476
|
Fitzpatrick MJ, Mathewson PD, Porter WP. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs. PLoS One 2015; 10:e0136677. [PMID: 26308207 PMCID: PMC4550283 DOI: 10.1371/journal.pone.0136677] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
Mechanistic models provide a powerful, minimally invasive tool for gaining a deeper understanding of the ecology of animals across geographic space and time. In this paper, we modified and validated the accuracy of the mechanistic model Niche Mapper for simulating heat exchanges of animals with counter-current heat exchange mechanisms in their legs and animals that wade in water. We then used Niche Mapper to explore the effects of wading and counter-current heat exchange on the energy expenditures of Whooping Cranes, a long-legged wading bird. We validated model accuracy against the energy expenditure of two captive Whooping Cranes measured using the doubly-labeled water method and time energy budgets. Energy expenditure values modeled by Niche Mapper were similar to values measured by the doubly-labeled water method and values estimated from time-energy budgets. Future studies will be able to use Niche Mapper as a non-invasive tool to explore energy-based limits to the fundamental niche of Whooping Cranes and apply this knowledge to management decisions. Basic questions about the importance of counter-current exchange and wading to animal physiological tolerances can also now be explored with the model.
Collapse
|
Validation Study |
10 |
13 |
477
|
Smith J, Lewis J, Prichard D. Physiotherapy exercise programmes: Are instructional exercise sheets effective? Physiother Theory Pract 2009; 21:93-102. [PMID: 16392462 DOI: 10.1080/09593980590922316] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Effective compliance with physiotherapy exercises is only possible if patients remember the exercises accurately. The purpose of this study was to assess how well elderly in-patients remembered simple physiotherapy exercises, by comparing the ability to accurately reproduce a set of exercises in a group of patients that had received a written exercise sheet, with a group that had not. The study also aimed to investigate the relationship between memory for exercises and cognition. Sixty-four in-patients in an acute hospital were taught 3 exercises. Half of the subjects were randomised to receive exercise sheets to reinforce the teaching (Group 1). The rest of the subjects did not receive this memory aid (Group 2). Two to three days later subjects were asked to demonstrate their exercises. The accurate recall of the exercises was scored using a new assessment scale with a maximum score of 24. The mean exercise score was 17.19 for group 1 (SD = 5.91) and 16.24 for Group 2 (SD = 6.01). There was no significant difference in exercise score between groups (Mann Whitney U test p = 0.44). There was a statistically significant small positive correlation between exercise score and cognition (tau = 0.263). The study showed that older adult in-patients do not remember physiotherapy exercises effectively after a single teaching session and that their memory is not significantly improved by provision of an exercise sheet.
Collapse
|
|
16 |
13 |
478
|
Harry JR, Barker LA, Tinsley GM, Krzyszkowski J, Chowning LD, McMahon JJ, Lake J. Relationships among countermovement vertical jump performance metrics, strategy variables, and inter-limb asymmetry in females. Sports Biomech 2024; 23:1009-1027. [PMID: 33947320 DOI: 10.1080/14763141.2021.1908412] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Dependent variables commonly studied during countermovement vertical jump (CMVJ) tests largely stem from male-only studies despite females'distinct energy storage and reutilisation strategies. This could limit progress among females seeking increased CMVJ performance through targeted changes in certain variables. We explored relationships between CMVJ performance metrics (jump height, modified reactive strength index, jump power, and takeoff momentum) and (a) temporal and force application variables and (b) inter-limb force and yank (i.e., rate of force development) asymmetry in 31 recreationally active females. Participants performed eight CMVJs while ground reaction force (GRF) data were obtained. Pearson product-moment correlation coefficients assessed the strength and direction of the associations. Twenty-six significant relationships (r ≥ ±0.357; p < 0.05) were detected across the CMVJ performance variables. The significantly correlated variables were generally isolated to only one of the four performance metrics. Only the percentage of concentric phase inter-limb force asymmetry was significantly associated with CMVJ performance, specifically jump power and takeoff momentum. Coaches and physical performance professionals should be aware of popular strategy variables' association or lack of association with commonly studied performance metrics when seeking to understand or improve specific CMVJ jumping abilities in females.
Collapse
|
|
1 |
13 |
479
|
Qi Y, Soh CB, Gunawan E, Low KS, Thomas R. Lower Extremity Joint Angle Tracking with Wireless Ultrasonic Sensors during a Squat Exercise. SENSORS (BASEL, SWITZERLAND) 2015; 15:9610-27. [PMID: 25915589 PMCID: PMC4481970 DOI: 10.3390/s150509610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/06/2015] [Accepted: 04/16/2015] [Indexed: 12/02/2022]
Abstract
This paper presents an unrestrained measurement system based on a wearable wireless ultrasonic sensor network to track the lower extremity joint and trunk kinematics during a squat exercise with only one ultrasonic sensor attached to the trunk. The system consists of an ultrasound transmitter (mobile) and multiple receivers (anchors) whose positions are known. The proposed system measures the horizontal and vertical displacement, together with known joint constraints, to estimate joint flexion/extension angles using an inverse kinematic model based on the damped least-squares technique. The performance of the proposed ultrasonic measurement system was validated against a camera-based tracking system on eight healthy subjects performing a planar squat exercise. Joint angles estimated from the ultrasonic system showed a root mean square error (RMSE) of 2.85° ± 0.57° with the reference system. Statistical analysis indicated great agreements between these two systems with a Pearson's correlation coefficient (PCC) value larger than 0.99 for all joint angles' estimation. These results show that the proposed ultrasonic measurement system is useful for applications, such as rehabilitation and sports.
Collapse
|
research-article |
10 |
13 |
480
|
Bagwell JJ, Reynolds N, Walaszek M, Runez H, Lam K, Armour Smith J, Katsavelis D. Lower extremity kinetics and muscle activation during gait are significantly different during and after pregnancy compared to nulliparous females. Gait Posture 2020; 81:33-40. [PMID: 32659459 DOI: 10.1016/j.gaitpost.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/05/2020] [Accepted: 07/04/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Low back, pelvic, and lower extremity pain are common during and after pregnancy. Understanding differences in mechanics between pregnant and non-pregnant females is a first step toward identifying potential pathological mechanisms. The primary purpose of this study was to compare joint kinetics and muscle activation during gait between females during and after pregnancy to nulliparous females. METHODS Twenty pregnant females completed testing on three occasions (second trimester, third trimester, and post-partum), while 20 matched, nulliparous controls were tested once. Motion capture, force data, and surface electromyography were averaged across seven trials during gait. Lower extremity kinematics, lower extremity moments and work normalized to pre-pregnancy body mass, work distribution, and peak and average muscle activation amplitude were calculated. Independent t-tests were conducted between pregnant and nulliparous females at each time point. RESULTS Compared to controls, peak hip abductor moments were greater throughout and after pregnancy. Females in second trimester also demonstrated greater sagittal negative ankle work and greater percent contribution of the ankle and smaller percent contribution of the hip to negative work. Compared to controls, during third trimester there were greater knee abductor, ankle plantarflexor, and ankle dorsiflexor moments and greater work at the ankle and total work. Several moment and work variables continued to be elevated post-partum compared to controls. Gluteus maximus muscle activation amplitude was smaller in second trimester and post-partum compared to controls. SIGNIFICANCE While overall joint demands were greater during and after pregnancy, there was a smaller relative sagittal utilization of the hip early in pregnancy and smaller gluteus maximus muscle amplitude during second trimester and post-partum. Because the gluteus maximus muscle contributes to force closure and dynamic stability of the low back and pelvis, relative gluteus maximus disuse, concurrent with increased joint loads, could potentially contribute to pain during and after pregnancy.
Collapse
|
|
5 |
13 |
481
|
Fantozzi S, Stagni R, Cappello A, Leardini A. Effect of different inertial parameter sets on joint moment calculation during stair ascending and descending. Med Eng Phys 2005; 27:537-41. [PMID: 15990070 DOI: 10.1016/j.medengphy.2004.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/30/2004] [Accepted: 12/17/2004] [Indexed: 11/29/2022]
Abstract
The reliability of internal joint moment calculation in gait analysis during daily living activities is fundamental for clinical decisions based on joint function. This calculation, obtained by means of the inverse dynamics, depends on several modelling factors, such as assumptions on the segments and on the relevant joints constituting the kinematic chain. In this study, the effect of five different sets of inertial parameters on three-dimensional calculation of lower limb joint moments was investigated during the stair ascending and descending of 10 young subjects. The lower limb was represented as a chain of three rigid segments: foot, shank and thigh. The inertial parameters sets were taken from the literature. The root mean square value over the step cycle of the difference between joint moments calculated at the lower limb with different inertial parameter sets expressed in percentage of their corresponding range was computed. The results showed small differences between ex vivo and in vivo data, between data from different populations and among different modality of inertial parameters acquisition. The root mean square value was negligible at the ankle and increased as moving proximally among the joints: the maximum was 21.8% in the internal/external rotation moment at the hip. In order to achieve accurate estimate of lower limb joint moments other factors should be investigated rather than optimal inertial parameter set.
Collapse
|
|
20 |
12 |
482
|
Andersen V, Fimland MS, Kolnes MK, Saeterbakken AH. Elastic Bands in Combination With Free Weights in Strength Training. J Strength Cond Res 2015; 29:2932-40. [PMID: 25807031 DOI: 10.1519/jsc.0000000000000950] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
10 |
12 |
483
|
Usherwood JR. Inverted pendular running: a novel gait predicted by computer optimization is found between walk and run in birds. Biol Lett 2010; 6:765-8. [PMID: 20484229 PMCID: PMC3001358 DOI: 10.1098/rsbl.2010.0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 04/26/2010] [Indexed: 11/21/2022] Open
Abstract
Idealized models of walking and running demonstrate that, energetically, walking should be favoured up to, and even somewhat over, those speeds and step lengths that can be achieved while keeping the stance leg under compression. Around these speeds, and especially with relatively long step lengths, computer optimization predicts a third, 'hybrid', gait: (inverted) pendular running (Srinivasan & Ruina 2006 Nature 439, 72-75 (doi:10.1038/nature04113)). This gait involves both walking-like vaulting mechanics and running-like ballistic paths. Trajectories of horizontal versus vertical centre of mass velocities-'hodographs'-over the step cycle are distinctive for each gait: anticlockwise for walk; clockwise for run; figure-of-eight for the hybrid gait. Both pheasants and guineafowl demonstrate each gait at close to the predicted speed/step length combinations, although fully aerial ballistic phases are never achieved during the hybrid or 'Grounded Inverted Pendular Running' gait.
Collapse
|
research-article |
15 |
12 |
484
|
Kao PC, Pierro MA, Booras K. Effects of motor fatigue on walking stability and variability during concurrent cognitive challenges. PLoS One 2018; 13:e0201433. [PMID: 30048551 PMCID: PMC6062111 DOI: 10.1371/journal.pone.0201433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/16/2018] [Indexed: 01/31/2023] Open
Abstract
Cognitive-motor interference, a negative influence on the performance of one or both tasks, is manifested when simultaneously performing a cognitive and a motor task. Motor fatigue reduces the ability of generating a required force level. However, little is known about the effects of motor fatigue on the cognitive-motor dual-tasking performance, an important capability during our daily lives. This study investigated how motor fatigue affects dual-task walking performance. Eighteen healthy younger adults walked on a treadmill under three different conditions: walking only, walking while receiving the Paced Auditory Serial Addition Test (PASAT) or a modified Stroop test before and after a lower-extremity fatiguing exercise. We computed dynamic margins of stability (MOS), step and joint kinematic variability, and short-term local divergence exponent (LDE) of the trunk motion. We found that subjects had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the motor fatigue or dual-task conditions. Compared to the baseline, subjects had significantly greater mean MOS after the fatiguing exercise by walking with greater step length and width while having significantly greater gait variability. In contrast, subjects walked with similar mean MOS but significantly less gait variability during the dual-task conditions, indicating that subjects used different adaptive strategies when walking with motor fatigue and during dual-task conditions. There were no significant differences in the number of errors for the two cognitive tests before and after the fatiguing exercise. The current findings demonstrate that motor fatigue does not affect cognitive but motor performance in younger adults.
Collapse
|
Journal Article |
7 |
12 |
485
|
Riek S, Woolley D. Hierarchical organisation of neuro-anatomical constraints in interlimb coordination. Hum Mov Sci 2005; 24:798-814. [PMID: 16330121 DOI: 10.1016/j.humov.2005.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Based on the observation that bimanual finger tapping movements tend toward mirror symmetry with respect to the body midline, despite the synchronous activation of non-homologous muscles, F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz (2001) [Perceptual basis of bimanual coordination. Nature, 414, 69-73] suggested that the basis of rhythmic coordination is purely spatial/perceptual in nature, and independent of the neuro-anatomical constraints of the motor system. To investigate this issue further, we employed a four finger tapping task similar to that used by F. Mechsner and G. Knoblich (2004) [Do muscle matter in bimanual coordination? Journal of Experimental Psychology: Human Perception and Performance, 30, 490-503] in which six male participants were required to alternately tap combinations of adjacent pairs of index (I), middle (M) and ring (R) fingers of each hand in time with an auditory metronome. The metronome pace increased continuously from 1 Hz to 3 Hz over the course of a 30-s trial. Each participant performed three blocks of trials in which finger combination for each hand (IM or MR) and mode of coordination (mirror or parallel) were presented in random order. Within each block, the right hand was placed in one of three orientations; prone, neutral and supine. The order of blocks was counterbalanced across the six participants. The left hand maintained a prone position throughout the experiment. On the basis of discrete relative phase analyses between synchronised taps, the time at which the initial mode of coordination was lost was determined for each trial. When the right hand was prone, transitions occurred only from parallel symmetry to mirror symmetry, regardless of finger combination. In contrast, when the right hand was supine, transitions occurred only from mirror symmetry to parallel but no transitions were observed in the opposite direction. In the right hand neutral condition, mirror and parallel symmetry are insufficient to describe the modes of coordination since the hands are oriented orthogonally. When defined anatomically, however, the results in each of the three right hand orientations are consistent. That is, synchronisation of finger tapping is determined by a hierarchy of control of individual fingers based on their intrinsic neuro-mechanical properties rather than on the basis of their spatial orientation.
Collapse
|
Journal Article |
20 |
12 |
486
|
Ippersiel P, Robbins SM, Dixon PC. Lower-limb coordination and variability during gait: The effects of age and walking surface. Gait Posture 2021; 85:251-257. [PMID: 33626449 DOI: 10.1016/j.gaitpost.2021.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Falls among community-dwelling older adults are often triggered by uneven walkways. Joint coordination and its variability change with age and may place older adults at risk of falling. It is unclear how irregular surfaces impact lower-limb joint coordination and if such changes are exacerbated by aging. RESEARCH QUESTION To what extent do lower-limb inter-joint coordination and its variability, over flat and uneven brick walkways, differ between older and young healthy adults? METHODS A motion-capture system collected kinematic data from walking trials on flat and uneven walkways in seventeen older (72.0 ± 4.2 years) and eighteen younger (27.0 ± 4.7 years) healthy adults. Continuous relative phase analyses were performed for the Knee-Hip and Ankle-Knee joint pairs. Mean Absolute Relative Phase (MARP) quantified coordination amplitude. Deviation Phase (DP) quantified coordinative variability. Two-way mixed ANOVA's tested for effects of age, surface, and age × surface interactions. RESULTS Uneven surfaces prompted more in-phase MARP inter-joint coordination in adults during most gait phases (p ≤ 0.024). Age × surface interactions were observed during initial contact (Ankle-Knee: p = 0.021, Knee-Hip: p = 0.001) and loading response (Knee-Hip: p = 0.017), with post-hoc analyses showing coordination accentuated in older adults. Uneven surfaces induced higher DP in Knee-Hip (p = 0.017) and Ankle-Knee joint coupling (p < 0.001) during gait, largely independent of age. An age × surface interaction was observed during mid-swing (p = 0.050), with post-hoc analysis revealing increased variability in older adults. SIGNIFICANCE More in-phase and variable lower-limb gait behavior was observed on uneven walkways. These differences were accentuated in older adults during early stance phase (more tightly coordinated) and mid-swing (more variable). This may reflect a cautious gait strategy on challenging walkways to maintain stability and help prevent falls.
Collapse
|
|
4 |
12 |
487
|
Maqbool HF, Husman MAB, Awad MI, Abouhossein A, Dehghani-Sanij AA. Real-time gait event detection for transfemoral amputees during ramp ascending and descending. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:4785-8. [PMID: 26737364 DOI: 10.1109/embc.2015.7319464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Events and phases detection of the human gait are vital for controlling prosthesis, orthosis and functional electrical stimulation (FES) systems. Wearable sensors are inexpensive, portable and have fast processing capability. They are frequently used to assess spatio-temporal, kinematic and kinetic parameters of the human gait which in turn provide more details about the human voluntary control and ampute-eprosthesis interaction. This paper presents a reliable real-time gait event detection algorithm based on simple heuristics approach, applicable to signals from tri-axial gyroscope for lower limb amputees during ramp ascending and descending. Experimental validation is done by comparing the results of gyroscope signal with footswitches. For healthy subjects, the mean difference between events detected by gyroscope and footswitches is 14 ms and 10.5 ms for initial contact (IC) whereas for toe off (TO) it is -5 ms and -25 ms for ramp up and down respectively. For transfemoral amputee, the error is slightly higher either due to the placement of footswitches underneath the foot or the lack of proper knee flexion and ankle plantarflexion/dorsiflexion during ramp up and down. Finally, repeatability tests showed promising results.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
12 |
488
|
Weissengruber GE, Forstenpointner G. Musculature of the crus and pes of the African elephant (Loxodonta africana): insight into semiplantigrade limb architecture. ACTA ACUST UNITED AC 2004; 208:451-61. [PMID: 15340844 DOI: 10.1007/s00429-004-0406-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2004] [Indexed: 11/30/2022]
Abstract
The limbs of elephants are designed to support the weight of the largest terrestrial animal, and they display unique morphological peculiarities among mammals. In this article we provide a new and detailed anatomical description of the muscles of the lower hindlimb in African elephants (Loxodonta africana), and we place our observations into a comparative anatomical as well as a functional morphological context. At the cranial aspect of the shank (crus) and the foot (pes), the flexors of the tarsal joint and the extensors of the toes form a flat muscular plate covering the skeletal elements. Caudal to the tibia and the fibula the Musculus (M.) soleus is strongly developed, whereas the M. gastrocnemius and the M. flexor digitorum superficialis are thin. Small flexors, adductors, and abductors of the toes are present. The M. tibialis caudalis as well as the Mm. fibularis longus and brevis mainly support the tarsal joint. The design of the muscular structures matches the specific requirements of heavy-weight bearing as well as of proboscidean limb posture and locomotion patterns.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
12 |
489
|
Sakai A, Toba N, Takeda M, Suzuki M, Abe Y, Aoyagi K, Nakamura T. Association of unipedal standing time and bone mineral density in community-dwelling Japanese women. Osteoporos Int 2009; 20:731-6. [PMID: 18763011 DOI: 10.1007/s00198-008-0726-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 07/21/2008] [Indexed: 11/28/2022]
Abstract
UNLABELLED Bone mineral density (BMD) and physical performance of the lower extremities decrease with age. In community-dwelling Japanese women, unipedal standing time, timed up and go test, and age are associated with BMD while in women aged 70 years and over, unipedal standing time is associated with BMD. INTRODUCTION The aim of this study was to clarify whether unipedal standing time is significantly associated with BMD in community-dwelling women. METHODS The subjects were 90 community-dwelling Japanese women aged 54.7 years. BMD of the second metacarpal bone was measured by computed X-ray densitometry. We measured unipedal standing time as well as timed up and go test to assess physical performance of the lower extremities. RESULTS Unipedal standing time decreased with increased age. Timed up and go test significantly correlated with age. Low BMD was significantly associated with old age, short unipedal standing time, and long timed up and go test. Stepwise regression analysis revealed that age, unipedal standing time, and timed up and go test were significant factors associated with BMD. In 21 participants aged 70 years and over, body weight and unipedal standing time, but not age, were significantly associated with BMD. CONCLUSION BMD and physical performance of the lower extremities decrease with older age. Unipedal standing time, timed up and go test, and age are associated with BMD in community-dwelling Japanese women. In women aged 70 years and over, unipedal standing time is significantly associated with BMD.
Collapse
|
|
16 |
12 |
490
|
Abstract
This paper reports on a study that aimed to assess the inter-rater agreement of observable neurological signs in the upper and lower limbs (eg inspection, gait, cerebellar tests and coordination) and elicitable signs (eg tone, strength, reflexes and sensation). Thirty patients were examined by two neurology doctors, at least one of whom was a consultant. The doctors' findings were recorded on a standardised pro forma. Inter-rater agreement was assessed using the kappa (κ) statistic, which is chance corrected. There was significantly better agreement between the two doctors for observable than for elicitable signs (mean ± standard deviation [SD] κ, 0.70 ± 0.17 vs 0.41 ± 0.22, p = 0.002). Almost perfect agreement was seen for cerebellar signs and inspection (a combination of speed of movement, muscle bulk, wasting and tremor); substantial agreement for strength, gait and coordination; moderate agreement for tone and reflexes; and only fair agreement for sensation. The inter-rater agreement is therefore better for observable neurological signs than for elicitable signs, which may be explained by the additional skill and cooperation required to elicit rather than just observe clinical signs. These findings have implications for clinical practice, particularly in telemedicine, and highlight the need for standardisation of the neurological examination.
Collapse
|
research-article |
11 |
12 |
491
|
Bortolotto C, Lungarotti L, Fiorina I, Zacchino M, Draghi F, Calliada F. Influence of subjects' characteristics and technical variables on muscle stiffness measured by shear wave elastosonography. J Ultrasound 2017; 20:139-146. [PMID: 28593004 PMCID: PMC5440334 DOI: 10.1007/s40477-017-0242-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/18/2017] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The aim of this study is to quantitatively assess lower limbs muscle elasticity in a court of healthy subjects and to evaluate the influence of technical variables (e.g., diameter of the ROI-region of interest) and examined subjects' characteristics (e.g., sex, levels of physical activity, side evaluated) on muscle stiffness. MATERIALS AND METHODS 54 healthy subjects (48 men, 6 women) were evaluated for a total of 108 lower limbs. Shear wave elastography was performed with a multifrequency linear probe (15-4 MHz). Two radiologists performed the evaluation of lower limbs from left to right side (first calf and then thigh). The measures were taken on gastrocnemius and on femoral biceps muscle belly. We chose to place for this study two ROIs of 4 and 2 mm of diameter. RESULTS The mean muscle stiffness was 1.98 ± 0.48 (range between 1.89 ± 0.36 and 2.15 ± 0.57 m/s). The difference in muscle stiffness between left and right side of the body and between different levels of physical activity never became statistically significant (p value between 0.314 and 0.915). Only in one test out of eight the difference of muscle stiffness between male and female resulted statistically significant (p value 0.020). When comparing the measurement obtained with a 2 and 4 mm diameter ROIs the values were statistically different only for the left thigh (p value 0.028). CONCLUSION Our study, despite its limitations (low sample and low female population), seems to give some clear advice: physiological or technical factors do not determine statistically significant differences on passive muscle stiffness.
Collapse
|
research-article |
8 |
12 |
492
|
Lindberg K, Solberg P, Bjørnsen T, Helland C, Rønnestad B, Thorsen Frank M, Haugen T, Østerås S, Kristoffersen M, Midttun M, Sæland F, Paulsen G. Force-velocity profiling in athletes: Reliability and agreement across methods. PLoS One 2021; 16:e0245791. [PMID: 33524058 PMCID: PMC7850492 DOI: 10.1371/journal.pone.0245791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the study was to examine the test-retest reliability and agreement across methods for assessing individual force-velocity (FV) profiles of the lower limbs in athletes. Using a multicenter approach, 27 male athletes completed all measurements for the main analysis, with up to 82 male and female athletes on some measurements. The athletes were tested twice before and twice after a 2- to 6-month period of regular training and sport participation. The double testing sessions were separated by ~1 week. Individual FV-profiles were acquired from incremental loading protocols in squat jump (SJ), countermovement jump (CMJ) and leg press. A force plate, linear encoder and a flight time calculation method were used for measuring force and velocity during SJ and CMJ. A linear regression was fitted to the average force and velocity values for each individual test to extrapolate the FV-variables: theoretical maximal force (F0), velocity (V0), power (Pmax), and the slope of the FV-profile (SFV). Despite strong linearity (R2>0.95) for individual FV-profiles, the SFV was unreliable for all measurement methods assessed during vertical jumping (coefficient of variation (CV): 14-30%, interclass correlation coefficient (ICC): 0.36-0.79). Only the leg press exercise, of the four FV-variables, showed acceptable reliability (CV:3.7-8.3%, ICC:0.82-0.98). The agreement across methods for F0 and Pmax ranged from (Pearson r): 0.56-0.95, standard error of estimate (SEE%): 5.8-18.8, and for V0 and SFV r: -0.39-0.78, SEE%: 12.2-37.2. With a typical error of 1.5 cm (5-10% CV) in jump height, SFV and V0 cannot be accurately obtained, regardless of the measurement method, using a loading range corresponding to 40-70% of F0. Efforts should be made to either reduce the variation in jumping performance or to assess loads closer to the FV-intercepts. Coaches and researchers should be aware of the poor reliability of the FV-variables obtained from vertical jumping, and of the differences across measurement methods.
Collapse
|
Multicenter Study |
4 |
12 |
493
|
Ekelem A, Murray S, Goldfarb M. Preliminary assessment of variable geometry stair ascent and descent with a powered lower limb orthosis for individuals with paraplegia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:4671-4. [PMID: 26737336 DOI: 10.1109/embc.2015.7319436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper describes a controller for a lower-limb exoskeleton that enables variable-geometry stair ascent and descent for persons with lower limb paralysis. The controller was evaluated on a subject with T10 complete spinal cord injury (SCI) on two staircases, one with a riser height and tread depth of 18.4 × 27.9 cm (7.25 × 11 in) and the other 17.8 × 29.8 cm (7 × 11.75 in). The controller enabled ascent and descent of both staircases without explicit tuning for each, and with an average step rate of 12.9 step/min during ascent and 14.6 step/min during descent.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
12 |
494
|
Rađa A, Kuvačić G, De Giorgio A, Sellami M, Ardigò LP, Bragazzi NL, Padulo J. The ball kicking speed: A new, efficient performance indicator in youth soccer. PLoS One 2019; 14:e0217101. [PMID: 31100091 PMCID: PMC6524813 DOI: 10.1371/journal.pone.0217101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Success in different soccer skills like kicking depends on motor abilities achieved. Kicking is a soccer fundamental, which depends on many different and complex factors (technique, foot-ball interaction, ball flight, etc.). Therefore, it is important to identify players that are able to perform faster kicks using both dominant and non-dominant leg. The current study investigated some basic variables of different soccer kicking speed and their relevance to success in youth soccer academy. 119 players from the first and the second division participated to this study. They were randomly divided into age groups (U-15, U-17, and U19) and team status (first team, reserves). The diagnostic ability of the different ball kicking speed tests in capturing differences between first team players and reserves among different age categories were computed using the receiver operating characteristics analysis. Results demonstrated that first team players achieved better results when comparing to reserves in each category. In addition, differences were greater in the U-15 and the U-17 than in the U-19 age group. In conclusion, ball kicking speed could be one of the possible identification tools to evaluate players' success in youth soccer.
Collapse
|
Randomized Controlled Trial |
6 |
12 |
495
|
de Almeida-Neto PF, de Medeiros RCDSC, de Matos DG, Baxter-Jones ADG, Aidar FJ, de Assis GG, Silva Dantas PM, Cabral BGDAT. Lean mass and biological maturation as predictors of muscle power and strength performance in young athletes. PLoS One 2021; 16:e0254552. [PMID: 34252161 PMCID: PMC8274902 DOI: 10.1371/journal.pone.0254552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Background The biological maturation (BM) analyzed by peak height velocity (PHV) and bone age (BA), and lean body mass has been associated with the strength and muscle power of young athletes. However, the ability of BM (PHV and BA) and LM markers to predict muscle strength and power in young athletes remains uncertain. Objective The Aim was determine the predicting power of BM markers (PHV and BA) and LM in relation to muscle power of upper and lower limbs and muscle strength of upper limbs in adolescent athletes at puberty. Methods Ninety-two adolescent athletes (both sexes; age 12.4 ± 1.02 years) were assessed for body composition by dual-energy X-ray absorptiometry (DXA). Power of upper limbs (ULP), force handgrip (HG), vertical jump (VJ) and countermovement jump (CMJ) were recorded. BM was predicted by mathematical models to estimate PHV and BA. Multilayer artificial neural network analyses (MLP’s) were used to determine the power of prediction of LM, PHV and BA on muscle power and strength of upper- and lower-limbs of the athletes. Results LM, BA and PHV were associated with HG (r>0.74, p<0.05) and ULS (r>0.60, p<0.05) in both sexes. In both sexes BA was associated with VJ (r>0.55, p<0.05) and CMJ (r>0.53, p<0.05). LM indicated associations (r>0.60, p<0.05) with BA and with PHV (r<0.83, p<0.05) in both sexes. MLP’s analysis revealed that the LM provides > 72% of probability to predict the muscle power of upper- and lower-limbs, and the strength of the upper limbs; whereas PHV provides > 43% and bone age >64% in both female and male adolescent athletes. Conclusion We identified that, like PHV and BA, LM is a strong predictor of low cost of both upper limbs muscle strength and upper and lower limbs power in adolescent athletes.
Collapse
|
Journal Article |
4 |
12 |
496
|
Luo S, Androwis G, Adamovich S, Nunez E, Su H, Zhou X. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. J Neuroeng Rehabil 2023; 20:34. [PMID: 36935514 PMCID: PMC10024861 DOI: 10.1186/s12984-023-01147-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskeletons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncertain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even fail to maintain balance. METHODS We present a novel, deep neural network, reinforcement learning-based robust controller for a LLRE based on a decoupled offline human-exoskeleton simulation training with three independent networks, which aims to provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskeleton controller is driven by a neural network control policy that acts on a stream of the LLRE's proprioceptive signals, including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. To handle uncertain human interaction forces, the control policy is trained intentionally with an integrated human musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected with the control policy network to predict the interaction forces and muscle coordination. To further increase the robustness of the control policy to different human conditions, we employ domain randomization during training that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of human muscle strength to simulate the variability of the patient's disability. Through this decoupled deep reinforcement learning framework, the trained controller of LLREs is able to provide reliable walking assistance to patients with different degrees of neuromuscular disorders without any control parameter tuning. RESULTS AND CONCLUSION A universal, RL-based walking controller is trained and virtually tested on a LLRE system to verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriplegic), muscle weakness, or hemiplegic conditions without any control parameter tuning. Analysis of the RMSE for joint tracking, CoP-based stability, and gait symmetry shows the effectiveness of the controller. An ablation study also demonstrates the strong robustness of the control policy under large exoskeleton dynamic property ranges and various human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the need for patient-specific control parameter tuning.
Collapse
|
|
2 |
12 |
497
|
Serrano MM, Howard A, Vela PA. Lower limb pose estimation for monitoring the kicking patterns of infants. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2157-2160. [PMID: 28268759 DOI: 10.1109/embc.2016.7591156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monitoring the spontaneous kicking patterns of infants can give insight into their development. A computer vision based method for estimating the pose of an infant's leg from range images is presented in this paper. After some manual inputs for initialization, the range data associated with the infant is extracted. The method uses Robust Point Set Registration (RPSR) to fit an articulated model to the subject in every frame in the sequence, thus it provides the joint trajectories over time of the kicking kinematics. For validation, the method is used to track the articulation of a robotic humanoid that was programmed to kick in a fashion similar to an infant. Furthermore, the method is applied to a sequence collected from an actual infant and the resultant signal estimates are presented.
Collapse
|
|
8 |
12 |
498
|
Lira FS, Conrado de Freitas M, Gerosa-Neto J, Cholewa JM, Rossi FE. Comparison Between Full-Body vs. Split-Body Resistance Exercise on the Brain-Derived Neurotrophic Factor and Immunometabolic Response. J Strength Cond Res 2020; 34:3094-3102. [PMID: 33105359 DOI: 10.1519/jsc.0000000000002653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lira, FS, Conrado de Freitas, M, Gerosa-Neto, J, Cholewa, JM, and Rossi, FE. Comparison between full-body vs. split-body resistance exercise on the brain-derived neurotrophic factor immunometabolic response. J Strength Cond Res 34(11): 3094-3102, 2020-Intense aerobic exercise seems to increase serum concentrations of brain-derived neurotrophic factor (BDNF) in conjunction with increasing lactate; however, less is known about the BDNF response to differing resistance exercise protocols. We hypothesized that full-body (FB) resistance exercise will elicit a greater increase in serum BDNF and lactate compared with split-body resistance exercise. Twelve recreationally resistance-trained men (age = 25.3 ± 5.9 years) performed 3 randomized trials of 18 sets of exercise: upper-body (UB), lower-body (LB), and FB conditions. Serum BDNF levels were assessed at rest, immediately Post-exercise, Post-1 hour, and Post-2 hours during recovery. Lactate concentration was evaluated at rest, after 9 sets, Post-exercise, Post-5, Post-10, and Post-30 minutes during recovery. In addition, interleukin (IL-6 and IL-10) and the IL-6/IL-10 ratio were calculated. Lactate concentration and total volume were greater in the FB condition compared with LB and UB (p < 0.05). For BDNF, effect sizes were largest in the LB (1.4), followed by the FB (0.75), and moderate to UB (0.33), although no significant differences were observed between conditions. There was a statistically significant relationship between lactate and BDNF only for LB condition (rho = 0.72; p = 0.013). There were a greater IL-10 Post-1 hour for FB condition compared with UB and LB (p < 0.001), and lower IL-6/IL-10 ratio in FB compared with UB (p < 0.001). Lower body induced a great BDNF response, and FB resistance exercise elicited a greater increase of serum cytokines than UB in trained men. We speculate that the volume of work performed by larger muscles has a larger influence on BDNF than overall volume.
Collapse
|
Comparative Study |
5 |
12 |
499
|
Chen TLW, Wong DWC, Xu Z, Tan Q, Wang Y, Luximon A, Zhang M. Lower limb muscle co-contraction and joint loading of flip-flops walking in male wearers. PLoS One 2018; 13:e0193653. [PMID: 29561862 PMCID: PMC5862437 DOI: 10.1371/journal.pone.0193653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/15/2018] [Indexed: 11/18/2022] Open
Abstract
Flip-flops may change walking gait pattern, increase muscle activity and joint loading, and predispose wearers to foot problems, despite that quantitative evidence is scarce. The purpose of this study was to examine the lower limb muscle co-contraction and joint contact force in flip-flops gait, and compare with those of barefoot and sports shoes walking. Ten healthy males were instructed to perform over-ground walking at self-selected speed under three footwear conditions: 1) barefoot, 2) sports shoes, and 3) thong-type flip-flops. Kinematic, kinetic and EMG data were collected and input to a musculoskeletal model to estimate muscle force and joint force. One-way repeated measures ANOVA was conducted to compare footwear conditions. It was hypothesized that flip-flops would induce muscle co-contraction and produce different gait kinematics and kinetics. Our results demonstrated that the musculoskeletal model estimation had a good temporal consistency with the measured EMG. Flip-flops produced significantly lower walking speed, higher ankle and subtalar joint range of motion, and higher shear ankle joint contact force than sports shoes (p < 0.05). There were no significant differences between flip-flops and barefoot conditions in terms of muscle co-contraction index, joint kinematics, and joint loading of the knee and ankle complex (p > 0.05). The variance in walking speed and footwear design may be the two major factors that resulted in the comparable joint biomechanics in flip-flops and barefoot walking. From this point of view, whether flip-flops gait is potentially harmful to foot health remains unclear. Given that shod walking is more common than barefoot walking on a daily basis, sports shoes with close-toe design may be a better footwear option than flip-flops for injury prevention due to its constraint on joint motion and loading.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
12 |
500
|
Sayers MGL, Tweddle AL, Every J, Wiegand A. Changes in drive phase lower limb kinematics during a 60 min cycling time trial. J Sci Med Sport 2011; 15:169-74. [PMID: 22018522 DOI: 10.1016/j.jsams.2011.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/11/2011] [Accepted: 09/07/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate changes in the three dimensional lower limb kinematics during a simulated cycling time trial. DESIGN Repeated measures. METHODS Ten experienced male road cyclists performed a 60 min cycling test at a workload based on previous onset of blood lactate accumulation (OBLA) testing. The time trial (TT) was divided into six 10 min periods consisting of 8 min cycling at steady state (88% of OBLA) followed by a 90 s effort phase (140% of OBLA) and a 30 s recovery phase (60% of OBLA). Three-dimensional kinematic data (200 Hz) were recorded in the last minute of each steady state phase with specific attention directed at changes in range of motion (ROM) and consistency of orientation at the hip, knee and ankle joints during drive phase. RESULTS from repeated measures ANOVA indicated a mean effect for test duration on the drive phase ROM in both hip extension (p=0.027) and ankle dorsi flexion (p<0.001). The SD of the mean tibial rotation during the drive phase was the only measure of movement consistency that showed an effect for test duration (p=0.031). CONCLUSIONS These findings indicated that participants tended to increase the ROM in hip extension and ankle flexion during drive phase at the end of a TT. Changes in the consistency of tibial rotation during the drive phase may be an important indicator of fatigue and should be monitored by coaches during training due to its possible relationship with injury and fatigue.
Collapse
|
Journal Article |
14 |
11 |