some physico-chemical properties of starch extracts from soybean flour. Food Chem Toxicol 2009; 47:1401-5. [PMID: 19268508 DOI: 10.1016/j.fct.2009.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 01/14/2009] [Accepted: 02/25/2009] [Indexed: 11/30/2022]
Abstract
Studies were carried out on the changes that occurred on some selected physico-chemical properties of starch extracts from soybean flour when fermented with Rhizopus oligosporus. This was done in order to increase the utilization potentials of the flour. Starch extracts were obtained from flour obtained from fermented soybean using R. oligosporus with a fermentation period of between 0 and 72h. Some physico-chemical properties, as well as the amylose, amylopectin, and the pasting characteristics of the starch extracts were determined using standard methods. Increasing trends with increasing fermentation period were observed with respect to most of the physico-chemical characteristics investigated, except for the reconstitution index that showed decreasing trends. While the peak, breakdown and final viscosities also decreased, the swelling power and solubility slightly increased with increase in fermentation period. The proportion of amylopectin which was constantly high showed further slight increases with fermentation, apparently because of the decreasing proportion of amylose probably due to utilization by the mould R. oligosporus used for fermentation.
Collapse
|
28
|
Lamberts L, Gomand SV, Derycke V, Delcour JA. Presence of amylose crystallites in parboiled rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3210-3216. [PMID: 19278227 DOI: 10.1021/jf803385m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mildly, intermediately, and severely parboiled Jacinto [16% free amylose (FAM) content] and Puntal (26% FAM content) rice samples were submitted to differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). DSC thermograms revealed ungelatinized starch only in mildly parboiled rices and retrograded amylopectin in all parboiled samples. Amylose crystallites were present in intermediately and severely parboiled samples but could not be detected due to their high melting temperature. Nonparboiled and parboiled rice DSC profiles showed only type I and type II amylose-lipid complexes, respectively. Intermediately and severely parboiled rice showed a clear V(h)-type (crystalline amylose-lipid complexes) with a superimposed B-type (retrograded amylopectin and/or amylose crystallites) pattern. The mildly parboiled samples showed a mix of A- (native starch crystallites) and V(h)-type patterns (Puntal) and A-, V(h)-, and B-type patterns (Jacinto). Mild acid hydrolysis destroyed the acid labile retrograded amylopectin crystallites and increased the relative abundance of amylose crystallites. Indeed, acid-hydrolyzed intermediately and severely parboiled samples of both cultivars showed a clear B-type diffraction pattern conclusively showing, for the first time, the presence of amylose crystallites. The melting temperature of the amylose crystallites was ca. 135 degrees C, and melting peaks were visible in the DSC thermograms of the intermediately and severely parboiled samples. Their levels depended on the degree of parboiling and FAM content.
Collapse
|
29
|
Luengwilai K, Beckles DM. Structural investigations and morphology of tomato fruit starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:282-91. [PMID: 19093869 DOI: 10.1021/jf802064w] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The physicochemical properties of starch from tomato (Solanum lycopersicum L.) pericarp and columella of cv. Moneymaker fruit at 28 days post anthesis (DPA) were investigated, providing the first description of the composition and structure of tomato fruit starch. Starch granules from pericarp were mainly polygonal, 13.5-14.3 microm, and increased in size through development, being largest in ripening fruit. Amylopectin content was 81-83% and was of molecular weight 1.01 x 10(8) g/mol; the phosphorus content was 139 ppm, and starch showed a C-type pattern with crystallinity of 30%. Starch characteristics were similar in columella except granule size (16.8-17.8 microm) and crystallinity (40%), although 6-fold more starch accumulated in the pericarp. Solara, a high-sugar tomato cultivar, was also studied to determine if this affects starch granule architecture. There were few differences from Moneymaker, except that Solara columella starch crystallinity was lower (26%), and more starch granule-intrinsic proteins could be extracted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
|
30
|
Ral JP, Cavanagh CR, Larroque O, Regina A, Morell MK. Structural and molecular basis of starch viscosity in hexaploid wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:4188-4197. [PMID: 18459791 DOI: 10.1021/jf800124f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.
Collapse
|
31
|
Chanvrier H, Uthayakumaran S, Appelqvist IAM, Gidley MJ, Gilbert EP, López-Rubio A. Influence of storage conditions on the structure, thermal behavior, and formation of enzyme-resistant starch in extruded starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9883-9890. [PMID: 17960881 DOI: 10.1021/jf071974e] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Starch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145 degrees C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation.
Collapse
|
32
|
Kozlov SS, Blennow A, Krivandin AV, Yuryev VP. Structural and thermodynamic properties of starches extracted from GBSS and GWD suppressed potato lines. Int J Biol Macromol 2006; 40:449-60. [PMID: 17188347 DOI: 10.1016/j.ijbiomac.2006.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 10/17/2006] [Accepted: 11/06/2006] [Indexed: 11/28/2022]
Abstract
A combined DSC-SAXS approach was employed to study the effects of amylose and phosphate esters on the assembly structures of amylopectin in B-type polymorphic potato tuber starches. Amylose and phosphate levels in the starches were specifically engineered by antisense suppression of the granule bound starch synthase (GBSS) and the glucan water dikinase (GWD), respectively. Joint analysis of the SAXS and DSC data for the engineered starches revealed that the sizes of amylopectin clusters, thickness of crystalline lamellae and the polymorphous structure type remained unchanged. However, differences were found in the structural organization of amylopectin clusters reflected in localization of amylose within these supramolecular structures. Additionally, data for annealed starches shows that investigated potato starches possess different types of amylopectin defects. The relationship between structure of investigated potato starches and their thermodynamic properties was recognized.
Collapse
|
33
|
Abstract
Morphological and structural features of starch from potato (Solanum tuberosa) and rice (Oryza sativa) have been examined using atomic force microscopy. Amylose from potato and rice was observed in aggregated structures, which are suggested to be a result of retrogradation during sample preparation. The degrees of polymerization of amylose from potato and rice starches were calculated from the mean contour lengths of the observed structures to be approximately 1440 and 1860, respectively. Potato amylopectin appeared as a highly branched and extended molecule. Our results show that atomic force microscopy provides a useful method for examining the fine structural features and estimating the dimensions of starch molecules.
Collapse
|
34
|
Kuakpetoon D, Wang YJ. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content. Carbohydr Res 2006; 341:1896-915. [PMID: 16690041 DOI: 10.1016/j.carres.2006.04.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 03/23/2006] [Accepted: 04/06/2006] [Indexed: 10/24/2022]
Abstract
The effects of amylose content on the extent of oxidation and the distribution of carboxyl groups in hypochlorite-oxidized corn starches were investigated. Corn starches including waxy corn starch (WC), common corn starch (CC), and 50% and 70% high-amylose corn starches (AMC) were oxidized with NaOCl at three concentrations (0.8%, 2%, and 5%). Carboxyl and carbonyl content of oxidized starches increased with increasing NaOCl concentration. High-AMC (70%) had slightly higher carboxyl and carbonyl contents at 0.8% NaOCl, whereas WC had significantly higher carboxyl and carbonyl contents at 2% and 5% NaOCl levels. Carbohydrate profiles by high-performance size-exclusion chromatography indicate that amylose was more susceptible to depolymerization than amylopectin. Degradation of amylopectin long chains (DP >24) was more pronounced in WC and CC than in AMCs. The crystalline lamellae of WC started to degrade at 2% NaOCl, but those of the other corn starches remained intact even at 5% NaOCl level according to X-ray crystallinity. By using anion-exchange chromatography for separation and size-exclusion chromatography for characterization, carboxyl groups were found to be more concentrated on amylopectin than on amylose, particularly in AMCs. Oxidation decreased gelatinization temperature and enthalpy with WC showing the most decrease and 70% AMC showing the least. The gelatinization enthalpy of 50% AMC decreased significantly faster than those of CC and 70% AMC after 0.8% oxidation. Retrogradation of amylopectin slightly increased after oxidation with increasing oxidation level. The peak viscosities of oxidized WC and CC were higher than those of their native counterparts at 0.8% NaOCl, but this increase was not observed in AMCs. The setback viscosities of 2% NaOCl-oxidized 50% and 70% AMCs were much higher than those of the unmodified counterparts. The extent of oxidation and physicochemical properties of oxidized starches varied greatly with the amylase:amylopectin ratio of corn starches. Amylose was suggested to play an important role in controlling the oxidation efficiency.
Collapse
|
35
|
Kelleher BP, Simpson AJ. Humic substances in soils: are they really chemically distinct? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:4605-11. [PMID: 16913113 DOI: 10.1021/es0608085] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Humic substances (HS) are an operationally defined fraction of soil organic matter, and they represent the largest pool of recalcitrant organic carbon in the terrestrial environment. It has traditionally been thought that extractable HS consist of novel categories of cross-linked macromolecular structures. In this study, advanced nuclear magnetic resonance approaches were used to study the major components (proteins, carbohydrates, aliphatic biopolymers, and lignin) that are known to be present in HS, and to identify their fingerprints in humic mixtures. Theoretically, once all known components have been identified, the remaining signals should be from materials with novel structures, themselves forming a distinct chemical category of humic materials. Surprisingly, nearly all of the NMR signals in traditional HS fractions could be assigned to intact and degrading biopolymers. We therefore suggest that the vast majority of operationally defined humic material in soils is a very complex mixture of microbial and plant biopolymers and their degradation products but not a distinct chemical category. It is important to note this work in no way rules out the existence of a distinct category of humic macromolecules, either at low abundance in the soluble fraction from young soils, in diagenetically evolved samples (for example lignites, etc.), or in the nonextractable humin fraction.
Collapse
|
36
|
Zhong F, Yokoyama W, Wang Q, Shoemaker CF. Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:2320-6. [PMID: 16536614 DOI: 10.1021/jf051918i] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Dimethyl sulfoxide (DMSO), with either 50 mM LiBr, 10% water, or both, was used as solvent for multi-angle laser-light scattering (MALLS) batch mode analysis of rice starch, and amylopectin and amylose weight-average molecular weight (Mw). DMSO/50 mM LiBr was a better solvent for these measurements than was DMSO/10% water, based on this solvent's ability to dissolve starch and to reduce the size of starch aggregates. Starch concentration decreased and amylose:amylopectin ratio increased when starch suspended in DMSO was centrifuged or filtered prior to size-exclusion chromatography (SEC)-MALLS analysis. A higher amylose:amylopectin ratio made starch more soluble, and the higher this ratio, the lower the Mw of eluted amylopectin. For SEC analysis of Mw, fractions of starch amylopectin and amylose dispersed in DMSO-based solvents yielded better results than starch dispersed directly into the solvents, because dispersion of these fractions decreased starch aggregation. When these two starch components were fractionated and then dissolved separately in DMSO/50 mM LiBr, the Mw of dispersed amylopectin ranged from 40 to 50 million, and that of amylose was ca. 3 million, whereas starch from three rice varieties of varying amylose content ranged from 60 to 130 million. We recommend that SEC evaluation of amylopectin and amylose be accomplished with fractionated samples as in this study; such evaluations were superior to evaluations of natural mixtures of amylopectin and amylose.
Collapse
|
37
|
Ottenhof MA, Hill SE, Farhat IA. Comparative study of the retrogradation of intermediate water content waxy maize, wheat, and potato starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:631-638. [PMID: 15686412 DOI: 10.1021/jf048705y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The retrogradation of extruded starches from three different botanical sources was studied in concentrated conditions (34 +/- 1% water) at 25 degrees C using differential scanning calorimetry (DSC) and isothermal calorimetry, Fourier transform infrared spectroscopy (FTIR), and wide-angle X-ray scattering. Potato starch showed the highest rate of retrogradation (approximately 0.17 h(-1)) followed by waxy maize (approximately 0.12 h(-1)), while the retrogradation of wheat starch was the slowest (approximately 0.05 h(-1)). In addition to the kinetics, the extent of molecular order in the retrograded samples was studied in detail in terms of "short-range" (helical) and "long-range" (crystalline) distance scales. The amylopectin crystallinity indices were essentially the same (approximately 47-51% amylopectin basis) for the three starches. However, significant differences were found in the enthalpy of melting measured by DSC after "full" retrogradation (potato, 11.6 +/- 0.7; waxy maize, 9.0 +/- 0.5; and wheat, 6.1 +/- 0.3 J/g of amylopectin). The degree of short-range molecular order in the retrograded state determined by FTIR was waxy maize > potato > wheat. The effect of amylopectin average chain length and the polymorphism of the crystalline phase were taken into account to explain the differences in the retrogradation enthalpies.
Collapse
|
38
|
Guérardel Y, Leleu D, Coppin A, Liénard L, Slomianny C, Strecker G, Ball S, Tomavo S. Amylopectin biogenesis and characterization in the protozoan parasite Toxoplasma gondii, the intracellular development of which is restricted in the HepG2 cell line. Microbes Infect 2005; 7:41-8. [PMID: 15716062 DOI: 10.1016/j.micinf.2004.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 09/13/2004] [Accepted: 09/15/2004] [Indexed: 11/29/2022]
Abstract
The obligate intracellular protozoan Toxoplasma gondii belongs to the phylum Apicomplexa, which is composed of numerous parasites causing major diseases such as malaria, toxoplasmosis and coccidiosis. The life cycle of T. gondii involves developmental processes from one stage to another with both asexual and sexual parasitic forms. Throughout their life cycle, some apicomplexan parasites accumulate a crystalline storage polysaccharide analogous to amylopectin within the cytoplasm. In T. gondii, both the slowly dividing encysted bradyzoites and the sporozoites of the sexual stage contain a high number of amylopectin granules (AG), while the rapidly replicating tachyzoites are devoid of amylopectin. It is thought that this storage polysaccharide may represent an energy reserve that could fuel the transition from one developmental stage to another one. At present, by comparison to glycogen and plant starch, little is known about the biosynthesis, structure and biological functions of amylopectin in T. gondii. Here, we describe an in vitro system allowing the production and purification of a large amount of amylopectin, which has been subjected to detailed biochemical and structural analyses. Our data indicate that T. gondii synthesizes a genuine amylopectin following changes in the environmental conditions and that this storage polysaccharide differs from glycogen and starch in terms of glucan chain length.
Collapse
|
39
|
Speer CA, Dubey JP. Ultrastructural differentiation of Toxoplasma gondii schizonts (types B to E) and gamonts in the intestines of cats fed bradyzoites. Int J Parasitol 2004; 35:193-206. [PMID: 15710440 DOI: 10.1016/j.ijpara.2004.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/19/2004] [Accepted: 11/03/2004] [Indexed: 10/26/2022]
Abstract
The ultrastructural characterisitics of four types of Toxoplasma gondii schizonts (types B, C, D and E) and their merozoites, microgamonts and macrogamonts were compared in cats killed at days 1, 2, 4 and 6 after feeding tissues cysts from the brains of mice. Schizonts, merozoites and gamonts contained most of the ultrastructural features characteristic of the phylum Apicomplexa. All four types of schizonts developed within enterocytes or intraepithelial lymphocytes. Occasionally, type B and C schizonts developed within enterocytes that were displaced beneath the epithelium into the lamina propria. Type D and E schizonts and gamonts developed exclusively in the epithelium. Tachyzoites occurred exclusively within the lamina propria. Type B schizonts formed merozoites by endodyogeny, whereas types C to E developed by endopolygeny. The parasitophorous vacuoles surrounding type B and C schizonts consisted of a single membrane, whereas those surrounding types D and E schizonts were comprised of two to four electron-dense membranes. The parasitophorous vacuole of type B schizonts had an extensive tubulovesicular membrane network (TMN); the TMN was reduced or absent in type C schizonts and completely absent in types D and E schizonts and gamonts. Type B merozoites were ultrastructurally similar to tachyzoites, except that they were slightly larger. Type C merozoites exhibited a positive periodic acid-Schiff reaction by light microscopy and ultrastructurally contained amylopectin granules. Rhoptries were labyrinthine in type B merozoites but were electron-dense in types C-E. The development of microgamonts, macrogamont and oocysts is also described.
Collapse
|
40
|
Mali S, Karam LB, Ramos LP, Grossmann MVE. Relationships among the composition and physicochemical properties of starches with the characteristics of their films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:7720-7725. [PMID: 15675825 DOI: 10.1021/jf049225+] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The physical, molecular, and functional properties of corn, cassava, and yam starches were related to the film properties of these starches. Corn, cassava, and yam starches contained 25%, 19%, and 30% amylose, respectively. Amylose from yam starch showed the smallest molecular weight among the starches and amylopectin from corn starch the smallest molecular weight. Cassava starch presented a higher amylopectin content, and its gels and films were less strong, more transparent, and more flexible than corn and yam films. Plasticized films of the three starches were more flexible, with a higher strain and lower stress at break when the glycerol content increased. Unplasticized films were brittle and had water vapor permeability values ranging from 6.75 x 10(-10) to 8.33 x 10(-10) g m(-1) s(-1) Pa(-1). These values decreased when the glycerol content reached 20 g/100 g of starch because a more compact structure was formed. Then, at a glycerol content of 40 g/100 g of starch, the WVP increased because the film matrixes became less dense.
Collapse
|
41
|
Vermeylen R, Goderis B, Reynaers H, Delcour JA. Amylopectin Molecular Structure Reflected in Macromolecular Organization of Granular Starch. Biomacromolecules 2004; 5:1775-86. [PMID: 15360287 DOI: 10.1021/bm0499132] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For lintners with negligible amylose retrogradation, crystallinity related inversely to starch amylose content and, irrespective of starch source, incomplete removal of amorphous material was shown. The latter was more pronounced for B-type than for A-type starches. The two predominant lintner populations, with modal degrees of polymerization (DP) of 13-15 and 23-27, were best resolved for amylose-deficient and A-type starches. Results indicate a more specific hydrolysis of amorphous lamellae in such starches. Small-angle X-ray scattering showed a more intense 9-nm scattering peak for native amylose-deficient A-type starches than for their regular or B-type analogues. The experimental evidence indicates a lower contrasting density within the "crystalline" shells of the latter starches. A higher density in the amorphous lamellae, envisaged by the lamellar helical model, explains the relative acid resistance of linear amylopectin chains with DP > 20, observed in lintners of B-type starches. Because amylopectin chain length distributions were similar for regular and amylose-deficient starches of the same crystal type, we deduce that the more dense (and ordered) packing of double helices into lamellar structures in amylose-deficient starches is due to a different amylopectin branching pattern.
Collapse
|
42
|
Ahmt T, Wischmann B, Blennow A, Madsen F, Bandsholm O, Thomsen J. Sensory and rheological properties of transgenically and chemically modified starch ingredients as evaluated in a food product model. ACTA ACUST UNITED AC 2004; 48:149-55. [PMID: 15146974 DOI: 10.1002/food.200300407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Starches derived from five genetically modified potato lines, two chemically modified potato starches and two native starches from potato and maize were subjected to physical and chemical analyses and their functionality evaluated in a milk-based food product model. The transgenic starches were specifically modified with respect to amylopectin chain length and phosphorous content by suppression of the starch branching enzyme and overexpression of glycogen branching enzyme. Transgenic starches with long amylopectin chains and high phosphorous content had increased gelatinisation temperatures, produced gels with a higher tendency to retrograde and a low freeze/thaw stability as compared to starches with shorter amylopectin chains and lower phosphorous content. The textural properties of the food product model prepared from genetically and chemically modified starches were characterised by sensory and rheological analyses. To clearly visualise the effects of the modifications, data was evaluated by radar plots and multiple regression analysis (chemometrics). Genetically modified potato starches with longer amylopectin chains and increased phosphorous content gave a more gelled and a shorter texture as compared to starches with shorter amylopectin chains and decreased phosphorous content. Acetylated and hydroxypropylated potato starches gave sticky and stringy textures. Correlations between rheology parameters and sensory parameters were found. The sensory parameter stringy/long could be predicted from the rheological data.
Collapse
|
43
|
Richardson S, Nilsson G, Cohen A, Momcilovic D, Brinkmalm G, Gorton L. Enzyme-Aided Investigation of the Substituent Distribution in Cationic Potato Amylopectin Starch. Anal Chem 2003; 75:6499-508. [PMID: 14640720 DOI: 10.1021/ac0300688] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of substituents along the polymer chain in cationic potato amylopectin starch, modified in solution, granular slurry, or dry state, was investigated. The starch derivatives were successively hydrolyzed by different enzymes, followed by characterization of the hydrolysis products obtained by means of electrospray mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). ESI-MS and MALDI-MS were proved to be appropriate techniques for identification of the substituted hydrolysis products, for which there are no standard compounds available. No highly substituted oligomers were found in the hydrolysates, which was taken as an indication of a more or less homogeneous distribution of cationic groups in the amylopectin molecules. Furthermore, from the results obtained it was suggested that the enzymes cleave glucosidic linkages only between unsubstituted glucose units and, preferentially, linkages in sequences containing more than two adjacent unsubstituted units. The determination of the amount of unsubstituted glucose produced from every successive hydrolysis step revealed slight differences between the different starch samples with respect to the homogeneity of the substitution pattern. Among the three samples under investigation, starch cationized in solution was found to have the most and dry-cationized starch the least homogeneous distribution of substituents.
Collapse
|
44
|
Patindol J, Wang YJ. Fine structures and physicochemical properties of starches from chalky and translucent rice kernels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2777-84. [PMID: 12696972 DOI: 10.1021/jf026101t] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This work compared the molecular structures and physicochemical properties of starches obtained from chalky and translucent kernels of six rice cultivars. Starch samples were prepared according to a modified alkali steeping method. Crystallinity, pasting characteristics, and thermal properties were studied by X-ray diffraction, rapid viscosity analysis, and differential scanning calorimetry, respectively. Starch molecular size fractions (amylopectin, amylose, and intermediate material) were estimated by high-performance size exclusion chromatography, and the chain length profiles of isoamylase-debranched amylopectin were evaluated by high-performance anion-exchange chromatography with pulsed amperometric detection. Starches from chalky kernels contained less amylose (more amylopectin) and more short branch-chain amylopectin (less long branch-chain amylopectin) compared with the translucent kernel starches. Differences in starch structural features significantly correlated with observed variation in grain translucency, starch X-ray diffraction patterns, thermal properties, and pasting characteristics. Starch synthesis in chalky kernels may slightly favor glucan chain branching over chain elongation.
Collapse
|
45
|
Zhang G, Maladen MD, Hamaker BR. Detection of a novel three component complex consisting of starch, protein, and free fatty acids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:2801-2805. [PMID: 12696976 DOI: 10.1021/jf030035t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A water soluble three way complex composed of starch, whey protein, and free fatty acid (FFA) was detected in a dilute three component system after heating. In high-performance size exclusion chromatography (HPSEC) profiles of the starch-protein-FFA system, the three way complex eluted between amylopectin and amylose. The molecular mass of the complex, based on multiangle laser light scattering/HPSEC and pullulan standards, was estimated to be approximately (6-7) x 10(6) Da. Carbohydrate measurement by the phenol-sulfuric acid method clearly showed that the starch amylose fraction shifted to a higher molecular weight elution volume following complexation. Whey protein existed as large disulfide-linked aggregates and is speculated to be the organizer of the three way complex. Differential scanning calorimetry of the freeze-dried complex showed the presence of an amylose-FFA melting endotherm, thus proving that FFA was the third component in the three way complex and that the amylose-FFA complex was one of the structural components of the complex. The complexation mechanism and its relationship with changes in starch functionality were discussed.
Collapse
|
46
|
Abstract
Amylose and amylopectin in corn and potato starches were fractionated by centrifugation at 124,000g for 3-72 h at 40 degrees C in a gradient media, Nycodenz, based on their sedimentation rate differences. The fractions were collected from a centrifuge tube, and then analyzed by the phenol-sulfuric acid method and iodine-binding test. Amylopectin, a large and highly branched starch molecule, migrated faster than amylose and quickly reached its isopycnic point with a buoyant density of about 1.25 g/mL, exhibiting a sharp and stable carbohydrate peak. Amylose, which is a relatively small and linear molecule, however, migrated slowly in a broad density range and continued moving to higher density regions, eventually overlapping with amylopectin peak as the centrifugation continued. This could indicate that the buoyant density of amylose is similar to that of amylopectin. Under centrifugal conditions of 3 h and 124,000g, amylose and amylopectin molecules were clearly separated, and the presence of intermediate starch molecules (11.5 and 7.7% for corn and potato starch, respectively) was also observed between amylose and amylopectin fractions. The amylose content of corn and potato starches was 22.6 and 21.1%, respectively, based on the total carbohydrate analysis after the ultracentrifugation for 3 h. In alkaline gradients (pH 11 or 12.5), the sedimentation rate of starch molecules and the buoyant density of amylopectin were reduced, possibly due to the structural changes induced by alkali.
Collapse
|
47
|
Jenkins M, Trout JM, Higgins J, Dorsch M, Veal D, Fayer R. Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitol Res 2003; 89:1-5. [PMID: 12474036 DOI: 10.1007/s00436-002-0720-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Accepted: 07/12/2002] [Indexed: 10/27/2022]
Abstract
The purpose of this study was to compare different assays for viable Cryptosporidium parvum incubated in water at a temperature commonly found in the environment. C. parvum oocysts were stored in sterile water for 9 months at 15 degrees C. A sample was removed monthly and analyzed by five different assays to determine oocyst viability. Mouse infection and cell culture showed that C. parvum oocysts remained viable and infectious when stored for 7 months at this temperature. Fluorescence in situ hybridization (FISH) using probes directed to ribosomal RNA was also applied to these oocysts. The proportion of FISH-positive oocysts was 70-80% for the first 2 months of storage, decreased and remained nearly constant at 40-50% for 3-7 months, then decreased to 20% by 8 months, and to 0% by 9 months. Amylopectin content and mRNA for amyloglucosidase (CPAG), as measured by RT-PCR, decreased much more rapidly. By 3 months and for the remainder of the incubation period, amylopectin content was 20% of the original amount present in the oocysts. The CPAG RT-PCR signal at 3 months was 50% of that observed after 1 month storage, 20% at 4 months, and was not detected thereafter. Thus, results from cell culture and mouse infection assay exhibited the best agreement, the FISH assay showed modest agreement with these assays, and CPAG RT-PCR and the amylopectin assay displayed marginal agreement with the other three assays.
Collapse
|
48
|
Arvisenet G, Le Bail P, Voilley A, Cayot N. Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in food-like matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:7088-7093. [PMID: 12428964 DOI: 10.1021/jf0203601] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In food matrices, where starch is often used as a gelling or texturing agent, the occurrence of amylose-aroma complexes and their effect on the release of aroma compounds are difficult to determine. Indeed, thick or gelled systems are known to reduce the diffusion rate of flavor molecules, resulting in an increase of retention. Moreover, interactions between aroma compounds and matrix components might increase the retention of aroma compounds. The complexing behavior of three aroma compounds with amylose was studied by DSC and X-ray diffraction to determine the relative importance of these two factors. Their interaction properties were different: two of them formed complexes, and the third did not. These aroma compounds were added in food matrices containing different starches that induced different textures. Their retention was studied by static headspace analysis. The retention of aroma compounds appeared to depend on the amylose/amylopectin ratio of starch, both from the formation of complexes and by a viscosity effect.
Collapse
|
49
|
Wang L, Wang YJ, Porter R. Structures and physicochemical properties of six wild rice starches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2695-2699. [PMID: 11958643 DOI: 10.1021/jf011379r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Starches from six wild rice cultivars were studied for their chemical structures and physicochemical properties and compared with a long-grain rice starch. The six wild rice starches were similar in morphological appearance, X-ray diffraction patterns, swelling power, and water solubility index but different in amylose content, beta-amylolysis limit, branch chain length distribution, thermal properties, and pasting properties. The structure of the wild rice amylopectins was close to that of waxy rice amylopectin with more branching and a larger proportion of short branch chains of degree of polymerization 6-12 as compared with that of amylopectin from rice starch with a similar amylose content. The differences in branch chain length distribution of amylopectin and amylose content were assumed to contribute to the differences in physicochemical properties among the six wild rice starches as well as to the differences between the wild rice starches and the rice starch.
Collapse
|
50
|
Forsyth JL, Ring SG, Noel TR, Parker R, Cairns P, Findlay K, Shewry PR. Characterization of starch from tubers of yam bean (Pachyrhizus ahipa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:361-367. [PMID: 11782208 DOI: 10.1021/jf0108922] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Detailed studies of the starch present in tubers of six accessions of Pachyrhizus ahipa (ahipa) have been carried out using starches from tubers of P. erosus (Mexican yam bean) and seeds of ahipa and wheat for comparison. Starch accounted for 56-58% of the tuber dry weight with granules occurring in a range of geometric forms and in sizes from below 5 microm to about 35 microm (mean about 10 microm in all accessions except two). The amylose content ranged from 11.6 to 16.8% compared with 16.9% in P. erosus tubers and over 23% in the seed starches. X- ray diffraction analysis showed A-type or C(A)-type diffraction patterns. The chain-length distribution of the amylopectin after enzyme debranching showed a peak at DP11 similar to that of wheat starch, but had a less marked shoulder at DP 21-22 and contained a higher proportion of longer chains. Differential scanning calorimitry showed an endothermic peak corresponding to gelatinization with T(max) ranging from 59 to 63 degrees C, which was similar to the T(max) of wheat (about 64 degrees C). The composition of the ahipa starch may mean that it is suitable for food applications that require low amylose content and low retrogradation after processing.
Collapse
|