26
|
Zeng Z, Tang S, Chen L, Hou H, Liu Y, Li J. LncRNA HAGLROS contribute to papillary thyroid cancer progression by modulating miR-206/HMGA2 expression. Aging (Albany NY) 2023; 15:14930-14944. [PMID: 38112616 PMCID: PMC10781464 DOI: 10.18632/aging.205321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
OBJECTIVE Papillary thyroid cancer (PTC) is one of the most serious diseases of the endocrine system. In view of the limited therapeutic effects of current medical methods, this study starts from the molecular level and looks for potential treatments. The interaction between HAGLROS/miR-206/HMGA2 was studied using multi-omics methods, which provided new ideas and methods for future treatments. METHOD Microarray analysis and R language were used for differential analysis to screening experimental targets of lncRNA, miRNA, and mRNA. qRT-PCR was used to detect RNA expression in tissues and cells. Double luciferase reporter assays analyzed and validated binding relationships between different RNAs. Colony formation, flow cytometry, and transwell assays were used to measure the effect of them on cell proliferation, apoptosis, and migration. RESULT Microarray analysis identified lncRNAs, miRNAs, and mRNAs differentially expressed in PTC and normal cells, and selected lncRNA HAGLROS, miR-206, and mRNA HMGA2 as study subjects. LncRNA HAGLROS and mRNA HMGA2 were highly expressed in PTC cells while miR-206 was lowly expressed in PTC cells. LncRNA HAGLROS/HMGA2 can inhibit apoptosis of PTC cells, promote proliferation and migration, and miR-206 promotes the above process. HAGLROS and HMGA2 were negatively correlated with miR-206. shHAGLROS promoted miR-206 expression, inhibited HMGA2 expression and repressed PTC tumor growth in mice. CONCLUSIONS HAGLROS promotes the growth of PTC by competitively binding to miR-206 to promote HMGA2 expression.
Collapse
|
27
|
Cao Y, Li J, Du Y, Sun Y, Liu L, Fang H, Liang Y, Mao S. LINC02454 promotes thyroid carcinoma progression via upregulating HMGA2 through CREB1. FASEB J 2023; 37:e23288. [PMID: 37997502 DOI: 10.1096/fj.202301070rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
Thyroid carcinoma (THCA) is the most common malignancy in the endocrine system. Long intergenic non-coding RNA 2454 (LINC02454) exhibits an HMGA2-like expression pattern, but their relationship and roles in THCA are largely unknown. The present purpose was to delineate the roles of LINC02454 in THCA progression and its molecular mechanisms. We collected THCA tissues from patients and monitored patient survival. THCA cell colony formation, migration, and invasion were evaluated. Metastasis was evaluated by examining EMT markers through Western blotting. Gene interaction was determined with ChIP, RIP, RNA pull-down, and luciferase activity assays. A mouse model of a subcutaneous tumor was used to determine the activity of LINC02454 knockdown in vivo. We found that LINC02454 was highly expressed in THCA, and its upregulation was associated with poor survival. The knockdown of LINC02454 repressed colony formation, migration, and invasion. Moreover, loss of LINC02454 inhibited tumor growth and metastasis in mice. HMGA2 promoted LINC02454 transcription via binding to the LINC02454 promoter, and silencing of HMGA2 suppressed malignant behaviors through downregulation of LINC02454. HMGA2 was a novel functional target of LINC02454 in THCA cells, and knockdown of LINC02454-mediated anti-tumor effects was reversed by HMGA2 overexpression. Mechanically, LINC02454 promoted CREB1 phosphorylation and nuclear translocation, and CREB1 was subsequently bound to the HMGA2 promoter to facilitate its expression. LINC02454 cis-regulates HMGA2 transcription via facilitating CREB1 phosphorylation and nuclear translocation, and, in turn, HMGA2 promotes LINC02454 expression, thus accelerating thyroid carcinoma progression. Our results support therapeutic targets of LINC02454 and HMGA2 for THCA.
Collapse
|
28
|
Ahmed SM, Ragunathan P, Shin J, Peter S, Kleissle S, Neuenschwander M, Schäfer R, Kries JPV, Grüber G, Dröge P. The FGFR inhibitor PD173074 binds to the C-terminus of oncofetal HMGA2 and modulates its DNA-binding and transcriptional activation functions. FEBS Lett 2023; 597:1977-1988. [PMID: 37259564 DOI: 10.1002/1873-3468.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The architectural chromatin factor high-mobility group AT-hook 2 (HMGA2) is causally involved in several human malignancies and pathologies. HMGA2 is not expressed in most normal adult somatic cells, which renders the protein an attractive drug target. An established cell-based compound library screen identified the fibroblast growth factor receptor (FGFR) inhibitor PD173074 as an antagonist of HMGA2-mediated transcriptional reporter gene activation. We determined that PD173074 binds the C-terminus of HMGA2 and interferes with functional coordination of the three AT-hook DNA-binding domains mediated by the C-terminus. The HMGA2-antagonistic effect of PD173074 on transcriptional activation may therefore result from an induced altered DNA-binding mode of HMGA2. PD173074 as a novel HMGA2-specific antagonist could trigger the development of derivates with enhanced attributes and clinical potential.
Collapse
|
29
|
Li DK, Chen XR, Wang LN, Wang JH, Li JK, Zhou ZY, Li X, Cai LB, Zhong SS, Zhang JJ, Zeng YM, Zhang QB, Fu XY, Lyu XM, Li MY, Huang ZX, Yao KT. Exosomal HMGA2 protein from EBV-positive NPC cells destroys vascular endothelial barriers and induces endothelial-to-mesenchymal transition to promote metastasis. Cancer Gene Ther 2022; 29:1439-1451. [PMID: 35388172 PMCID: PMC9576596 DOI: 10.1038/s41417-022-00453-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 12/27/2022]
Abstract
Increased vascular permeability facilitates metastasis. Cancer-secreted exosomes are emerging mediators of cancer-host crosstalk. Epstein-Barr virus (EBV), identified as the first human tumor-associated virus, plays a crucial role in metastatic tumors, especially in nasopharyngeal carcinoma (NPC). To date, whether and how exosomes from EBV-infected NPC cells affect vascular permeability remains unclear. Here, we show that exosomes from EBV-positive NPC cells, but not exosomes from EBV-negative NPC cells, destroy endothelial cell tight junction (TJ) proteins, which are natural barriers against metastasis, and promote endothelial-to-mesenchymal transition (EndMT) in endothelial cells. Proteomic analysis revealed that the level of HMGA2 protein was higher in exosomes derived from EBV-positive NPC cells compared with that in exosomes derived from EBV-negative NPC cells. Depletion of HMGA2 in exosomes derived from EBV-positive NPC cells attenuates endothelial cell dysfunction and tumor cell metastasis. In contrast, exosomes from HMGA2 overexpressing EBV-negative NPC cells promoted these processes. Furthermore, we showed that HMGA2 upregulates the expression of Snail, which contributes to TJ proteins reduction and EndMT in endothelial cells. Moreover, the level of HMGA2 in circulating exosomes is significantly higher in NPC patients with metastasis than in those without metastasis and healthy negative controls, and the level of HMGA2 in tumor cells is associated with TJ and EndMT protein expression in endothelial cells. Collectively, our findings suggest exosomal HMGA2 from EBV-positive NPC cells promotes tumor metastasis by targeting multiple endothelial TJ and promoting EndMT, which highlights secreted HMGA2 as a potential therapeutic target and a predictive marker for NPC metastasis.
Collapse
|
30
|
Dong Q, Dong L, Zhu Y, Wang X, Li Z, Zhang L. Circular ribonucleic acid nucleoporin 98 knockdown alleviates high glucose-induced proliferation, fibrosis, inflammation and oxidative stress in human glomerular mesangial cells by regulating the microribonucleic acid-151-3p-high mobility group AT-hook 2 axis. J Diabetes Investig 2022; 13:1303-1315. [PMID: 35482475 PMCID: PMC9340880 DOI: 10.1111/jdi.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/27/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION This study aimed to investigate the role and mechanism of circular ribonucleic acid nucleoporin 98 (circNUP98) in diabetic nephropathy (DN). MATERIALS AND METHODS Human glomerular mesangial cells (HMCs) were stimulated with high glucose (HG) to imitate the growth environment of cells under the DN condition. Levels of genes and proteins were tested by quantitative reverse transcription polymerase chain reaction and western blot. Cell proliferation, apoptosis and inflammatory response were analyzed by using cell counting kit-8, flow cytometry and enzyme-linked immunosorbent assay analysis, respectively. Oxidative stress and fibrosis were evaluated by detecting the activity of reactive oxygen species, malondialdehyde, superoxide dismutase, fibronectin and collagen IV. The binding interaction between microribonucleic acid (miR)-151-3p and high mobility group AT-hook 2 (HMGA2) or circNUP98 was confirmed using dual-luciferase reporter, pull-down and ribonucleic acid immunoprecipitation assays. Exosomes were isolated by ultracentrifugation, and qualified by transmission electron microscopy, nanoparticle tracking analysis and western blot. RESULTS CircNUP98 expression was higher in the serum of DN patients and HG-stimulated HMCs. Functionally, circNUP98 knockdown alleviated HG-induced proliferation, fibrosis, inflammatory response and oxidative stress in HMCs. Mechanistically, circNUP98 directly sponged miR-151-3p, which targeted HMGA2. Rescue experiments showed that miR-151-3p reversed the inhibitory effects of circNUP98 knockdown on HG-induced HMC dysfunction. Furthermore, miR-151-3p re-expression also led to an inhibition of the aforementioned biological behaviors, which was attenuated by HMGA2 upregulation. Besides that, CircNUP98 was found to be packaged into exosomes of DN, and exosomal circNUP98 possessed diagnostic value for DN patients. CONCLUSION CircNUP98 knockdown alleviates HG-induced proliferation, fibrosis inflammation and oxidative stress in HMCs by regulating the miR-151-3p-HMGA2 axis, which might provide a potential approach for DN therapeutics.
Collapse
|
31
|
Ye Z, Gui D, Wang X, Wang J, Fu J. LncRNA SNHG1 promotes renal cell carcinoma progression through regulation of HMGA2 via sponging miR-103a. J Clin Lab Anal 2022; 36:e24422. [PMID: 35466471 PMCID: PMC9169200 DOI: 10.1002/jcla.24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (LncRNAs) plays a vital role in tumorigenesis and development. The molecular mechanism of SNHG1 in renal cell carcinoma (RCC) has not been illustrated. The aim of this research was to explore the expression and function of LncRNA SNHG1 in RCC. MATERIAL AND METHODS The expression of SNHG1 in clinical tissues and RCC cell lines was detected. Luciferase reporter assay was performed to verify the correlation between SNHG1, miR-103a, and HMGA2. CCK-8 assay was performed to examine cell viability. Cell apoptosis was analyzed using flow cytometry. Cell invasion capacity was determined by Transwell assays. The protein level of HMGA2 was analyzed by Western blotting. RESULTS The expression of SNHG1 markedly increased in RCC tissues and cell lines. Subsequent studies identified SNHG1 as a miRNA sponge for miR-103a. In addition, SNHG1 knockdown and miR-103a overexpression significantly inhibited progression of RCC. miR-103a also regulated HMGA2 levels. CONCLUSION Our findings showed that SNHG1 was upregulated in RCC cells and tissues. SNHG1 promoted the malignant characteristics of RCC cells. Its regulatory effect may be regulation of HMGA2 by sponging miR-103a. Therefore, Our study facilitates the understanding of SNHG1 function in RCC.
Collapse
|
32
|
Blades M, Freyer J, Donner J, Chodroff Foran R, Forman OP. Large scale across-breed genome-wide association study reveals a variant in HMGA2 associated with inguinal cryptorchidism risk in dogs. PLoS One 2022; 17:e0267604. [PMID: 35617214 PMCID: PMC9135263 DOI: 10.1371/journal.pone.0267604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cryptorchidism is the most common congenital sex development disorder in dogs. Despite this, little progress has been made in understanding its genetic background. Extensive genetic testing of dogs through consumer and veterinary channels using a high-density SNP genotyping microarray coupled with links to clinical records presents the opportunity for a large-scale genome-wide association study to elucidate the molecular risk factors associated with cryptorchidism in dogs. Using an inter-breed genome-wide association study approach, a significant statistical association on canine chromosome 10 was identified, with the top SNP pinpointing a variant of HMGA2 previously associated with adult weight variance. In further analysis we show that incidence of cryptorchidism is skewed towards smaller dogs in concordance with the identified variant’s previous association with adult weight. This study represents the first putative variant to be associated with cryptorchidism in dogs.
Collapse
|
33
|
Lee MO, Li J, Davis BW, Upadhyay S, Al Muhisen HM, Suva LJ, Clement TM, Andersson L. Hmga2 deficiency is associated with allometric growth retardation, infertility, and behavioral abnormalities in mice. G3 (BETHESDA, MD.) 2022; 12:6456304. [PMID: 34878116 PMCID: PMC9210324 DOI: 10.1093/g3journal/jkab417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
The high mobility group AT-hook 2 (HMGA2) protein works as an architectural regulator by binding AT-rich DNA sequences to induce conformational changes affecting transcription. Genomic deletions disrupting HMGA2 coding sequences and flanking noncoding sequences cause dwarfism in mice and rabbits. Here, CRISPR/Cas9 was used in mice to generate an Hmga2 null allele that specifically disrupts only the coding sequence. The loss of one or both alleles of Hmga2 resulted in reduced body size of 20% and 60%, respectively, compared to wild-type littermates as well as an allometric reduction in skull length in Hmga2-/- mice. Both male and female Hmga2-/- mice are infertile, whereas Hmga2+/- mice are fertile. Examination of reproductive tissues of Hmga2-/- males revealed a significantly reduced size of testis, epididymis, and seminal vesicle compared to controls, and 70% of knock-out males showed externalized penis, but no cryptorchidism was observed. Sperm analyses revealed severe oligospermia in mutant males and slightly decreased sperm viability, increased DNA damage but normal sperm chromatin compaction. Testis histology surprisingly revealed a normal seminiferous epithelium, despite the significant reduction in testis size. In addition, Hmga2-/- mice showed a significantly reduced exploratory behavior. In summary, the phenotypic effects in mouse using targeted mutagenesis confirmed that Hmga2 is affecting prenatal and postnatal growth regulation, male reproductive tissue development, and presents the first indication that Hmga2 function is required for normal mouse behavior. No specific effect, despite an allometric reduction, on craniofacial development was noted in contrast to previous reports of an altered craniofacial development in mice and rabbits carrying deletions of both coding and noncoding sequences at the 5' part of Hmga2.
Collapse
|
34
|
Agaimy A, Ihrler S, Baněčková M, Costés Martineau V, Mantsopoulos K, Hartmann A, Iro H, Stoehr R, Skálová A. HMGA2-WIF1 Rearrangements Characterize a Distinctive Subset of Salivary Pleomorphic Adenomas With Prominent Trabecular (Canalicular Adenoma-like) Morphology. Am J Surg Pathol 2022; 46:190-199. [PMID: 34324456 DOI: 10.1097/pas.0000000000001783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Most of salivary gland neoplasms (benign and malignant) are characterized by recurrent gene fusions. Pleomorphic adenoma (PA), the most frequent salivary gland tumor, is driven by chromosomal rearrangements involving PLAG1 mapped to 8q12 and HMGA2 mapped to 12q13-15 in most cases. Multiple fusion partners have been identified including CTNNB1, FGFR1, LIFR, CHCHD7 and TCEA for PLAG1 fusions and NFIB, WIF1 and FHIT for HMGA2 fusions. To date, no data exist on the morphology of the few reported HMGA2-WIF1-rearranged PAs. We present 28 major salivary gland adenomas displaying distinctive trabecular and canalicular morphology associated with recurrent genotype. Patients were 15 females and 13 males aged 43 to 87 (median: 65). All tumors originated from the parotid. Their size range was 1 to 4 cm (mean: 2.3). Histologically, all tumors showed elongated or columnar cells arranged into bilayered to multilayered communicating and branching strands and trabeculae in a manner similar to canalicular adenoma of minor salivary glands or trabecular myoepithelioma with variable solid confluent intercalated duct-like areas. Fifteen tumors were exclusively canalicular/trabecular while 13 had intermingled or well-demarcated conventional (chondromyxoid) PA component comprising 5 to >50% of the tumor. The monomorphic areas expressed uniformly CK7 (28/28), vimentin (21/21), S100 (24/24), SOX10 (16/17) and variably p63 (8/21) and mammaglobin (6/16) but were negative with p40 (0/24), smooth muscle actin (0/24) and MUC4 (0/16). Targeted RNA sequencing revealed HMGA2 fusions in 14/16 (87%) assessable cases. Fusion partner was WIF1 (12), RPSAP52 (1) and HELB (1). Separate testing of the 2 components in 1 hybrid tumor showed same HMGA2/WIF1 fusion. HMGA2 immunohistochemistry was homogeneously positive in all cases including the 2 fusion-negative cases. A control cohort of 12 genuine canalicular adenomas revealed no HMGA2 fusions (0/4) and lacked HMGA2 immunoreactivity (0/12). This study highlights a distinctive variant in the spectrum of PA characterized by prominent trabecular and canalicular adenoma-like morphology. Our data confirm that canalicular adenomas in major salivary glands (either monomorphic or part of hybrid tumors) are distinct from canalicular adenoma of minor salivary glands. Their uniform genotype irrespective of presence or absence of a conventional PA component argues for classifying those tumors lacking a conventional PA component as "monomorphic variants of PA" rather than canalicular/basal cell adenomas, intercalated duct adenoma, trabecular myoepithelioma or true hybrid tumors.
Collapse
|
35
|
Negishi T, Mihara N, Chiba T, D'Armiento J, Chada K, Maeda M, Igarashi M, Imai K. High mobility group AT-hook 2 regulates osteoblast differentiation and facial bone development. Biochem Biophys Res Commun 2022; 590:68-74. [PMID: 34973532 DOI: 10.1016/j.bbrc.2021.12.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022]
Abstract
The mutation and deletion of high mobility group AT-hook 2 (Hmga2) gene exhibit skeletal malformation, but almost nothing is known about the mechanism. This study examined morphological anomaly of facial bone in Hmga2-/- mice and osteoblast differentiation of pre-osteoblast MC3T3-E1 cells with Hmga2 gene knockout (A2KO). Hmga2-/- mice showed the size reduction of anterior frontal part of facial bones. Hmga2 protein and mRNA were expressed in mesenchymal cells at ossification area of nasal bone. A2KO cells differentiation into osteoblasts after reaching the proliferation plateau was strongly suppressed by alizarin red and alkaline phosphatase staining analyses. Expression of osteoblast-related genes, especially Osterix, was down-regulated in A2KO cells. These results demonstrate a close association of Hmga2 with osteoblast differentiation of mesenchymal cells and bone growth. Although future studies are needed, the present study suggests an involvement of Hmga2 in osteoblast-genesis and bone growth.
Collapse
|
36
|
Qiu F, Liu Q, Xia Y, Jin H, Lin Y, Zhao X. Circ_0000658 knockdown inhibits epithelial-mesenchymal transition in bladder cancer via miR-498-induced HMGA2 downregulation. J Exp Clin Cancer Res 2022; 41:22. [PMID: 35031054 PMCID: PMC8759287 DOI: 10.1186/s13046-021-02175-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/05/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has been associated with the angiogenesis and oncogenic phenotypes of multiple malignant tumors including bladder cancer (BCa). Circular RNAs (circRNAs) are recognized as crucial regulators in the EMT. This study aims to illustrate the possible role of circular RNA_0000658 (circ_0000658) in BCa and the underlying molecular mechanism. METHODS The expression of circ_0000658, microRNA (miR)-498, and high mobility group AT-hook 2 (HMGA2) was assessed in cancer and adjacent normal tissue collected from BCa patients and human BCa cell lines (MGH-U3, T24, 5637 and SW780). BCa cells were transduced with a series of overexpression or shRNA plasmids to clarify the function of circ_0000658 and miR-498 on the oncogenic phenotypes and EMT of BCa cells. Further, we established nude mice xenografted with BCa cells to validate the roles of circ_0000658 on tumor growth in vivo. RESULTS Circ_0000658 was highly expressed in BCa tissue samples and cell lines, which indicated a poor prognosis of BCa patients. Circ_0000658 competitively bound to miR-498 and thus restricted miR-498 expression. Meanwhile, circ_0000658 weakened the binding of miR-498 to the target gene HMGA2 and upregulated the HMGA2 expression. Circ_0000658 elevation or miR-498 knockdown augmented oncogenic phenotypes and EMT of BCa cells, corresponding to a reduction in the expression of β-catenin and E-cadherin as well as an increase in the expression of N-cadherin, Slug, Snail, ZEB1 and Twist. Inhibition of HMGA2 reversed the effects of circ_0000658 overexpression on tumor growth in vivo. CONCLUSION Altogether, our study uncovered the tumor-promoting role of circ_0000658 in BCa via the miR-498/HMGA2 axis.
Collapse
|
37
|
Rao M, Xu S, Zhang Y, Liu Y, Luan W, Zhou J. Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis 2021; 12:859. [PMID: 34552050 PMCID: PMC8458532 DOI: 10.1038/s41419-021-04123-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
The lncRNA ZFAS1 plays a carcinogenic regulatory role in many human tumours, but it is rarely reported in pancreatic cancer. We identify the role and molecular mechanisms of ZFAS1 in pancreatic cancer. The expression of ZFAS1, miR-497-5p and HMGA2 in pancreatic cancer tissues was detected by qRT-PCR. Pancreatic cancer data in The Cancer Genome Atlas were also included in this study. CCK8, EdU, transwell and scratch wound assays were used to investigate the biological effects of ZFAS1 in pancreatic cancer cells. MS2-RIP, RNA pull-down, RNA-ChIP and luciferase reporter assays were used to clarify the molecular biological mechanisms of ZFAS1 in pancreatic cancer. The role of ZFAS1 in vivo was also confirmed via xenograft experiments. ZFAS1 was overexpressed in pancreatic cancer tissues. ZFAS1 promoted the growth and metastasis of pancreatic cancer cells, and miR-497-5p acted as a tumour suppressor gene in pancreatic cancer by targeting HMGA2. We also demonstrated that ZFAS1 exerts its effects by promoting HMGA2 expression through decoying miR-497-5p. We also found that ZFAS1 promoted the progression of pancreatic cancer in vivo by modulating the miR-497-5p/HMGA2 axis. In conclusion, this study revealed a new role for and the molecular mechanisms of ZFAS1 in pancreatic cancer, identifying ZFAS1 as a novel target for the diagnosis and treatment of pancreatic cancer.
Collapse
|
38
|
Mei J, Dlamini MB, Gao Z, Jiang L, Li Q, Geng C, Shi X, Liu Y, Kong Y, Cao J. A requirement for autophagy in HMGA2-induced metabolic reprogramming to support Cd-induced migration. Toxicology 2021; 462:152928. [PMID: 34481905 DOI: 10.1016/j.tox.2021.152928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 02/04/2023]
Abstract
High mobility group A2 (HMGA2) is closely related to the occurrence, development and prognosis of tumors. But the mechanism is unclear. Metabolic reprogramming is a dominant way to meet anabolic and energy requirements of tumor cells for their survival, growth and proliferation. Here, we investigated the role of metabolic reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis mediated by HMGA2/autophagy axis in cadmium (Cd, CdCl2)-induced migration. First, we found that Cd induced glycolysis and reduced OXPHOS in vivo (0.5 and 1 mg/kg, i.p. or 0.8 and 1.6 μM, i.t.) and in vitro (2 μM in A549 cells and 0.05 μM in HELF cells). Then, genetic knockdown of HMGA2 restored Cd-reduced mitochondrial mass and OXPHOS and inhibited Cd-increased glycolysis, indicating that HMGA2 was involved in Cd-induced metabolic reprogramming. 2-Deoxy-d-glucose (2DG, 5 mM), the inhibitor of glycolysis decreased Cd/HMGA2-induced cell migration and restored Cd/HMGA2-decreased OXPHOS and mitochondrial mass. Inhibition of autophagy by 3-Methyladenine (3MA, 3 mM) elucidated an essential role of autophagy in HMGA2-induced glycolysis, migration, and HMGA2-reduced OXPHOS. Overall, our study demonstrated that autophagy was required for HMGA2-mediated metabolic reprogramming, which was critical for Cd-induced migration. Targeting HMGA2 and autophagy-dependent reprogrammed metabolism may be an effective way to inhibit Cd-induced cell migration.
Collapse
|
39
|
Li J, Li Y, Cheng H. Circ-RPPH1 knockdown retards breast cancer progression via miR-328-3p-mediated suppression of HMGA2. Clin Breast Cancer 2021; 22:e286-e295. [PMID: 34593318 DOI: 10.1016/j.clbc.2021.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Circular RNA Ribonuclease P RNA Component H1 (circ-RPPH1) was confirmed to act as an oncogene in many cancers to promote cancer progression. However, the exact function and mechanism of circ-RPPH1 in breast cancer (BC) remain vague. METHODS The expression of circ-RPPH1, microRNA (miR)-328-3p and high-mobility group AT-hook 2 (HMGA2) was detected using quantitative real-time polymerase chain reaction and western blot. Cell viability, apoptosis, migration and invasion were determined using cell counting kit-8 assay, flow cytometry and transwell assay, respectively. Glucose metabolism was calculated by detecting glucose uptake and lactate production. The target correlations between miR-328-3p and circ-RPPH1 or HMGA2 were confirmed by dual-luciferase reporter assay. The murine xenograft model was established to conduct in vivo experiments. RESULTS Circ-RPPH1 expression was elevated and miR-328-3p was decreased in BC tissues and cells. Circ-RPPH1 knockdown or miR-328-3p re-expression suppressed cell proliferation, migration, invasion and glycolysis but induced apoptosis in BC in vitro. Circ-RPPH1 was a sponge of miR-328-3p, and silencing of miR-328-3p reversed the inhibitory effects of circ-RPPH1 knockdown on BC cell malignant phenotypes and glycolysis. MiR-328-3p directly targeted HMGA2, and HMGA2 overexpression abolished the action of miR-328-3p in BC cells. Besides, circ-RPPH1 could regulate HMGA2 expression by miR-328-3p in BC cells. Moreover, murine xenograft model analysis suggested circ-RPPH1 knockdown inhibited tumor growth in vivo. CONCLUSION Circ-RPPH1 knockdown retarded cell malignant phenotypes and glycolysis via miR-328-3p/HMGA2 axis in BC, providing a potential therapeutic target for BC treatment.
Collapse
|
40
|
Abedi Gaballu F, Cho WCS, Dehghan G, Zarebkohan A, Baradaran B, Mansoori B, Abbaspour-Ravasjani S, Mohammadi A, Sheibani N, Aghanejad A, Ezzati Nazhad Dolatabadi J. Silencing of HMGA2 by siRNA Loaded Methotrexate Functionalized Polyamidoamine Dendrimer for Human Breast Cancer Cell Therapy. Genes (Basel) 2021; 12:genes12071102. [PMID: 34356120 PMCID: PMC8303903 DOI: 10.3390/genes12071102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
The transcription factor high mobility group protein A2 (HMGA2) plays an important role in the pathogenesis of some cancers including breast cancer. Polyamidoamine dendrimer generation 4 is a kind of highly branched polymeric nanoparticle with surface charge and highest density peripheral groups that allow ligands or therapeutic agents to attach it, thereby facilitating target delivery. Here, methotrexate (MTX)- modified polyamidoamine dendrimer generation 4 (G4) (G4/MTX) was generated to deliver specific small interface RNA (siRNA) for suppressing HMGA2 expression and the consequent effects on folate receptor (FR) expressing human breast cancer cell lines (MCF-7, MDA-MB-231). We observed that HMGA2 siRNA was electrostatically adsorbed on the surface of the G4/MTX nanocarrier for constructing a G4/MTX-siRNA nano-complex which was verified by changing the final particle size and zeta potential. The release of MTX and siRNA from synthesized nanocomplexes was found in a time- and pH-dependent manner. We know that MTX targets FR. Interestingly, G4/MTX-siRNA demonstrates significant cellular internalization and gene silencing efficacy when compared to the control. Besides, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay demonstrated selective cell cytotoxicity depending on the folate receptor expressing in a dose-dependent manner. The gene silencing and protein downregulation of HMGA2 by G4/MTX-siRNA was observed and could significantly induce cell apoptosis in MCF-7 and MDA-MB-231 cancer cells compared to the control group. Based on the findings, we suggest that the newly developed G4/MTX-siRNA nano-complex may be a promising strategy to increase apoptosis induction through HMGA2 suppression as a therapeutic target in human breast cancer.
Collapse
|
41
|
Liang L, Kang H, Jia J. HCP5 contributes to cisplatin resistance in gastric cancer through miR-128/HMGA2 axis. Cell Cycle 2021; 20:1080-1090. [PMID: 33993846 PMCID: PMC8208113 DOI: 10.1080/15384101.2021.1924948] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
The long non-coding RNA HLA complex P5 (HCP5) is extensively related to cancer chemoresistance, while its function in gastric cancer (GC) has not been well elucidated yet. Here, the role and mechanism of HCP5 in regulating the chemoresistance of GC to cisplatin (DDP) was investigated. Our results revealed that HCP5 was increased in GC patients and indicated a poor prognosis. HCP5 knockdown weakens DDP resistance and reduced apoptosis of GC cells. miR-128 was decreased in GC patients and sponged by HCP5. HMGA2 was targeted by miR-128 and was increased in GC patients. HCP5 aggravated the resistance of GC cells to DDP in vitro by elevating HMGA2 expression via sponging miR-128. HCP5 silencing inhibited GC cells growth, resistance to DDP, and Ki-67 expression in vivo. In summary, HCP5 contributed to DDP resistance in GC cells through miR-128/HMGA2 axis, providing a promising therapeutic target for GC chemoresistance.
Collapse
|
42
|
Zhang Y, Luo G, You S, Zhang L, Liang C, Chen X. Exosomal LINC00355 derived from cancer-associated fibroblasts promotes bladder cancer cell proliferation and invasion by regulating miR-15a-5p/HMGA2 axis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:673-682. [PMID: 33882126 DOI: 10.1093/abbs/gmab041] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that exosomes derived from cancer-associated fibroblasts (CAFs) promote bladder cancer (BC) cell proliferation and invasion by transferring LINC00355. In this study, the molecular mechanisms underlying the pro-bladder cancer action of exosomal LINC00355 were explored. CAFs were obtained from BC tumor tissues, and normal fibroblasts (NFs) were obtained from adjacent normal tissues. Human BC cell lines (T24 and 5367) were incubated with NF-Exo (exosomes from NFs), CAF-Exo (exosomes from CAFs), CAFsi-Ctrl-Exo (exosomes from si-Ctrl-transfected CAFs), and CAFsi-LINC00355-Exo (exosomes from si-LINC00355-transfected CAFs). BC cell proliferation and invasion were evaluated by MTT and Transwell assays, respectively. The interaction between miR-15a-5p and LINC00355 or HMGA2 was examined by online bioinformatics analysis and luciferase activity assay. Results showed that HMGA2 is a direct target of miR-15a-5p, and LINC00355 functions as a sponge of miR-15a-5p to upregulate HMGA2 expression. The promoting effects of CAF-Exo on HMGA2 expression, cell proliferation, and cell invasion were hindered when LINC00355 expression was inhibited in BC cells. These promoting effects were also hindered when miR-15a-5p was overexpressed or HMGA2 was silenced in BC cells. In conclusion, exosomal LINC00355 derived from CAFs promotes BC cell proliferation and invasion by regulating miR-15a-5p/HMGA2 axis.
Collapse
|
43
|
Tang C, Lei X, Xiong L, Hu Z, Tang B. HMGA1B/2 transcriptionally activated-POU1F1 facilitates gastric carcinoma metastasis via CXCL12/CXCR4 axis-mediated macrophage polarization. Cell Death Dis 2021; 12:422. [PMID: 33927188 PMCID: PMC8084942 DOI: 10.1038/s41419-021-03703-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Tumor-associated macrophages (TAMs) in the tumor microenvironment contribute to poor prognosis in gastric cancer (GC). However, the underlying mechanism by which TAMs promote GC progression and metastasis remains elusive. Expression of POU1F1 was detected in 60 matched GC-normal tissue pairs using qRT-PCR and immunohistochemistry (IHC) analysis. The correlation between POU1F1 and the clinical-pathological factors of GC patients were further assessed. Cell proliferation was monitored by CCK-8, colony formation, and 5-Ethynyl-2'-deoxyuridine (EdU) incorporation assays. Cell migration and invasion were assessed by transwell assays. The impact on angiogenesis was evaluated by tube formation assay. Xenograft model was generated to investigate the role of POU1F1 on tumor growth and lung metastasis in vivo. GST pull-down and Co-immunoprecipitation (Co-IP) were used to study the interaction between HMGA1B/2 and POU1F1. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were performed to investigate the transcriptional regulation of POU1F1. Flow cytometry was performed to detect the surface expression of macrophage markers. Upregulated POU1F1 observed both in GC tissues and cell lines was positively correlated with poor prognosis. Knockdown of POU1F1 inhibited cell proliferation, migration, invasion, and angiogenesis in vitro, and suppressed tumor growth in vivo. HMGA1B/2 transcriptionally activated-POU1F1. POU1F1 promoted GC progression via regulating macrophage proliferation, migration, polarization, and angiogenesis in a CXCL12/CXCR4-dependent manner. POU1F1 also promoted GC metastasis in lung by modulating macrophage polarization through CXCL12/CXCR4 axis in vivo. HMGA1B/2-upregulated POU1F1 promoted GC metastasis via regulating macrophage polarization in a CXCL12/CXCR4-dependent manner.
Collapse
|
44
|
Su X, Wang X, Liu Y, Kong W, Yan F, Han F, Liu Q, Shi Y. Effect of Jiajian Guishen Formula on the senescence-associated heterochromatic foci in mouse ovaria after induction of premature ovarian aging by the endocrine-disrupting agent 4-vinylcyclohexene diepoxide. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113720. [PMID: 33358858 DOI: 10.1016/j.jep.2020.113720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiajian Guishen Formula (JJGSF), which is a prescription of Traditional Chinese Medicine (TCM), has been reported to be useful in the treatment of premature ovarian insufficiency (POI). AIM OF THE STUDY To investigate the therapeutic effects of JJGSF on the treatment of POI induced by 4-vinylcyclohexene diep-oxide (VCD), an endocrine-disrupting chemical (EDC), and to elucidate the potential mechanism. MATERIALS AND METHODS Female 8-week-old ICR mice (N = 72) were randomized into six groups, containing the Model group, Control group, three JJGSF groups, and Progynova group which was served as a positive control. After model establishment by VCD, the Progynova group were given a daily intragastric administration of Progynova, and the three JJGSF groups (high dose group, medium dose group and low dose group) received a daily intragastric administration of JJGSF at doses of 9, 4.5 and 2.25 g/kg for four weeks. The general growth of the mice was observed and the estrous cycles were examined. The serum hormone concentrations were measured by enzyme-linked immunosorbent assay (ELISA). To explore the potential mechanism of effect, the protein expressions of H3K9me3, HP1, and HMGA1/HMGA2 related to senescence-associated heterochromatic foci (SAHF), were determined by Immunofluorescence and Western blot analysis, respectively. RESULTS After treating with JJGSF, the estrous cycles were improved significantly. The level of estrogen (E2) and anti-müllerian hormone (AMH) was increased and the ratio of follicle-stimulating hormone (FSH) to luteinizing hormone (LH) in serum was decreased significantly. Furthermore, a significant down-regulation of HMGA1/HMGA2 on protein level, a reduction distribution of HP1 and H3K9me3 in ovarian, and a lower fraction of SAHF-positive cells were observed after the administration with JJGSF, additionally effects showed a positive correlation with dosages. CONCLUSIONS JJGSF could treat POI by the mechanism of inhibiting SAHF.
Collapse
|
45
|
Frasson LT, Dalmaso B, Akamine PS, Kimura ET, Hamassaki DE, Del Debbio CB. Let-7, Lin28 and Hmga2 Expression in Ciliary Epithelium and Retinal Progenitor Cells. Invest Ophthalmol Vis Sci 2021; 62:31. [PMID: 33749722 PMCID: PMC7991968 DOI: 10.1167/iovs.62.3.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/24/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose Ciliary epithelium (CE) of adult mammalian eyes contains quiescent retinal progenitor/stem cells that generate neurospheres in vitro and differentiate into retinal neurons. This ability doesn't evolve efficiently probably because of regulatory mechanisms, such as microRNAs (miRNAs) that control pluripotent, progenitor, and differentiation genes. Here we investigate the presence of Let-7 miRNAs and its regulator and target, Lin28 and Hmga2, in CE cells from neurospheres, newborns, and adult tissues. Methods Newborn and adult rats CE cells were dissected into pigmented and nonpigmented epithelium (PE and NPE). Newborn PE cells were cultured with growth factors to form neurospheres and we analyzed Let-7, Lin28a, and Hmga2 expression. During the neurospheres formation, we added chemically modified single-stranded oligonucleotides designed to bind and inhibit or mimic endogenous mature Let-7b and Let-7c. After seven days in culture, we analyzed neurospheres size, number and expression of Let-7, Lin28, and Hmga2. Results Let-7 miRNAs were expressed at low rates in newborn CE cells with significant increase in adult tissues, with higher levels on NPE cells, that does not present the stem cells reprogramming ability. The Lin28a and Hmga2 protein and transcripts were more expressed in newborns than adults cells, opposed to Let-7. Neurospheres presented higher Lin28 and Hmga2 expression than newborn and adult, but similar Let-7 than newborns. Let-7b inhibitor upregulated Hmga2 expression, whereas Let-7c mimics upregulated Lin28 and downregulated Hmga2. Conclusions This study shows the dynamic of Lin28-Let-7-Hmga regulatory axis in CE cells. These components may develop different roles during neurospheres formation and postnatal CE cells.
Collapse
|
46
|
Song M, Cao C, Zhou Z, Yao S, Jiang P, Wang H, Zhao G, Hu Y. HMGA2-induced epithelial-mesenchymal transition is reversed by let-7d in intrauterine adhesions. Mol Hum Reprod 2021; 27:gaaa074. [PMID: 33237328 PMCID: PMC7864003 DOI: 10.1093/molehr/gaaa074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesions (IUAs), the leading cause of uterine infertility, are characterized by endometrial fibrosis. The management of IUA is challenging because the pathogenesis of the disease largely unknown. In this study, we demonstrate that the mRNA and protein levels of high mobility group AT-hook 2 (HMGA2) were increased by nearly 3-fold (P < 0.0001) and 5-fold (P = 0.0095) in the endometrial epithelial cells (EECs) of IUA patients (n = 18) compared to controls. In vivo and in vitro models of endometrial fibrosis also confirmed the overexpression of HMGA2 in EECs. In vitro cell experiments indicated that overexpression of HMGA2 promoted the epithelial-mesenchymal transition (EMT) while knockdown of HMGA2 reversed transforming growth factor-β-induced EMT. A dual luciferase assay confirmed let-7d microRNA downregulated HMGA2 and repressed the pro-EMT effect of HMGA2 in vitro and in vivo. Therefore, our data reveal that HMGA2 promotes IUA formation and suggest that let-7d can depress HMGA2 and may be a clinical targeting strategy in IUA.
Collapse
|
47
|
Wang YD, Mao JD, Wang JF, Xu MQ. MiR-590 Suppresses Proliferation and Induces Apoptosis in Pancreatic Cancer by Targeting High Mobility Group A2. Technol Cancer Res Treat 2021; 19:1533033820928143. [PMID: 32588766 PMCID: PMC7325540 DOI: 10.1177/1533033820928143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a common malignancy with high morbidity. MicroRNAs have been demonstrated to be critical posttranscriptional regulators in tumorigenesis. This study aimed to investigate the effect of microRNA-590 on the proliferation and apoptosis of pancreatic ductal adenocarcinoma. MATERIAL AND METHODS The expression of microRNA-590 and high mobility group AT-hook 2 were examined in clinical pancreatic ductal adenocarcinoma tissues. Pancreatic ductal adenocarcinoma cell line Capan-2 was employed and transfected with microRNA-590 mimics or inhibitor. The correlation between microRNA-590 and high mobility group AT-hook 2 was verified by luciferase reporter assay. Cell viability and apoptosis were detected by MTT and flow cytometry assay. The protein level of high mobility group AT-hook 2, AKT, p-AKT, mTOR, and phosphorylated mTOR were analyzed by Western blotting. RESULTS MicroRNA-590 was found to be negatively correlated with the expression of high mobility group AT-hook 2 in pancreatic ductal adenocarcinoma tissues. Further studies identified high mobility group AT-hook 2 as a direct target of microRNA-590. Moreover, overexpression of microRNA-590 downregulated expression of high mobility group AT-hook 2, reduced cell viability, and promoted cell apoptosis, while knockdown of miR-590 led to an inverse result. MicroRNA-590 also suppressed the phosphorylation of AKT and mTOR without altering total AKT and mTOR levels. CONCLUSION Our study indicated that microRNA-590 negatively regulates the expression of high mobility group AT-hook 2 in clinical specimens and in vitro. MicroRNA-590 can inhibit cell proliferation and induce cell apoptosis in pancreatic ductal adenocarcinoma cells. This regulatory effect of microRNA-590 may be associated with AKT signaling pathway. Therefore, microRNA-590 has the potential to be used as a biomarker for predicting the progression of pancreatic ductal adenocarcinoma.
Collapse
|
48
|
Qin C, Jin L, Li J, Zha W, Ding H, Liu X, Zhu X. Long Noncoding RNA LINC02163 Accelerates Malignant Tumor Behaviors in Breast Cancer by Regulating the MicroRNA-511-3p/HMGA2 Axis. Oncol Res 2020; 28:483-495. [PMID: 32571448 PMCID: PMC7751230 DOI: 10.3727/096504020x15928179818438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Long intergenic nonprotein-coding RNA 02163 (LINC02163) has been reported to be upregulated and work as an oncogene in gastric cancer. The aims of the present study were to determine the expression profile and clinical value of LINC02163 in breast cancer. Additionally, the detailed functions of LINC02163 in breast cancer were explored, and relevant molecular events were elucidated. In this study, LINC02163 was upregulated in breast cancer, and its expression level was closely associated with tumor size, lymph node metastasis, and TNM stage. Patients with breast cancer presenting high LINC02163 expression exhibited shorter overall survival than those presenting low LINC02163 expression. Knockdown of LINC02163 resulted in a decrease in breast cancer cell proliferation, migration, and invasion and an increase in cell apoptosis in vitro. In addition, silencing of LINC02163 impeded breast cancer tumor growth in vivo. Mechanistic investigation revealed that LINC02163 served as a competing endogenous RNA for microRNA-511-3p (miR-511-3p) and consequently upregulated the expression of the high-mobility group A2 (HMGA2), a downstream target of miR-511-3p. Intriguingly, miR-511-3p inhibition and HMGA2 restoration counteracted the effects of LINC02163 deficiency on the malignant properties of breast cancer cells. LINC02163 exerts cancer-promoting effects during the initiation and progression of breast cancer via regulation of the miR-511-3p/HMGA2 axis. Our findings add to our understanding of the roles of the LINC02163/miR-511-3p/HMGA2 pathway as a regulator of breast cancer pathogenesis and may be useful in the development of lncRNA-directed cancer diagnosis, prognosis, and therapy.
Collapse
|
49
|
Su L, Bryan N, Battista S, Freitas J, Garabedian A, D'Alessio F, Romano M, Falanga F, Fusco A, Kos L, Chambers J, Fernandez-Lima F, Chapagain PP, Vasile S, Smith L, Leng F. Identification of HMGA2 inhibitors by AlphaScreen-based ultra-high-throughput screening assays. Sci Rep 2020; 10:18850. [PMID: 33139812 PMCID: PMC7606612 DOI: 10.1038/s41598-020-75890-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
The mammalian high mobility group protein AT-hook 2 (HMGA2) is a multi-functional DNA-binding protein that plays important roles in tumorigenesis and adipogenesis. Previous results showed that HMGA2 is a potential therapeutic target of anticancer and anti-obesity drugs by inhibiting its DNA-binding activities. Here we report the development of a miniaturized, automated AlphaScreen ultra-high-throughput screening assay to identify inhibitors targeting HMGA2-DNA interactions. After screening the LOPAC1280 compound library, we identified several compounds that strongly inhibit HMGA2-DNA interactions including suramin, a century-old, negatively charged antiparasitic drug. Our results show that the inhibition is likely through suramin binding to the "AT-hook" DNA-binding motifs and therefore preventing HMGA2 from binding to the minor groove of AT-rich DNA sequences. Since HMGA1 proteins also carry multiple "AT-hook" DNA-binding motifs, suramin is expected to inhibit HMGA1-DNA interactions as well. Biochemical and biophysical studies show that charge-charge interactions and hydrogen bonding between the suramin sulfonated groups and Arg/Lys residues play critical roles in the binding of suramin to the "AT-hook" DNA-binding motifs. Furthermore, our results suggest that HMGA2 may be one of suramin's cellular targets.
Collapse
|
50
|
Cheng J, Zhuo Z, Yang L, Zhao P, Zhang J, Zhou H, He J, Li P. HMGA2 gene polymorphisms and Wilms tumor susceptibility in Chinese children: a four-center case-control study. Biotechnol Appl Biochem 2020; 67:939-945. [PMID: 31746066 DOI: 10.1002/bab.1857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/14/2019] [Indexed: 02/05/2023]
Abstract
Wilms tumor is a kidney malignancy that typically occurs in children. Aberrant expression of HMGA2 gene is commonly seen in many malignant tumors. Yet, HMGA2 gene polymorphisms on Wilms tumor risk are not established. We carried out the first four-center case-control study with 355 patients and 1,070 controls to assess the association of HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C, and rs968697 T>C) with Wilms tumor risk. All of these three polymorphisms in single could not impact Wilms tumor risk. Stratified analysis revealed a contributing Wilms tumor risk role of rs968697 TC/CC in subgroup of male (TC/CC vs. TT: adjusted odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.03-2.08, P = 0.035). However, we found that presence of 1-3 protective genotypes were less likely to develop tumor in subgroup of female (adjusted OR = 0.69, 95% CI = 0.48-0.99, P = 0.045). Our findings suggest that HMGA2 gene polymorphisms might influence Wilms tumor predisposition in a weak manner, under certain circumstances.
Collapse
|