1
|
Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, MacLeod RAF, Masters JR, Nakamura Y, Reid YA, Reddel RR, Freshney RI. Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer 2010; 127:1-8. [PMID: 20143388 DOI: 10.1002/ijc.25242] [Citation(s) in RCA: 336] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Continuous cell lines consist of cultured cells derived from a specific donor and tissue of origin that have acquired the ability to proliferate indefinitely. These cell lines are well-recognized models for the study of health and disease, particularly for cancer. However, there are cautions to be aware of when using continuous cell lines, including the possibility of contamination, in which a foreign cell line or microorganism is introduced without the handler's knowledge. Cross-contamination, in which the contaminant is another cell line, was first recognized in the 1950s but, disturbingly, remains a serious issue today. Many cell lines become cross-contaminated early, so that subsequent experimental work has been performed only on the contaminant, masquerading under a different name. What can be done in response-how can a researcher know if their own cell lines are cross-contaminated? Two practical responses are suggested here. First, it is important to check the literature, looking for previous work on cross-contamination. Some reports may be difficult to find and to make these more accessible, we have compiled a list of known cross-contaminated cell lines. The list currently contains 360 cell lines, drawn from 68 references. Most contaminants arise within the same species, with HeLa still the most frequently encountered (29%, 106/360) among human cell lines, but interspecies contaminants account for a small but substantial minority of cases (9%, 33/360). Second, even if there are no previous publications on cross-contamination for that cell line, it is essential to check the sample itself by performing authentication testing.
Collapse
|
Review |
15 |
336 |
2
|
Kawabata S, Tsutsumi R, Kohara A, Yamaguchi T, Nakanishi S, Okada M. Control of calcium oscillations by phosphorylation of metabotropic glutamate receptors. Nature 1996; 383:89-92. [PMID: 8779726 DOI: 10.1038/383089a0] [Citation(s) in RCA: 232] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Stimulation of two metabotropic glutamate-receptor subtypes, mGluR1 and mGluR5, triggers the release of Ca2+ from intracellular stores through the inositol-(1,4,5) trisphosphate (InsP3) pathway. Here we report that glutamate induces single-peaked intracellular Ca2+ mobilization in mGluR1alpha-transfected cells but elicits Ca2+ oscillations in mGluR5a-transfected cells. The response patterns of the intracellular Ca2+ increase depend upon the identity of a single amino acid, aspartate (at position 854) or threonine (at position 840), located within the G-protein-interacting domains of mGluR1alpha and mGluR5a, respectively. Pharmacological and peptide mapping analyses indicated that phosphorylation of the threonine residue at position 840 of mGluR5a by protein kinase C (PKC) is responsible for the generation of Ca2+ oscillations in mGluR5a-expressing cells. To our knowledge this is the first evidence that PKC phosphorylation of G-protein-coupled receptors is important in producing oscillations in intracellular Ca2+ signalling.
Collapse
|
|
29 |
232 |
3
|
Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, Kuroda M, Hanada K. The genome landscape of the african green monkey kidney-derived vero cell line. DNA Res 2014; 21:673-83. [PMID: 25267831 PMCID: PMC4263300 DOI: 10.1093/dnares/dsu029] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Continuous cell lines that originate from mammalian tissues serve as not only invaluable tools for life sciences, but also important animal cell substrates for the production of various types of biological pharmaceuticals. Vero cells are susceptible to various types of microbes and toxins and have widely contributed to not only microbiology, but also the production of vaccines for human use. We here showed the genome landscape of a Vero cell line, in which 25,877 putative protein-coding genes were identified in the 2.97-Gb genome sequence. A homozygous ∼9-Mb deletion on chromosome 12 caused the loss of the type I interferon gene cluster and cyclin-dependent kinase inhibitor genes in Vero cells. In addition, an ∼59-Mb loss of heterozygosity around this deleted region suggested that the homozygosity of the deletion was established by a large-scale conversion. Moreover, a genomic analysis of Vero cells revealed a female Chlorocebus sabaeus origin and proviral variations of the endogenous simian type D retrovirus. These results revealed the genomic basis for the non-tumourigenic permanent Vero cell lineage susceptible to various pathogens and will be useful for generating new sub-lines and developing new tools in the quality control of Vero cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
168 |
4
|
Capes-Davis A, Reid YA, Kline MC, Storts DR, Strauss E, Dirks WG, Drexler HG, MacLeod RA, Sykes G, Kohara A, Nakamura Y, Elmore E, Nims RW, Alston-Roberts C, Barallon R, Los GV, Nardone RM, Price PJ, Steuer A, Thomson J, Masters JR, Kerrigan L. Match criteria for human cell line authentication: Where do we draw the line? Int J Cancer 2012; 132:2510-9. [DOI: 10.1002/ijc.27931] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022]
|
|
13 |
129 |
5
|
Parcy F, Valon C, Kohara A, Miséra S, Giraudat J. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. THE PLANT CELL 1997; 9:1265-77. [PMID: 9286105 PMCID: PMC156996 DOI: 10.1105/tpc.9.8.1265] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous studies have shown that recessive mutations at the Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEAFY COTYLEDON1 (LEC1) loci lead to various abnormalities during mid-embryogenesis and late embryogenesis. In this study, we investigated whether these loci act in independent regulatory pathways or interact in controlling certain facets of seed development. Several developmental responses were quantified in abi3, fus3, and lec1 single mutants as well as in double mutants combining either the weak abi3-1 or the severe abi3-4 mutations with either fus3 or lec1 mutations. Our data indicate that ABI3 interacts genetically with both FUS3 and LEC1 in controlling each of the elementary processes analyzed, namely, accumulation of chlorophyll and anthocyanins, sensitivity to abscisic acid, and expression of individual members of the 12S storage protein gene family. In addition, both FUS3 and LEC1 regulate positively the abundance of the ABI3 protein in the seed. These results suggest that in contrast to previous models, the ABI3, FUS3, and LEC1 genes act synergistically to control multiple elementary processes during seed development.
Collapse
|
research-article |
28 |
109 |
6
|
Kondo J, Ekawa T, Endo H, Yamazaki K, Tanaka N, Kukita Y, Okuyama H, Okami J, Imamura F, Ohue M, Kato K, Nomura T, Kohara A, Mori S, Dan S, Inoue M. High-throughput screening in colorectal cancer tissue-originated spheroids. Cancer Sci 2018; 110:345-355. [PMID: 30343529 PMCID: PMC6317944 DOI: 10.1111/cas.13843] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Patient‐derived cancer organoid culture is an important live material that reflects clinical heterogeneity. However, the limited amount of organoids available for each case as well as the considerable amount of time and cost to expand in vitro makes it impractical to perform high‐throughput drug screening using organoid cultures from multiple patients. Here, we report an advanced system for the high‐throughput screening of 2427 drugs using the cancer tissue‐originated spheroid (CTOS) method. In this system, we apply the CTOS method in an ex vivo platform from xenograft tumors, using machines to handle CTOS and reagents, and testing a CTOS reference panel of multiple CTOS lines for the hit drugs. CTOS passages in xenograft tumors resulted in minimal changes of morphological and genomic status, and xenograft tumor generation efficiently expanded the number of CTOS to evaluate multiple drugs. Our panel of colorectal cancer CTOS lines exhibited diverse sensitivities to the hit compounds, demonstrating the usefulness of this system for investigating highly heterogeneous disease.
Collapse
|
Journal Article |
7 |
94 |
7
|
Barallon R, Bauer SR, Butler J, Capes-Davis A, Dirks WG, Elmore E, Furtado M, Kline MC, Kohara A, Los GV, MacLeod RAF, Masters JRW, Nardone M, Nardone RM, Nims RW, Price PJ, Reid YA, Shewale J, Sykes G, Steuer AF, Storts DR, Thomson J, Taraporewala Z, Alston-Roberts C, Kerrigan L. Recommendation of short tandem repeat profiling for authenticating human cell lines, stem cells, and tissues. In Vitro Cell Dev Biol Anim 2010; 46:727-32. [PMID: 20614197 PMCID: PMC2965362 DOI: 10.1007/s11626-010-9333-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/16/2010] [Indexed: 01/09/2023]
Abstract
Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.
Collapse
|
Journal Article |
15 |
79 |
8
|
Dirks WG, MacLeod RAF, Nakamura Y, Kohara A, Reid Y, Milch H, Drexler HG, Mizusawa H. Cell line cross-contamination initiative: An interactive reference database of STR profiles covering common cancer cell lines. Int J Cancer 2010; 126:303-4. [DOI: 10.1002/ijc.24999] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
15 |
71 |
9
|
Kawabata S, Kohara A, Tsutsumi R, Itahana H, Hayashibe S, Yamaguchi T, Okada M. Diversity of calcium signaling by metabotropic glutamate receptors. J Biol Chem 1998; 273:17381-5. [PMID: 9651322 DOI: 10.1074/jbc.273.28.17381] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During prolonged application of glutamate (20 min), patterns of increase in intracellular Ca2+ concentration ([Ca2+]i) were studied in HEK-293 cells expressing metabotropic glutamate receptor, mGluR1alpha or mGluR5a. Stimulation of mGluR1alpha induced an increase in [Ca2+]i that consisted of an initial transient peak with a subsequent steady plateau or an oscillatory increase in [Ca2+]i. The transient phase was largely attributed to Ca2+ mobilization from the intracellular Ca2+ stores, but the sustained phase was solely due to Ca2+ influx through the mGluR1alpha receptor-operated Ca2+ channel. Prolonged stimulation of mGluR5a continuously induced [Ca2+]i oscillations through mobilization of Ca2+ from the intracellular Ca2+ stores. Studies on mutant receptors of mGluR1alpha and mGluR5a revealed that the coupling mechanism in the sustained phase of Ca2+ response is determined by oscillatory/non-oscillatory patterns of the initial Ca2+ response but not by the receptor identity. In mGluR1alpha-expressing cells, activation of protein kinase C selectively desensitized the pathway for intracellular Ca2+ mobilization, but the mGluR1alpha-operated Ca2+ channel remained active. In mGluR5a-expressing cells, phosphorylation of mGluR5a by protein kinase C, which accounts for the mechanism of mGluR5a-controlled [Ca2+]i oscillations, might prevent desensitization and result in constant oscillatory mobilization of Ca2+ from intracellular Ca2+ stores. Our results provide a novel concept in which oscillatory/non-oscillatory mobilizations of Ca2+ induce different coupling mechanisms during prolonged stimulation of mGluRs.
Collapse
|
|
27 |
65 |
10
|
Kohara A, Suzuki T, Honma M, Ohwada T, Hayashi M. Mutagenicity of aristolochic acid in the lambda/lacZ transgenic mouse (MutaMouse). Mutat Res 2002; 515:63-72. [PMID: 11909755 DOI: 10.1016/s1383-5718(01)00350-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aristolochic acid (AA) is found in a plant that causes urothelial carcinomas in patients with Chinese herb nephropathy (CHN). To evaluate the in vivo mutagenicity of AA, we analysed the mutant frequency (MF) in the lacZ and cII gene of 10 organs of the lambda/lacZ transgenic mouse (MutaMouse) after intragastric treatment with AA (15mg/kg per week x 4). Simultaneously, the clastogenicity of AA was evaluated by the peripheral blood micronucleus assay. The nature of the mutations induced by AA was revealed by the sequence analysis of the cII gene, which is also a phenotypically selectable marker in the lambda transgene. MFs in the target organs-forestomach, kidney, and bladder of AA-treated mice were significantly higher than those of control mice (forestomach 33- and 15-fold; kidney 10- and 9-fold; bladder 16- and 31-fold, for the lacZ and cII, respectively). The MFs in non-target organs, except the colon, showed only slight increases. Sequence analysis of cII mutants in target organs revealed that AA induced mainly A:T to T:A transversions whereas G:C to A:T transitions at CpG sites predominated among spontaneous mutations. These results suggested that AA, which is activated by cytochrome P450 and peroxidase to form cyclic nitrenium ions that bind to deoxyadenine, caused the A to T transversions in the target organs of mice.
Collapse
|
|
23 |
62 |
11
|
Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK. Growth factor-defined culture medium for human mesenchymal stem cells. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2011; 55:181-7. [PMID: 21305471 DOI: 10.1387/ijdb.103232sm] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human bone marrow-derived mesenchymal stem cells (hMSCs) are potential cellular sources of therapeutic stem cells as they have the ability to proliferate and differentiate into a wide array of mesenchymal cell types such as osteoblasts, chondroblasts and adipocytes. hMSCs have been used clinically to treat patients with graft vs. host disease, osteogenesis imperfect, or alveolar cleft, suggesting that transplantation of hMSCs is comparatively safe as a stem cell-based therapy. However, conventional culture medium for hMSCs contains fetal bovine serum (FBS). In the present study, we developed a growth factor-defined, serum-free medium for culturing hMSCs. Under these conditions, TGF-beta1 promoted proliferation of hMSCs. The expanded hMSC population expressed the human pluripotency markers SSEA-3, -4, NANOG, OCT3/4 and SOX2. Furthermore, double positive cells for SSEA-3 and a mesenchymal cell marker, CD105, were detected in the population. The potential to differentiate into osteoblasts and adipocytes was confirmed. This work provides a useful tool to understand the basic biological properties of hMSCs in culture.
Collapse
|
|
14 |
60 |
12
|
Suzuki T, Kouketsu A, Matsuura A, Kohara A, Ninomiya SI, Kohda K, Miyata N. Thiol-based SAHA analogues as potent histone deacetylase inhibitors. Bioorg Med Chem Lett 2004; 14:3313-7. [PMID: 15149697 DOI: 10.1016/j.bmcl.2004.03.063] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Revised: 03/22/2004] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
In order to find novel nonhydroxamate histone deacetylase (HDAC) inhibitors, a series of thiol-based compounds modeled after suberoylanilide hydroxamic acid (SAHA) was synthesized, and their inhibitory effect on HDACs was evaluated. Compound 6, in which the hydroxamic acid of SAHA was replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA.
Collapse
|
|
21 |
59 |
13
|
Kanaya S, Kohara A, Miyagawa M, Matsuzaki T, Morikawa K, Ikehara M. Overproduction and preliminary crystallographic study of ribonuclease H from Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80096-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
36 |
53 |
14
|
Lorge E, Moore MM, Clements J, O'Donovan M, Fellows MD, Honma M, Kohara A, Galloway S, Armstrong MJ, Thybaud V, Gollapudi B, Aardema MJ, Tanir JY. Standardized cell sources and recommendations for good cell culture practices in genotoxicity testing. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 809:1-15. [PMID: 27692294 DOI: 10.1016/j.mrgentox.2016.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
Good cell culture practice and characterization of the cell lines used are of critical importance in in vitro genotoxicity testing. The objective of this initiative was to make continuously available stocks of the characterized isolates of the most frequently used mammalian cell lines in genotoxicity testing anywhere in the world ('IVGT' cell lines). This project was organized under the auspices of the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Project Committee on the Relevance and Follow-up of Positive Results in In Vitro Genetic Toxicity (IVGT) Testing. First, cell isolates were identified that are as close as possible to the isolate described in the initial publications reporting their use in genotoxicity testing. The depositors of these cell lines managed their characterization and their expansion for preparing continuously available stocks of these cells that are stored at the European Collection of Cell Cultures (ECACC, UK) and the Japanese Collection of Research Bioresources (JCRB, Japan). This publication describes how the four 'IVGT' cell lines, i.e. L5178Y TK+/- 3.7.2C, TK6, CHO-WBL and CHL/IU, were prepared for deposit at the ECACC and JCRB cell banks. Recommendations for handling these cell lines and monitoring their characteristics are also described. The growth characteristics of these cell lines (growth rates and cell cycles), their identity (karyotypes and genetic status) and ranges of background frequencies of select endpoints are also reported to help in the routine practice of genotoxicity testing using these cell lines.
Collapse
|
Journal Article |
9 |
43 |
15
|
Miyashita H, Hara T, Tanimura R, Fukuyama S, Cagnon C, Kohara A, Fujii I. Site-directed mutagenesis of active site contact residues in a hydrolytic abzyme: evidence for an essential histidine involved in transition state stabilization. J Mol Biol 1997; 267:1247-57. [PMID: 9150409 DOI: 10.1006/jmbi.1997.0938] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Specific molecular interactions involved in catalysis by antibody 6D9 were investigated by site-directed mutagenesis. The catalytic antibody 6D9, which was generated against a transition state analog (III), hydrolyzes a non-bioactive chloramphenicol monoester derivative (I) to produce chloramphenicol (II). Construction of a three-dimensional molecular model of 6D9 and sequence comparison within a panel of related antibodies suggested candidates for catalytic residues, His (L27d), Tyr (L32), Tyr (H58) and Arg (H100b); these were targeted for the site-directed mutagenesis study. The Y-H58-F and R-H100b-A mutants possessed catalytic activities comparable to that of the wild-type, and the Y-H58-H and Y-L32-F mutant displayed an approximately fivefold decrease in k(cat)/Km. In the transition state analysis, the plots of logK(TSA) versus log(k(cat)/Km) for the mutants are linear, with a slope of approximately 1.0, indicating that the entire hapten-binding energy in the mutants is also utilized to bind the transition state and to accelerate the catalysis. In addition, a dramatic change in the catalytic activity was observed when the histidine residue (27d) in the CDR1 light chain was replaced with alanine. The H-L27d-A mutant had no detectable catalytic activity. This mutation led to a large, 40-fold reduction in transition state binding, with no change in substrate binding. Coupled with the previous kinetic studies and chemical modifications of the intact 6D9 antibody, this mutagenesis study has demonstrated that His L27d plays an essential role in stabilization of the transition state, the mechanism of catalysis by the 6D9 antibody.
Collapse
|
|
28 |
41 |
16
|
Takeuchi M, Takeuchi K, Kohara A, Satoh M, Shioda S, Ozawa Y, Ohtani A, Morita K, Hirano T, Terai M, Umezawa A, Mizusawa H. Chromosomal instability in human mesenchymal stem cells immortalized with human papilloma virus E6, E7, and hTERT genes. In Vitro Cell Dev Biol Anim 2007; 43:129-38. [PMID: 17514511 DOI: 10.1007/s11626-007-9021-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 03/27/2007] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are expected to be an enormous potential source for future cell therapy, because of their self-renewing divisions and also because of their multiple-lineage differentiation. The finite lifespan of these cells, however, is a hurdle for clinical application. Recently, several hMSC lines have been established by immortalized human telomerase reverse transcriptase gene (hTERT) alone or with hTERT in combination with human papillomavirus type 16 E6/E7 genes (E6/E7) and human proto-oncogene, Bmi-1, but have not so much been characterized their karyotypic stability in detail during extended lifespan under in vitro conditions. In this report, the cells immortalized with the hTERT gene alone exhibited little change in karyotype, whereas the cells immortalized with E6/E7 plus hTERT genes or Bmi-1, E6 plus hTERT genes were unstable regarding chromosome numbers, which altered markedly during prolonged culture. Interestingly, one unique chromosomal alteration was the preferential loss of chromosome 13 in three cell lines, observed by fluorescence in situ hybridization (FISH) and comparative-genomic hybridization (CGH) analysis. The four cell lines all maintained the ability to differentiate into both osteogenic and adipogenic lineages, and two cell lines underwent neuroblastic differentiation. Thus, our results were able to provide a step forward toward fulfilling the need for a sufficient number of cells for new therapeutic applications, and substantiate that these cell lines are a useful model for understanding the mechanisms of chromosomal instability and differentiation of hMSCs.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
37 |
17
|
Noda Y, Suzuki T, Kohara A, Hasegawa A, Yotsuyanagi T, Hayashi M, Sofuni T, Yamanaka K, Okada S. In vivo genotoxicity evaluation of dimethylarsinic acid in MutaMouse. Mutat Res 2002; 513:205-12. [PMID: 11719106 DOI: 10.1016/s1383-5718(01)00313-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dimethylarsinic acid (DMA) induces DNA damage in the lung by formation of various peroxyl radical species. The present study was conducted to evaluate whether arsenite or its metabolite, DMA, could initiate carcinogenesis via mutagenic DNA lesions in vivo that can be attributed to oxidative damage. A transgenic mouse model, MutaMouse, was used in this study and mutations in the lacZ transgene and in the endogenous cII gene were assessed. When DMA was intraperitoneally injected into MutaMice at a dose of 10.6 mg/kg per day for 5 consecutive days, it caused only a weak increase in the mutant frequency (MF) of the lacZ gene in the lung, which was at most 1.3-fold higher than in the untreated control animals. DMA did not appreciably raise the MF in the bladder or bone marrow. Further analysis of the cII gene in the lung, the organ in which DMA induced the DNA damage, revealed only a marginal increase in the MF. Following DMA administration, no change in the cII mutation spectra was observed, except for a slight increase in the G:C to T:A transversion. Administration of arsenic trioxide (arsenite) at a dose of 7.6 mg/kg per day did not result in any increase in the MF of the lacZ gene in the lung, kidney, bone marrow, or bladder. Micronucleus formation was also evaluated in peripheral blood reticulocytes (RETs). The assay for micronuclei gave marginally positive results with arsenite, but not with DMA. These results suggest that the mutagenicity of DMA and arsenite might be too low to be detected in the MutaMouse.
Collapse
|
|
23 |
34 |
18
|
Kohara A, Okada M, Tsutsumi R, Ohno K, Takahashi M, Shimizu-Sasamata M, Shishikura J, Inami H, Sakamoto S, Yamaguchi T. In-vitro characterization of YM872, a selective, potent and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist. J Pharm Pharmacol 1998; 50:795-801. [PMID: 9720630 DOI: 10.1111/j.2042-7158.1998.tb07142.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke.
Collapse
|
Comparative Study |
27 |
33 |
19
|
Kasai F, Hirayama N, Ozawa M, Iemura M, Kohara A. Changes of heterogeneous cell populations in the Ishikawa cell line during long-term culture: Proposal for an in vitro clonal evolution model of tumor cells. Genomics 2016; 107:259-66. [PMID: 27107655 DOI: 10.1016/j.ygeno.2016.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 01/17/2023]
Abstract
Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution.
Collapse
|
Journal Article |
9 |
32 |
20
|
Ono K, Satoh M, Yoshida T, Ozawa Y, Kohara A, Takeuchi M, Mizusawa H, Sawada H. Species identification of animal cells by nested PCR targeted to mitochondrial DNA. In Vitro Cell Dev Biol Anim 2007; 43:168-75. [PMID: 17516125 DOI: 10.1007/s11626-007-9033-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
We developed a highly sensitive and convenient method of nested polymerase chain reaction (PCR) targeted to mitochondrial deoxyribonucleic acid (DNA) to identify animal species quickly in cultured cells. Fourteen vertebrate species, including human, cynomolgus monkey, African green monkey, mouse, rat, Syrian hamster, Chinese hamster, guinea pig, rabbit, dog, cat, cow, pig, and chicken, could be distinguished from each other by nested PCR. The first PCR amplifies mitochondrial DNA fragments with a universal primer pair complementary to the conserved regions of 14 species, and the second PCR amplifies the DNA fragments with species-specific primer pairs from the first products. The species-specific primer pairs were designed to easily distinguish 14 species from each other under standard agarose gel electrophoresis. We further developed the multiplex PCR using a mixture of seven species-specific primer pairs for two groups of animals. One was comprised of human, mouse, rat, cat, pig, cow, and rabbit, and the other was comprised of African green monkey, cynomolgus monkey, Syrian hamster, Chinese hamster, guinea pig, dog, and chicken. The sensitivity of the PCR assay was at least 100 pg DNA/reaction, which was sufficient for the detection of each species of DNA. Furthermore, the nested PCR method was able to identify the species in the interspecies mixture of DNA. Thus, the method developed in this study will provide a useful tool for the authentication of animal species.
Collapse
|
Journal Article |
18 |
31 |
21
|
Ohno K, Okada M, Tsutsumi R, Kohara A, Yamaguchi T. Kainate excitotoxicity is mediated by AMPA- but not kainate-preferring receptors in embryonic rat hippocampal cultures. Neurochem Int 1997; 31:715-22. [PMID: 9364457 DOI: 10.1016/s0197-0186(97)00011-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We investigated kainate-induced excitotoxicity in embryonic rat hippocampal cells cultured in a chemically defined medium. Treatment with kainate for 24 h resulted in neuronal death, as assessed by the release of lactate dehydrogenase into the culture media. This neurotoxic effect was kainate dose- and culture age-dependent. EC50 of kainate was 127 +/- 11 microM. 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (f)quinoxaline (NBQX) completely blocked the toxicity, while MK801, an N-methyl-D-aspartate (NMDA) receptor antagonist, also blocked it but not completely. Furthermore, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) attenuated the kainate injury, while the selective and noncompetitive AMPA-preferring receptor antagonist 1-(4-aminophenyl)-4-methyl-7, 8-methylenedioxy-5H-2,3-benzo-diazepine (GYKI 52466) blocked it completely. Concanavalin A (ConA), which potentiates the response to kainate at kainate-preferring receptors, had little effect on kainate toxicity. Further, AMPA alone induced little toxicity, but produced remarkable toxicity when cyclothazide was used to block the desensitization of AMPA-preferring receptors. These results indicate that kainate excitotoxicity in hippocampal cultures is mediated by AMPA- but not kainate-preferring receptors, and that it involves NMDA-receptor-mediated toxicity. The non-desensitizing response at AMPA-preferring receptors may play an important role in kainate-induced excitotoxicity.
Collapse
|
|
28 |
28 |
22
|
Yamamoto Y, Ohkubo T, Kohara A, Tanaka T, Tanaka T, Kikuchi M. Conformational requirement of signal sequences functioning in yeast: circular dichroism and 1H nuclear magnetic resonance studies of synthetic peptides. Biochemistry 1990; 29:8998-9006. [PMID: 2271573 DOI: 10.1021/bi00490a017] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, we have designed a series of simplified artificial signal sequences and have shown that a proline residue in the signal sequence plays an important role in the secretion of human lysozyme in yeast, presumably by altering the conformation of the signal sequence [Yamamoto, Y., Taniyama, Y., & Kikuchi, M. (1989) Biochemistry 28, 2728-2732]. To elucidate the conformational requirement of the signal sequence in more detail, functional and nonfunctional signal sequences connected to the N-terminal five residues of mature human lysozyme were chemically synthesized and their conformations in a lipophilic environment [aqueous trifluoroethanol (TFE) or sodium dodecyl sulfate micelles] analyzed by circular dichroism (CD) and 1H nuclear magnetic resonance (NMR) spectroscopy. The helix content of the peptides, including functional (L8, CL10) and nonfunctional (L8PL, L8PG, L8PL2) signal sequences, was estimated from CD spectra to be 40-50% and 60-70%, respectively, indicating that the helical structure is more abundant in the nonfunctional signal sequences. Two-dimensional NMR analyses in 50% TFE/H2O revealed that each peptide adopted a helical conformation throughout the sequence except for a few residues at the N- and C-termini. Furthermore, H-D exchange experiments indicated that the helical structure of the C-terminal region of the functional signal sequences (L8 and CL10) was less stable than that of the nonfunctional signal sequences (L8PL and L8PL2). On the basis of these results, a model was developed in which the functional signal sequence is inserted in the membrane with a helical conformation and the C-terminal helix unraveled in an extended conformational form through an interaction with the signal peptidase.
Collapse
|
Comparative Study |
35 |
27 |
23
|
Suzuki T, Nagano Y, Matsuura A, Kohara A, Ninomiya SI, Kohda K, Miyata N. Novel histone deacetylase inhibitors: design, synthesis, enzyme inhibition, and binding mode study of SAHA-Based non-hydroxamates. Bioorg Med Chem Lett 2003; 13:4321-6. [PMID: 14643318 DOI: 10.1016/j.bmcl.2003.09.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In order to find novel non-hydroxamate histone deacetylase (HDAC) inhibitors, a series of compounds modeled after suberoylanilide hydroxamic acid (SAHA) were designed and synthesized as (i). substrate (acetyl lysine) analogues (compounds 3-7), (ii). analogues bearing various functional groups expected to chelate zinc ion (compounds 8-15), and (iii). analogues bearing nucleophilic functional groups which could bind covalently to HDACs (compounds 16-18). In this series, semicarbazide 8b and bromoacetamides 18b,c were found to be potent HDAC inhibitors for non-hydroxamates.
Collapse
|
|
22 |
24 |
24
|
Kasai F, Hirayama N, Ozawa M, Satoh M, Kohara A. HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity. Hum Cell 2018; 31:261-267. [PMID: 29774518 PMCID: PMC6002425 DOI: 10.1007/s13577-018-0212-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/12/2018] [Indexed: 12/24/2022]
Abstract
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.
Collapse
|
Journal Article |
7 |
20 |
25
|
Suzuki T, Wang X, Miyata Y, Saeki K, Kohara A, Kawazoe Y, Hayashi M, Sofuni T. Hepatocarcinogen quinoline induces G:C to C:G transversions in the cII gene in the liver of lambda/lacZ transgenic mice (MutaMouse). Mutat Res 2000; 456:73-81. [PMID: 11087898 DOI: 10.1016/s0027-5107(00)00128-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quinoline is carcinogenic to the liver in rodents, but it is not clear whether it acts by a genotoxic mechanism. We previously demonstrated that quinoline does induce gene mutation in the liver of lambda/lacZ transgenic mice. In the present report, we reveal the molecular nature of the mutations induced by quinoline in the lambda cII gene, which is also a phenotypically selectable marker in the lambda transgene. (The cII gene has 294bp, which enables much easier sequence analysis than the original lacZ gene (3kb)). The liver cII mutant frequency was nine times higher in quinoline-treated mice than in control mice. Sequence analysis revealed that quinoline induced primarily G:C to C:G transversions (25 of 34). Thus, we have confirmed that quinoline is genotoxic in its target organ, and the G:C to C:G transversion is the molecular signature of quinoline-induced mutations.
Collapse
|
|
25 |
17 |