51
|
Harris TG, Robinson JE, Evans NP, Skinner DC, Herbison AE. Gonadotropin-releasing hormone messenger ribonucleic acid expression changes before the onset of the estradiol-induced luteinizing hormone surge in the ewe. Endocrinology 1998; 139:57-64. [PMID: 9421398 DOI: 10.1210/endo.139.1.5662] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The preovulatory LH surge in the ewe is stimulated by the massive and sustained release of GnRH into the pituitary portal vessels. This study has examined the temporal relationship between changes in LH secretion and GnRH messenger RNA (mRNA) expression at the time of the estradiol-induced LH surge. Ovariectomized Clun Forest ewes were treated with exogenous progesterone and estradiol (E) to mimic estrous cycle concentrations of these gonadal steroids and to induce the LH surge. Ewes were killed at five time points relative to the time of onset of the LH surge: pre-E, before E insertion (n = 6); presurge, after E insertion and 8-10 h before surge onset (n = 5); ascending limb, 2-6 h after surge onset (n = 5); midpeak, 9-12 h after surge onset (n = 5); and postsurge, 21-27 h after surge onset (n = 5). Control animals (n = 5/group), which received no E, were killed at identical time intervals alongside the E-treated ewes. Coronal sections containing the diagonal band of Broca through to the anterior hypothalamus were processed for cellular in situ hybridization using an 35S-labeled oligonucleotide probe complementary to ovine GnRH. No changes were found in the number of GnRH mRNA-expressing cells detected in the rostral preoptic area or the medial septum in either gonadal steroid-treated or control ewes. In contrast, cellular GnRH mRNA expression (as assessed by silver grain density) decreased significantly (P < 0.05) between presurge and ascending limb groups within both the rostral preoptic area (0.64 +/- 0.06 vs. 0.43 +/- 0.05 silver grain density/microm2) and medial septum cells (1.08 +/- 0.09 vs. 0.77 +/- 0.07). No significant changes were detected in control ewes. These results show that the estradiol-induced LH surge in the ewe is associated with a decrease in GnRH mRNA expression that occurs in advance of the onset of the GnRH surge. This suggests that neural mechanisms controlling GnRH biosynthesis may be distinct from those regulating GnRH secretion.
Collapse
|
52
|
Abstract
The medial preoptic area represents a brain region where gonadal steroids act upon classical nuclear receptors to alter brain function. Of all the neuronal phenotypes shown to express estrogen receptors in the preoptic area, GABA neurones are the most abundant and known to be located in several nuclei of the medial preoptic area. Investigators utilising techniques capable of assessing endogenous GABA levels have shown that estrogen increases both basal and stimulated extracellular GABA concentrations within the preoptic area. Experiments have also shown that estrogen is able to modulate the actions of noradrenaline upon preoptic GABA neurones. The precise nature of estrogen's stimulatory influence on preoptic GABA concentrations is not understood fully but appears to involve changes in both the release and reuptake of GABA. As estrogen does not influence glutamic acid decarboxylase activity or gene expression in the preoptic area, the subcellular mechanism(s) through which estrogen enhances GABA release remain unknown. Recent investigations indicate that estrogen upregulates transcription of the GAT-1 GABA transporter gene in the preoptic area, and that this may contribute the stimulatory effect of estrogen on extracellular GABA concentrations. Further studies have identified effects of estrogen on GABA(A) receptor expression and ligand binding and, together with the above observations, demonstrate a coordinated and multifaceted upregulation of the preoptic GABA network by estrogen. It is suggested that estrogen acts directly upon GABA neurones expressing estrogen receptors to alter the dynamics of inhibitory transmission within specific neuronal networks of the preoptic area. This is likely to be of functional significance to the "feedback" influence of estrogen on the neural regulation of reproduction.
Collapse
|
53
|
Simonian SX, Herbison AE. Differential expression of estrogen receptor alpha and beta immunoreactivity by oxytocin neurons of rat paraventricular nucleus. J Neuroendocrinol 1997; 9:803-6. [PMID: 9419830 DOI: 10.1046/j.1365-2826.1997.00659.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An understanding of the functional significance of the newly identified estrogen receptor (ER beta) in the brain will require definition of its expression pattern and relationship to ER alpha. Using an antibody generated against the C-terminus of rat ER beta, we report the presence of ER beta immunoreactivity in the lateral septum, medial amygdala, hippocampus and paraventricular nucleus (PVN) of ovariectomized rats. Double labelling studies in the PVN revealed that approximately 35% of oxytocin neurons located principally in the medial and lateral parvocellular divisions of the caudal PVN were immunoreactive for ER beta while vasopressin, somatostatin and magnocellular oxytocin neurons exhibited no ER beta staining with this antibody. No ER alpha immunoreactive cells were identified in the caudal PVN. These observations provide direct evidence for the differential expression of ER sub-types within neurons and indicate that ER beta may be of physiological significance in the regulation of hypothalamic parvocellular oxytocin neurons by estrogen.
Collapse
|
54
|
Brussaard AB, Kits KS, Baker RE, Willems WP, Leyting-Vermeulen JW, Voorn P, Smit AB, Bicknell RJ, Herbison AE. Plasticity in fast synaptic inhibition of adult oxytocin neurons caused by switch in GABA(A) receptor subunit expression. Neuron 1997; 19:1103-14. [PMID: 9390523 DOI: 10.1016/s0896-6273(00)80401-8] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We found that magnocellular oxytocin neurons in adult female rats exhibit an endogenous GABA(A) receptor subunit switch around parturition: a decrease in alpha1:alpha2 subunit mRNA ratio correlated with a decrease in allopregnanolone potentiation and increase in decay time constant of the GABA(A) receptor-mediated IPSCs in these cells. The causal relationship between changes in alpha1:alpha2 mRNA ratio and the ion channel kinetics was confirmed using in vitro antisense deletion. Further, GABA(A) receptors exhibited a tonic inhibitory influence upon oxytocin release in vivo, and allopregnanolone helped to restrain oxytocin neuron in vitro firing only before parturition, when the alpha1:alpha2 subunit mRNA ratio was still high. Such observations provide evidence for the physiological significance of GABA(A) receptor subunit heterogeneity and plasticity in the adult brain.
Collapse
|
55
|
Spratt DP, Herbison AE. Regulation of preoptic area gonadotrophin-releasing hormone (GnRH) mRNA expression by gonadal steroids in the long-term gonadectomized male rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:125-33. [PMID: 9221909 DOI: 10.1016/s0169-328x(97)00037-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Testosterone exerts important feedback actions on the hypothalamus and pituitary of the male rat to control reproductive hormone secretion. Marked fluctuations occur in plasma-luteinizing hormone (LH) concentrations, hypothalamic gonadotrophin-releasing hormone (GnRH) content and GnRH mRNA expression following castration and it appears as though a stable post-castration equilibrium is not attained until 3-4 weeks after gonadectomy. In the present study, we have investigated the effects of long-term (7 week) gonadectomy on GnRH mRNA expression in the male rat and determined whether estrogen or androgen receptor-mediated mechanisms are involved in regulating its expression. Accordingly, in situ hybridization was undertaken using a 35S-labelled antisense oligonucleotide probe complementary to bases 102-149 of the rat GnRH cDNA to quantify cellular GnRH mRNA expression in the medial septum (MS), diagonal band of Broca (DBB) and rostral preoptic area (rPOA) of intact males, rats gonadectomized for 7 weeks and gonadectomized animals implanted with silastic capsules containing testosterone (T), estrogen (E) or dihydrotestosterone (DHT). We found no difference between any of the treatment groups in the number of cells expressing GnRH mRNA in the MS/DBB or rPOA. Similarly, the GnRH mRNA content of cells in the MS/DBB was not different between the treatment groups. In contrast, cellular GnRH mRNA expression in the rPOA was elevated 7 weeks following castration (intact: 0.95 +/- 0.07 silver grains/microm2/cell; gonadectomized: 1.26 +/- 0.03; mean +/- S.E.M., P < 0.05) and this was restored to intact levels by either T (1.02 +/- 0.07) or E (1.02 +/- 0.08) treatment. DHT replacement had no effect on cellular levels of GnRH mRNA in gonadectomized rats (1.26 +/- 0.03). Frequency analysis of relative GnRH mRNA expression/cell showed that the rostral preoptic GnRH population responded to the steroid treatment in an homogeneous manner. These results show that GnRH mRNA expression is elevated specifically within the rPOA of the long-term gonadectomized male rat when LH secretion has stabilized at a constant high level. Further, we show that the gonadal steroid regulation of cellular GnRH mRNA content at such time occurs only through an estrogen receptor-mediated pathway.
Collapse
|
56
|
Skinner DC, Herbison AE. Effects of photoperiod on estrogen receptor, tyrosine hydroxylase, neuropeptide Y, and beta-endorphin immunoreactivity in the ewe hypothalamus. Endocrinology 1997; 138:2585-95. [PMID: 9165052 DOI: 10.1210/endo.138.6.5208] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neural components underlying the influence of photoperiod upon reproductive functioning are poorly understood. In this study, we have used immunocytochemistry to examine whether changes in photoperiod may influence specific neuronal cell populations implicated in mediating gonadal steroid feedback actions on GnRH neurons. Short day (SD) exposed ewes in the midluteal stage of the estrous cycle and long day (LD) anestrous ewes were perfused in pairs and hypothalamic brain sections immunostained for tyrosine hydroxylase (TH), neuropeptide Y (NPY), beta-endorphin (betaE), and the estrogen receptor (ER). The number of ER-immunoreactive cells detected within the preoptic area, but not the hypothalamus, was approximately 20% higher (P < 0.05) in LD ewes compared with SD animals. The numbers of TH-immunoreactive neurons comprising the A12, A14, and A15 cell groups were not different between LD and SD ewes, and the percentage of A12 (approximately 15%) and A14 (approximately 25%) neurons expressing ERs was similarly unaffected by photoperiod. The number of betaE neurons detected in the arcuate nucleus was 50% lower (P < 0.05) in SD vs. LD ewes, whereas NPY-immunoreactive cell numbers in the median eminence were 300% higher (P < 0.05). Approximately 3% of NPY neurons in the median eminence, and 10% in the arcuate nucleus, expressed ER immunoreactivity in a photoperiod-independent manner. These studies indicate that changes in photoperiod may regulate ER expression within the preoptic area and suggest that hypothalamic NPY and betaE neurons are involved in the seasonal regulation of reproductive activity in the ewe.
Collapse
|
57
|
Voisin DL, Simonian SX, Herbison AE. Identification of estrogen receptor-containing neurons projecting to the rat supraoptic nucleus. Neuroscience 1997; 78:215-28. [PMID: 9135102 DOI: 10.1016/s0306-4522(96)00551-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Circulating estrogens influence the electrical and biosynthetic activity of the hypothalamic magnocellular neurons which synthesize vasopressin or oxytocin and regulate body fluid homeostasis and reproduction. As none of these magnocellular neurons express nuclear estrogen receptor in the rat, the present study has combined estrogen receptor immunocytochemistry with retrograde tracing techniques to examine whether the first-order neurons projecting to magnocellular neurons in the supraoptic nucleus may be receptive to estrogen. Green fluorescent latex microspheres (50 nl) were injected into the supraoptic nucleus of five ovariectomized rats. The largest numbers of retrogradely-labelled cells expressing estrogen receptor immunoreactivity were detected in the organum vasculosum of the lamina terminalis, anteroventral periventricular nucleus and medial preoptic nucleus where approximately 15% of all retrogradely-labelled cells were estrogen receptor-immunoreactive. Other prominent sites where double-labelled cells were detected were the median preoptic nucleus, subfornical organ, ventrolateral division of the hypothalamic ventromedial nucleus and the brainstem nucleus tractus solitarii. Triple labelling experiments in the caudal medulla revealed that the estrogen-receptive neurons of the nucleus tractus solitarii and ventrolateral medulla projecting to the supraoptic nucleus were not noradrenergic. These findings show that sub-populations of neurons projecting to the supraoptic nucleus express estrogen receptors. This provides immunocytochemical evidence that estrogen may regulate the activity of magnocellular oxytocin and vasopressin neurons in an indirect, trans-synaptic manner by influencing the activity of first-order neurons projecting to the supraoptic nucleus. The predominance of estrogen-receptive lamina terminalis and preoptic area inputs to the supraoptic nucleus suggests respective sites of estrogen action on magnocellular neurons in modulating fluid balance and reproductive function.
Collapse
|
58
|
Luckman SM, Huckett L, Bicknell RJ, Voisin DL, Herbison AE. Up-regulation of nitric oxide synthase messenger RNA in an integrated forebrain circuit involved in oxytocin secretion. Neuroscience 1997; 77:37-48. [PMID: 9044372 DOI: 10.1016/s0306-4522(96)00498-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The hypothalamo-neurohypophysial system contains high levels of neuronal nitric oxide synthase and this increases further during times of neurohormone demand, such as that following osmotic stimulation. Using double in situ hybridization, we demonstrate here an increase in the expression of nitric oxide synthase messenger RNA by oxytocin neurons, but not vasopressin neurons, of the supraoptic nucleus at the time of lactation, when oxytocin is in demand due to another neuroendocrine stimulus, the milk-ejection reflex. In addition, using immunocytochemical retrograde tracing, we show that neurons of the subfornical organ, median preoptic nucleus and organum vasculosum of the lamina terminalis, which project to the supraoptic nucleus, contain nitric oxide synthase. These three structures of the lamina terminalis, together with the hypothalamo-neurohypophysial system, make up the forebrain osmoresponsive circuit that controls osmotically-stimulated release of oxytocin in the rat. The expression of nitric oxide synthase messenger RNA in the lamina terminalis was also shown to increase during lactation. The increases in nitric oxide synthase messenger RNA were not apparent during pregnancy. These results provide evidence for an integrated nitric oxide synthase-containing neural network involved in the regulation of the hypothalamo-neurohypophysial axis. The expression of nitric oxide synthase messenger RNA increases in this circuit during lactation and correlates with a reduction in the sensitivity of the circuit to osmotic stimuli also present in lactation but not pregnancy. As nitric oxide is believed to attenuate neurohormone release, it seems that the increased nitric oxide synthase messenger RNA expression detected here during lactation at a time of high oxytocin demand may be involved in reducing the sensitivity of the whole forebrain circuit to osmotic stimuli.
Collapse
|
59
|
Herbison AE, Voisin DL, Douglas AJ, Chapman C. Profile of monoamine and excitatory amino acid release in rat supraoptic nucleus over parturition. Endocrinology 1997; 138:33-40. [PMID: 8977382 DOI: 10.1210/endo.138.1.4859] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The magnocellular oxytocin neurons of the hypothalamic supraoptic (SON) and paraventricular nuclei play an important role in the initiation and maintenance of parturition in the rat. As little is known about the neural inputs responsible for activating oxytocin neuron activity at this time, we used the technique of microdialysis to examine the profile of monoamine and excitatory amino acid neurotransmitter release within the SON before and during parturition. Microdialysis probes were implanted into the SON of anesthetized pregnant rats (n = 8) on the morning of the day preceding parturition (day 20), and 15-min dialysate samples were collected from freely moving animals over the following 2 days until 3 h after birth of the last pup. On the day of parturition (day 21), dialysate concentrations of norepinephrine were significantly increased (P < 0.05) in the hour leading up to the expulsion of the first pup and, compared with those on the previous day, remained at significantly (P < 0.05) elevated levels throughout the course of parturition. A significant (P < 0.01) increase in glutamate concentrations was also detected, although in this case, it was only elevated transiently in the 15-min period immediately before the onset of pup expulsion. Mean levels of dopamine were not different between days 20 and 21, but a significant increase in dopamine release was detected specifically during the second half of parturition. No significant changes in serotonin and aspartate concentrations were observed on days 20 and 21 or in relation to parturition. This study provides an analysis of neurotransmitter release in the SON over parturition and indicates that norepinephrine concentrations are elevated well in advance of the onset of pup expulsion, whereas a burst of glutamate release occurs immediately before the birth of the first pup. Such changes are likely to reflect activity in afferent inputs to the SON and may represent neurochemical events involved in the initiation and maintenance of parturition.
Collapse
|
60
|
Simonian SX, Herbison AE. Differential expression of estrogen receptor and neuropeptide Y by brainstem A1 and A2 noradrenaline neurons. Neuroscience 1997; 76:517-29. [PMID: 9015335 DOI: 10.1016/s0306-4522(96)00406-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The release of noradrenaline and neuropeptide Y appears to be regulated by estrogen in a co-ordinated fashion within specific brain regions. The present study has used double and triple-labelling immunocytochemical procedures to determine the patterns of nuclear estrogen receptor and neuropeptide Y expression by brainstem A1 and A2 noradrenergic neurons in the female rat. Estrogen receptor-immunoreactive cells were detected within the ventrolateral medulla, nucleus tractus solitarius, area postrema and, in the very caudal medulla, the reticular nuclei and spinal nucleus of the trigeminal nerve. Cells double labelled for the estrogen receptor and dopamine-beta-hydroxylase were identified in largest numbers (up to seven double-labelled cells per 30-microm-thick coronal section) in the caudal-most medulla, where approximately 30% of A1 and 60% of A2 neurons were immunoreactive for the estrogen receptor. These percentages reduced in a linear fashion in more rostral sections and at the level of the area postrema, no co-expression was evident in the ventrolateral medulla and only 10% of A2 neurons displayed estrogen receptor immunoreactivity. Fluorescence double-labelling studies undertaken in colchicine-treated rats revealed that 50% and 90-100% of tyrosine hydroxylase-immunoreactive cells were positive for neuropeptide Y in the rostral ventrolateral medulla and nucleus tractus solitarius (up to 15 double-labelled cells per section), respectively. This pattern of co-expression also showed a rostrocaudal bias, but in the opposite direction, such that none of the caudal-most A1 and only 10% of caudal A2 neurons were immunoreactive for neuropeptide Y. Triple-labelling experiments revealed the presence of a total of only three triple-labelled cells in the ventrolateral medulla and none in the nucleus tractus solitarius of four rats. Double-labelling studies examining estrogen receptor and neuropeptide Y co-expression similarly found only three double-labelled cells in the ventrolateral medulla. These findings provide immunocytochemical evidence for a clear rostrocaudal topography in nuclear estrogen receptor synthesis by A1 and A2 neurons and show a reverse rostrocaudal bias in neuropeptide Y expression by these cells. The absence of any substantial neuropeptide Y and estrogen receptor co-expression in A1 and A2 neurons indicates that these two proteins are very likely to be differentially expressed by brainstem noradrenergic neurons. Such observations provide further evidence for the biosynthetic and functional heterogeneity of brainstem noradrenergic cells and suggest that A1 and A2 neurons transmitting information on estrogen status within the brain are unlikely to utilize neuropeptide Y as a co-transmitter.
Collapse
|
61
|
Abstract
The GnRH cells represent the final output neurones of an integrated neuronal network used by the brain to generate pulsatile LH secretion from the pituitary gland. Changes in LH secretion profile throughout the ovarian cycle, including the preovulatory LH surge, result principally from alterations in the output of this GnRH network and it has been a key goal of many neurobiologists to elucidate the components and nature of this network. This review documents recent progress in understanding the role of noradrenaline within the GnRH network and highlights and explains its 'enabling' or permissive characteristics. Network behaviour analysis suggests that noradrenaline should be considered as a permissive agent promoting high output states of the GnRH network. On the basis of recent molecular and neuroanatomical data, it is proposed that oestrogen influences brainstem noradrenergic neurones specifically within the nucleus tractus solitarius to facilitate synaptic transmission within the GnRH network. In this manner, noradrenaline is likely to play a role in bringing about the increased GnRH messenger RNA expression and secretion necessary for ovulation.
Collapse
|
62
|
Voisin DL, Fénelon VS, Herbison AE. Calbindin-D28k mRNA expression in magnocellular hypothalamic neurons of female rats during parturition, lactation and following dehydration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:279-86. [PMID: 9013784 DOI: 10.1016/s0169-328x(96)00131-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies indicate that calcium binding proteins may play a role in determining the electrical firing patterns of the hypothalamic magnocellular oxytocin (OT) and vasopressin (VP) neurons. In this study we have examined the calbindin-D28k mRNA content of magnocellular neurons in the supraoptic (SON) and paraventricular (PVN) nuclei and determined whether changes in expression correlate with the specific patterns of electrical activity displayed by these cells under different physiological circumstances. In situ hybridization with [35S]-labelled oligonucleotides revealed a heterogeneous pattern of calbindin-D28k mRNA expression in the SON and magnocellular PVN. Quantitative analysis demonstrated that the number of silver grains/cell in the dorsal half of the SON was approximately 30% higher (P < 0.05) than that of the ventral half of the nucleus. Within the PVN, calbindin-D28k mRNA-expressing neurons were detected in the medial magnocellular division of the PVN but not in magnocellular cells forming the core of the lateral magnocellular division. Dehydration for 24 h did not alter calbindin-D28k mRNA expression in the SON, PVN or cingulate cortex. In parturient and lactating rats, calbindin-D28k mRNA levels were significantly (P < 0.05) reduced in the medial magnocellular division of the PVN compared with virgin animals. No significant differences in calbindin-D28k mRNA expression were observed in either ventral or dorsal halves of the SON, or in the cingulate cortex of these animals. These results provide evidence for the differential expression of calbindin-D28k mRNA by hypothalamic magnocellular neurons and suggest that OT cells may express more calbindin-D28k mRNA than VP neurons. The reduction in calbindin-D28k mRNA expression by putative OT neurons of the PVN at the time of parturition and lactation supports the hypothesis of Li and colleagues (J. Physiol., 488 (1995) 601-608) that calbindin may play a part in determining the electrical firing patterns of magnocellular neurons. However, the absence of any similar decrease in the SON suggests that changes in calbindin-D28k mRNA expression are not essential for OT neurons to exhibit episodic bursting behavior.
Collapse
|
63
|
Condé GL, Herbison AE, Fernandez-Galaz C, Bicknell RJ. Estrogen uncouples noradrenergic activation of Fos expression in the female rat preoptic area. Brain Res 1996; 735:197-207. [PMID: 8911658 DOI: 10.1016/0006-8993(96)00611-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The preoptic area of the rat brain is a site at which gonadal steroids act to regulate sexual behaviour and gonadotrophin secretion. The expression of the immediate-early gene product, Fos, in the preoptic area was investigated in conscious ovariectomised, vehicle and estrogen-treated animals which had received an intracerebroventricular (i.c.v.) infusion of noradrenaline, and also in anaesthetised proestrous and ovariectomised rats following electrical stimulation of the brainstem A1 or A2 noradrenergic cell groups. In ovariectomised oil-treated rats, a third ventricular infusion of noradrenaline (45 micrograms) resulted in a significant (P < 0.05) increase in the numbers of Fos-immunoreactive cell nuclei throughout the preoptic area, compared to vehicle controls. In contrast, Fos expression in animals which had received estrogen replacement showed no change in response to i.c.v. noradrenaline compared with saline-treated controls. In anaesthetised, ovariectomised animals electrical stimulation of the A1 cell group resulted in a significant increase (P < 0.05) in Fos-like immunoreactivity compared with sham controls, specifically within the ventral preoptic area whilst stimulation of the A2 cell group had no significant effect. In anaesthetised, proestrous rats receiving electrical stimulation no significant changes in Fos-like immunoreactivity were detected within the preoptic area after either A1 or A2 stimulation compared with paired controls. These results show that noradrenaline-induced Fos expression in the preoptic area is dependent on estrogen status and suggest that the estrogenic regulation of reproductive functions may thus involve altered responses to noradrenaline in sub-populations of preoptic neurones.
Collapse
|
64
|
Simonian SX, Herbison AE. Localization of neuronal nitric oxide synthase-immunoreactivity within sub-populations of noradrenergic A1 and A2 neurons in the rat. Brain Res 1996; 732:247-52. [PMID: 8891292 DOI: 10.1016/0006-8993(96)00687-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The noradrenergic cells of the ventrolateral medulla (VLM) and the nucleus tractus solitarii (NTS) are implicated in the control of a variety of cardiovascular, respiratory and neuroendocrine functions. The present study has used antibodies raised against rat neuronal nitric oxide synthase (nNOS) and tyrosine hydroxylase (TH) to determine whether nNOS is expressed by A1 and A2 noradrenergic neurons. Double-labelling immunofluorescence experiments revealed that approximately 10% of TH-immunoreactive cells in the rostral NTS and 6% in the caudal NTS, were immunoreactive for nNOS. In the rostral VLM, only 1% of cells were double-labelled while approximately 9% of the TH-immunoreactive cells in the caudal VLM were immunoreactive for nNOS. These findings indicate that sub-populations of the A1 and A2 noradrenergic neurons are capable of generating nitric oxide and suggest a direct role for this neuronal messenger in the regulation of noradrenergic activity within the brain.
Collapse
|
65
|
Fénelon VS, Herbison AE. Plasticity in GABAA receptor subunit mRNA expression by hypothalamic magnocellular neurons in the adult rat. J Neurosci 1996; 16:4872-80. [PMID: 8756419 PMCID: PMC6579304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The magnocellular hypothalamic neurons exhibit a substantial degree of structural and functional plasticity over the time of pregnancy, parturition, and lactation. This study has used in situ hybridization techniques to examine whether the content of alpha 1, alpha 2, beta 2, gamma 2 GABAA receptor subunit mRNAs expressed by these cells fluctuates over this period. A process of regional, followed by cellular and then topographical, analyses within the supraoptic (SON) and posterior paraventricular (PVN) nuclei revealed that an increase in magnocellular alpha 1 subunit mRNA content occurred during the course of pregnancy up to day 19, after which a decline in expression was detected on the day of parturition. Significant fluctuations of this nature were observed only in the oxytocin neuron-enriched regions of the SON and PVN. The expression of alpha 2, beta 2, and gamma 2 subunit mRNAs in the SON and PVN and of all subunit mRNAs in the cingulate cortex did not change over this period. During lactation, gamma 2 subunit mRNA content within the PVN increased significantly on day 14 of lactation as compared with day 7, and topographical analysis suggested that it involved principally magnocellular vasopressin neurons. These results demonstrate the cell-and subunit-specific regulation of GABAA receptor mRNA expression within the hypothalamic magnocellular system. In particular, they suggest that fluctuations in alpha 1 subunit expression may contribute to the marked variations in electrical activity exhibited by magnocellular oxytocin neurons at the time of parturition. More generally, they provide evidence in support of GABAA receptor plasticity within a physiological context in the adult rat brain.
Collapse
|
66
|
Leclercq P, Herbison AE. Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons. J Comp Neurol 1996; 367:444-53. [PMID: 8698903 DOI: 10.1002/(sici)1096-9861(19960408)367:3<444::aid-cne9>3.0.co;2-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the hypothalamic arcuate nucleus is a sexually dimorphic region of the rat brain, there are no reports of sex differences in the number of neurons containing specific neuropeptides within this structure. As cells synthesizing calcitonin gene-related peptide (CGRP) have been shown to exhibit sex differences in other steroid-receptive regions of the rat brain, we examined whether the CGRP-immunoreactive cells located in the mediobasal hypothalamus may also be sexually dimorphic. Immunostaining of sections from male and female colchicine-treated rats revealed a small population of CGRP-immunoreactive cells distributed throughout the arcuate nucleus. Immunoreactive cells were also detected in the lateral hypothalamic perifornical region, dorsomedial, posterior periventricular and ventral tuberomammillary nuclei, and zona incerta. Cell count analysis revealed approximately twice as many CGRP-immunoreactive cell profiles in the rostral (P < 0.01), middle (P < 0.001), and caudal (P < 0.01) thirds of the arcuate nucleus of male rats compared with females. A significant sex difference in immunoreactive cell numbers (male > female) was also detected within the caudal dorsomedial nucleus (P < 0.05) but not in the posterior periventricular nucleus, perifornical region and zona incerta. Although fibers immunoreactive for CGRP were identified in low density throughout the mediobasal hypothalamus, only female rats displayed prominent fiber staining in the periventricular region. Double-labelling immunofluorescence experiments revealed that the CGRP-immunoreactive cells within the zona incerta, but not the hypothalamus, were also immunoreactive for tyrosine hydroxylase; at least 60% of the A13 dopaminergic neurons co-express CGRP. These results provide evidence that sex differences exist in the number of specific neuropeptide-synthesizing cells within the hypothalamic arcuate nucleus and provide further examples of cell populations expressing CGRP immunoreactivity in a sexually dimorphic manner.
Collapse
|
67
|
Voisin DL, Herbison AE, Chapman C, Poulain DA. Effects of central GABAB receptor modulation upon the milk ejection reflex in the rat. Neuroendocrinology 1996; 63:368-76. [PMID: 8739892 DOI: 10.1159/000126977] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to investigate the role of central GABAB receptors in the control of the milk ejection reflex, we have examined the effects of third ventricular and bilateral supraoptic nucleus (SON) injections of a GABAB receptor agonist (baclofen) and antagonist (hydroxy-saclofen) on the milk ejection reflex in the urethane-anaesthetised rat. In addition, microdialysis studies have evaluated whether the activation of GABAB receptors in the SON is able to modulate the release of GABA and glutamate, two major neurotransmitters involved in the regulation of the milk ejection reflex. Intracerebroventricular injections of baclofen (n = 9) in doses of 10, 50 and 100 pmol inhibited the milk ejection reflex in a dose-dependent manner, without affecting the electroencephalogram or attenuating the intramammary pressure response to intravenous injection of 0.5 mU exogenous oxytocin. Hydroxy-saclofen given into the third ventricle in doses of 100 pmol (n = 2) and 500 pmol (n = 4) did not modify the pattern of the milk ejection reflex. Bilateral SON microinfusions of baclofen in doses of 80 (n = 2) and 200 pmol (n = 4) did not modify the pattern of the milk ejection reflex. In microdialysis experiments (n = 8), inclusion of baclofen into the microdialysate at a concentration of 500 microM had no effect upon basal or potassium-stimulated GABA and glutamate outflow. These results show that the activation of GABAB receptors located outside, but not within, the SON are capable of inhibiting the milk ejection reflex. In contrast to our previous findings regarding the GABAA receptor, we found no evidence for a tonic role of GABAB receptors within the neural network inducing the periodic synchronous bursting of oxytocin neurons during suckling.
Collapse
|
68
|
Fénelon VS, Herbison AE. In vivo regulation of specific GABAA receptor subunit messenger RNAs by increased GABA concentrations in rat brain. Neuroscience 1996; 71:661-70. [PMID: 8867039 DOI: 10.1016/0306-4522(95)00492-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study has examined whether changes in endogenous GABA concentrations influence GABAA receptor subunit mRNA expression in vivo. Increased GABA concentrations were achieved by treating female rats with gamma-vinyl-GABA (15 mg/100 g), an irreversible inhibitor of the GABA transaminase, daily for three days. High performance liquid chromatography analysis of brain punches from specific brain regions showed that gamma-vinyl-GABA treatment resulted in approximately two-fold increases in brain GABA content. Using in situ hybridization techniques with specific 35S-labelled oligonucleotides, the mRNA expression of the alpha 1, alpha 2, beta 2, beta 3, gamma 1 and/or gamma 2 subunits of the GABAA receptor was quantified in various brain regions including the medial preoptic nucleus, bed nucleus of the stria terminalis, bed nucleus of the anterior commissure, supraoptic and paraventricular nuclei of the hypothalamus, globus pallidus and cingulate cortex. Silver grain density analysis showed that gamma-vinyl-GABA treatment induced a significant 35 and 49% decrease in gamma 1 mRNA expression in the medial preoptic nucleus and the principle encapsulated nucleus of the bed nucleus of the stria terminalis respectively, and a significant 20% decrease in alpha 2 mRNA expression in the cingulate cortex. Expression of alpha 2 and beta 3 in the former areas was unchanged as was alpha 1, beta 2, beta 3 and gamma 2 subunit expression in the cingulate cortex. Elevation of brain GABA levels also resulted in a specific and significant 17% increase in gamma 2 mRNA expression in the supraoptic nucleus. In the globus pallidus, gamma-vinyl-GABA treatment induced a significant 29% increase in alpha 1 mRNA expression combined with 19 and 30% decreases in beta 2 and gamma 2 mRNA expression, respectively. Levels of GABAA receptor subunits expressed in the bed nucleus of the anterior commissure (alpha 2, beta 3, gamma 1) and paraventricular nucleus (alpha 1, alpha 2, beta 2, gamma 2) were not changed by gamma-vinyl-GABA treatment. These results provide in vivo evidence for a region- and subunit-specific regulation of GABAA receptor subunit mRNA levels following the elevation of brain GABA concentrations and suggest that endogenous GABA levels influence GABAA receptor subunit mRNA expression.
Collapse
|
69
|
Herbison AE, Skinner DC, Robinson JE, King IS. Androgen receptor-immunoreactive cells in ram hypothalamus: distribution and co-localization patterns with gonadotropin-releasing hormone, somatostatin and tyrosine hydroxylase. Neuroendocrinology 1996; 63:120-31. [PMID: 9053776 DOI: 10.1159/000126948] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Testosterone exerts important feedback effects on the hypothalamus of the ram to influence reproductive functioning. To provide a neuroanatomical basis for understanding this androgen action, the present study has examined androgen receptor (AR) immunoreactivity within the hypothalamus and adjacent brain areas of the intact non-breeding season ram. The largest populations of AR-immunoreactive cells were detected in the medial preoptic area, infundibular and premammillary nuclei in addition to the ventromedial nucleus (VMN) where cells were found distributed throughout its medial and lateral divisions. Smaller numbers of AR-expressing cells were identified in the bed nucleus of the stria terminalis and anterior hypothalamic area (AHA) including the paraventricular, but not the supraoptic, nucleus. Double-labelling immunocytochemistry revealed the presence of AR immunoreactivity in only 2 of 460 gonadotropin-releasing hormone (GnRH) neurons. A very small population of TH-immunoreactive cells located in the lateral aspect of the AHA was found to contain ARs. Dopaminergic cells elsewhere in the hypothalamus, including the infundibular nucleus, did not display AR immunoreactivity. Nearly 50% of AR-expressing cells in the lateral VMN were immunoreactive for somatostatin while less than 5% of periventricular somatostatin neurons displayed AR immunoreactivity. These results show where ARs are expressed in the ram hypothalamus and indicate the neuroanatomical sites at which androgen may act to influence reproductive function. The absence of ARs in the neuroendocrine GnRH and tuberoinfundibular dopaminergic cells suggests that androgens do not influence the genome of these cells in any direct manner. In contrast, the somatostatin neurons of the VMN appear to be an important target for circulating androgens in the non-breeding season ram.
Collapse
|
70
|
Herbison AE, Simonian SX, Norris PJ, Emson PC. Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 1996; 8:73-82. [PMID: 8932739 DOI: 10.1111/j.1365-2826.1996.tb00688.x] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study has used a rat neuronal nitric oxide synthase (nNOS) antibody to examine the relationship of nNOS immunoreactivity to GnRH neurons in the ovariectomized and intact diestrous and proestrous rat. A striking band of nNOS-immunoreactive cells was identified in the rostral preoptic area which began in the median preoptic nucleus and organum vasculosum of the lamina terminalis and formed an inverted Y-type distribution above the rostral third ventricle at the level of the anteroventral periventricular nucleus. Another band of nNOS-immunoreactivity was found extending through the internal zone of the median eminence into the arcuate nucleus. Although nNOS immunoreactivity was not detected within GnRH neuronal cell bodies in any of the experimental groups, GnRH perikarya located in the rostral preoptic area, but not elsewhere, were found to be surrounded by nNOS-containing cells. In the median eminence, nNOS and GnRH immunoreactivities were distributed separately in the internal and external zones, respectively. These results provide evidence that, regardless of their pattern of activity, GnRH neurons in the female rat do not express nNOS. Instead, a close anatomical relationship between nNOS-immunoreactive cells and GnRH perikarya and fibers has been identified within specific sub-regions of the rostral preoptic area and in the median eminence. Such findings are compatible with a role for NO at both sites in regulating the release of GnRH throughout the estrous cycle.
Collapse
|
71
|
Herbison AE, Spratt DP. Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) mRNA in rat medial preoptic nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:143-8. [PMID: 8750870 DOI: 10.1016/0169-328x(95)00144-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous immunocytochemical analyses have identified a substantial, gonadal steroid-dependent sex difference in the number of cells expressing calcitonin gene-related peptide (CGRP) in the rat preoptic area. Using three 35S-labelled antisense oligonucleotide probes specific for both alpha and beta CGRP, the present study has examined CGRP mRNA expression within the medial preoptic nucleus (MPN) of intact and gonadectomised male and female rats. Cells expressing CGRP mRNA were found to be more numerous in the intact female (21 +/- 2 cells/hemisection) compared with the male (6 +/- 1; P < 0.01) although the average CGRP mRNA content of MPN cells was not different between intact males (62 +/- 7 silver grains/cell) and females (69 +/- 6 silver grains/cell). Gonadectomy resulted in a significant increase in the number of CGRP mRNA expressing cells detected in the male (12 +/- 1 cells/hemisection; P < 0.01) and an increase (P < 0.05) in the mean CGRP mRNA content per cell in both males (99 +/- 12 silver grains/cell) and females (107 +/- 11 silver grains/cell). These results show that sex differences exist in the number of cells containing CGRP transcripts in the rat MPN although average CGRP mRNA content per cell is not different between males and females. Gonadal steroids appear to exert a tonic suppressive influence on the CGRP mRNA content of MPN cells in both males and females.
Collapse
|
72
|
Herbison AE, Augood SJ, Simonian SX, Chapman C. Regulation of GABA transporter activity and mRNA expression by estrogen in rat preoptic area. J Neurosci 1995; 15:8302-9. [PMID: 8613763 PMCID: PMC6577950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This study has examined whether estrogen regulates GABA transporter synthesis and activity in the female rat brain. In the first experiment in situ hybridization studies examined the effects of ovariectomy on cellular GABA transporter-1 (GAT-1) mRNA content. A 25% decrease in GAT-1 mRNA expression was detected within the medial preoptic area (MPOA) but not the parietal cortex, magnocellular preoptic nucleus (Mg-POA) or caudate-putamen (C-P). Estrogen replacement for 7 d returned GAT-1 mRNA content of MPOA cells to levels observed in intact rats. In the second experiment, the effect of increased brain GABA concentrations on GAT-1 mRNA expression was investigated by treating rats with gamma-vinyl GABA, a GABA-transaminase inhibitor. Although resulting in a twofold increase in tissue GABA content, in situ hybridization experiments revealed no changes in GAT-1 transcript expression. A third series of experiments examined GABA transporter activity in vitro using a 3H GABA uptake assay in MPOA, cortex, and C-P punches. Nipecotic acid (10 microM) reduced specific 3H GABA uptake in all three brain regions while 100 microM beta-alanine only reduced uptake in the MPOA. Estrogen treatment for 7 d resulted in a significant increase in 3H GABA uptake in the MPOA but not the cortex or C-P. The presence of a putative estrogen response element in the GAT-1 gene and the effects demonstrated here on GAT-1 mRNA content and GABA transporter activity indicate that estrogen may influence GAT-1 gene transcription to alter GABA transporter function within the MPOA but not the C-P or cortex.
Collapse
|
73
|
Fenelon VS, Herbison AE. Characterisation of GABAA receptor gamma subunit expression by magnocellular neurones in rat hypothalamus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:45-56. [PMID: 8750860 DOI: 10.1016/0169-328x(95)00130-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gamma-aminobutyric acid (GABA) is known to inhibit the electrical and secretory activity of oxytocin and vasopressin neurones located in the supraoptic and paraventricular nuclei following osmotic, cardiovascular or suckling stimuli. To understand fully the nature of GABA actions on these magnocellular neurones it is important to define the heteropentameric GABAA receptor proteins they express. In the present study, single and dual labelling in situ hybridisation and immunocytochemical experiments were undertaken to define the GABAA receptor gamma subunits expressed by these cells. In situ hybridisation with 35S-labelled antisense oligonucleotides showed that all magnocellular neurones in the supraoptic and paraventricular nuclei of the female rat expressed mRNA encoding the gamma 2 subunit of the GABAA receptor but not the gamma 1 or gamma 3 subunits. Immunocytochemical experiments using a specific polyclonal rabbit antibody directed against the gamma 2 subunit of the GABAA receptor showed that all hypothalamic magnocellular neurones were strongly immunoreactive for gamma 2 subunit protein. Dual in situ hybridisation experiments using the gamma 2 subunit 35 S-labelled oligonucleotide with alkaline phosphatase-labelled antisense oligonucleotides specific for either oxytocin or vasopressin revealed that essentially all oxytocin and vasopressin neurones in both the supraoptic and paraventricular nuclei expressed the gamma 2 subunit of the GABAA receptor. Similarly, sequential double immunoperoxidase staining revealed that all oxytocin and vasopressin neurones in both magnocellular nuclei of the hypothalamus were immunoreactive for the gamma 2 subunit. This study shows that only the gamma 2 subunit of the GABAA receptor gamma subunit family is expressed by hypothalamic oxytocin and vasopressin neurones. In conjunction with our previous results, these findings indicate that individual magnocellular neurones express a complement of alpha 1, alpha 2, beta 2, beta 3 and gamma 2 subunits of the GABAA receptor. The observation of strong gamma 2 subunit expression by neurones known to also express alpha 1 and alpha 2 subunit proteins suggests that these magnocellular cells may express GABAA receptors with both benzodiazepine type-1 and type-2 pharmacology.
Collapse
|
74
|
Cruttwell CJ, Herbison AE, Bicknell RJ. Differential cellular localization of oestrogen receptor immunoreactivity and oxytocin mRNA and immunoreactivity in the rat preoptic area. Neurosci Lett 1995; 200:89-92. [PMID: 8614570 DOI: 10.1016/0304-3940(95)12075-f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oestrogen influences both oxytocin mRNA and peptide immunoreactivity in the preoptic area and the rat oxytocin gene contains functional oestrogen response elements. However, using combinations of immunocytochemistry and in situ hybridization for oxytocin and oestrogen receptor, we found that preoptic oxytocin neurons do not possess oestrogen receptors. This finding implies oestrogen actions on oxytocin synthesis in preoptic neurones are unlikely to be mediated directly.
Collapse
|
75
|
Herbison AE. Sexually dimorphic expression of androgen receptor immunoreactivity by somatostatin neurones in rat hypothalamic periventricular nucleus and bed nucleus of the stria terminalis. J Neuroendocrinol 1995; 7:543-53. [PMID: 7496395 DOI: 10.1111/j.1365-2826.1995.tb00791.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gonadal steroids exert important regulatory actions on the hypothalamic neurones regulating growth hormone secretion and are believed to play a role in generating its sexually dimorphic pattern of secretion. Recent evidence indicates that estrogen actions on one of these neural populations, the periventricular somatostatin (SOM) neurones, are likely to be indirect as they do not possess nuclear estrogen receptors in either sex although androgen receptors (ARs) have been reported within these cells in male rats. The present study has used double-labelling immunocytochemistry procedures to examine whether sex differences exist in AR expression by SOM neurones located in the periventricular nucleus and bed nucleus of the stria terminalis (BNST). Within the hypothalamus, SOM-immunoreactive neurones were found concentrated in the periventricular nucleus while both anterior and posterior divisions of the BNST contained scattered populations of SOM cells. Cells immunoreactive for the AR were detected in all of these areas. Although the intensity of AR cell nuclei staining was equivalent in males and females in regions such as the lateral septum, the intensity of AR staining in many individual cells of the periventricular nucleus and posterior BNST of the female was reduced when compared with the male. Double-labelling experiments revealed that approximately 40% of periventricular SOM neurones expressed AR immunoreactivity in the male compared with significantly (P < 0.01) fewer cells in the female (approximately 7%). In the BNST, double-labelled cells were only detected within the principle encapsulated, interfascicular and transverse nuclei of its posterior division. Approximately 60% of SOM cells in these nuclei expressed AR immunoreactivity in the male while significantly (P < 0.01) fewer did so in the female (approximately 25%). These results indicate that substantial sex differences exist in AR expression by SOM neurones in both the periventricular nucleus and BNST. Such differences in AR expression by periventricular SOM cells may contribute to their sexuality dimorphic nature and, consequently, sex differences in growth hormone secretion.
Collapse
|