51
|
Martínez-Koziol A, Gonzalo P, Pollán Á, Mota A, Colomé N, Montaner D, Dopazo J, Arribas J, Canals F, Arroyo AG. A SILAC approach to MT1-MMP degradome in inflammatory angiogenesis. Vascul Pharmacol 2012. [DOI: 10.1016/j.vph.2011.08.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Alonso-del-Rivero M, Trejo SA, Reytor ML, Rodriguez-de-la-Vega M, Delfin J, Diaz J, González-González Y, Canals F, Chavez MA, Aviles FX. Tri-domain bifunctional inhibitor of metallocarboxypeptidases A and serine proteases isolated from marine annelid Sabellastarte magnifica. J Biol Chem 2012; 287:15427-38. [PMID: 22411994 DOI: 10.1074/jbc.m111.337261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.
Collapse
|
53
|
Andreu-Pérez P, Esteve-Puig R, de Torre-Minguela C, López-Fauqued M, Bech-Serra JJ, Tenbaum S, García-Trevijano ER, Canals F, Merlino G, Avila MA, Recio JA. Protein arginine methyltransferase 5 regulates ERK1/2 signal transduction amplitude and cell fate through CRAF. Sci Signal 2012; 4:ra58. [PMID: 21917714 DOI: 10.1126/scisignal.2001936] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The RAS to extracellular signal-regulated kinase (ERK) signal transduction cascade is crucial to cell proliferation, differentiation, and survival. Although numerous growth factors activate the RAS-ERK pathway, they can have different effects on the amplitude and duration of the ERK signal and, therefore, on the biological consequences. For instance, nerve growth factor, which elicits a larger and more sustained increase in ERK phosphorylation in PC12 cells than does epidermal growth factor (EGF), stimulates PC12 cell differentiation, whereas EGF stimulates PC12 cell proliferation. Here, we show that protein arginine methylation limits the ERK1/2 signal elicited by particular growth factors in different cell types from various species. We found that this restriction in ERK1/2 phosphorylation depended on methylation of RAF proteins by protein arginine methyltransferase 5 (PRMT5). PRMT5-dependent methylation enhanced the degradation of activated CRAF and BRAF, thereby reducing their catalytic activity. Inhibition of PRMT5 activity or expression of RAF mutants that could not be methylated not only affected the amplitude and duration of ERK phosphorylation in response to growth factors but also redirected the response of PC12 cells to EGF from proliferation to differentiation. This additional level of regulation within the RAS pathway may lead to the identification of new targets for therapeutic intervention.
Collapse
|
54
|
Bancells C, Canals F, Benítez S, Colomé N, Julve J, Ordóñez-Llanos J, Sánchez-Quesada JL. Proteomic analysis of electronegative low-density lipoprotein. J Lipid Res 2010; 51:3508-15. [PMID: 20699421 DOI: 10.1194/jlr.m009258] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low density lipoprotein is a heterogeneous group of lipoproteins that differs in lipid and protein composition. One copy of apolipoprotein (apo)B accounts for over 95% of the LDL protein, but the presence of minor proteins could disturb its biological behavior. Our aim was to study the content of minor proteins in LDL subfractions separated by anion exchange chromatography. Electropositive LDL [LDL(+)] is the native form, whereas electronegative LDL [LDL⁻] is a minor atherogenic fraction present in blood. LC-ESI MS/MS analysis of both LDL fractions identified up to 28 different proteins. Of these, 13 proteins, including apoB, were detected in all the analyzed samples. LDL⁻ showed a higher content of most minor proteins. Statistical analysis of proteomic data indicated that the content of apoE, apoA-I, apoC-III, apoA-II, apoD, apoF, and apoJ was higher in LDL⁻ than in LDL(+). Immunoturbidimetry, ELISA, or Western blot analysis confirmed these differences. ApoJ and apoF presented the highest difference between LDL(+) and LDL⁻ (>15-fold). In summary, the increased content of several apolipoproteins, and specifically of apoF and apoJ, could be related to the physicochemical characteristics of LDL⁻, such as apoB misfolding, aggregation, and abnormal lipid composition.
Collapse
|
55
|
Hernández C, García-Ramírez M, Colomé N, Villarroel M, Corraliza L, García-Pacual L, Casado J, Canals F, Simó R. New pathogenic candidates for diabetic macular edema detected by proteomic analysis. Diabetes Care 2010; 33:e92. [PMID: 20587712 DOI: 10.2337/dc10-0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
56
|
Berdiel M, López-Doriga A, Puertas S, Aytes A, Colomé N, Canals F, Salazar R, Pujana M, Villanueva A, Molleví D. 497 Liver microenvironment stimulates aggressiveness of colorectal tumour cells more efficiently than matched primary tumour microenvironment – Hepatic CAFs induce ERK-mediated modification of cell morphology. EJC Suppl 2010. [DOI: 10.1016/s1359-6349(10)71298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
57
|
Colomé N, Collado J, Bech-Serra JJ, Liiv I, Antón LC, Peterson P, Canals F, Jaraquemada D, Alvarez I. Increased apoptosis after autoimmune regulator expression in epithelial cells revealed by a combined quantitative proteomics approach. J Proteome Res 2010; 9:2600-9. [PMID: 20218732 DOI: 10.1021/pr100044d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive autoimmune disease, affecting many endocrine tissues. APECED is associated to the lack of function of a single gene called AutoImmune REgulator (AIRE). Aire knockout mice develop various autoimmune disorders affecting different organs, indicating that Aire is a key gene in the control of organ-specific autoimmune diseases. AIRE is mainly expressed by medullary thymic epithelial cells (mTECs), and its absence results in the loss of tolerance against tissue restricted antigens (TRAs). Aire induces the transcription of genes encoding for TRAs in mTECs. In this report, the analysis of AIRE's effect on the cellular proteome was approached by the combination of two quantitative proteomics techniques, 2D-DIGE and ICPL, using an AIRE-transfected and nontransfected epithelial cell line. The results showed increased levels of several chaperones, (HSC70, HSP27 and tubulin-specific chaperone A) in AIRE-expressing cells, while various cytoskeleton interacting proteins, that is, transgelin, caldesmon, tropomyosin alpha-1 chain, myosin regulatory light polypeptide 9, and myosin-9, were decreased. Furthermore, some apoptosis-related proteins were differentially expressed. Data were confirmed by Western blot and flow cytometry analysis. Apoptosis assays with annexin V and etoposide demonstrated that AIRE-positive cells suffer more spontaneous apoptosis and are less resistant to apoptosis induction.
Collapse
|
58
|
Monge M, Doll A, Colas E, Gil-Moreno A, Castellvi J, Garcia A, Colome N, Perez-Benavente A, Pedrola N, Lopez-Lopez R, Dolcet X, Ramon y Cajal S, Xercavins J, Matias-Guiu X, Canals F, Reventos J, Abal M. Subtractive proteomic approach to the endometrial carcinoma invasion front. J Proteome Res 2010; 8:4676-84. [PMID: 19691290 DOI: 10.1021/pr900390t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Tumor invasion defines the transition between tissue-restricted carcinomas, related to good outcome as optimal surgery becomes possible, and metastatic tumors associated with poor prognosis and a dramatic decrease in survival. In endometrial cancer, myometrial infiltration represents a determinant parameter highly valuable in prognosis. To date, the identification of proteins involved in endometrial carcinoma invasion has been essentially conducted by immunohistochemical methods, without a global perception on the invasive front. Laser microdissection presents nowadays limitations to the profound spatiotemporal regulation from both the tumor and the surrounding stroma occurring at the invasive front. In this work, we attempted an alternative proteomic approach to characterize specific components of the tumor invasive front or its reactive stroma, by comparing the invasive area of an endometrial carcinoma with the noninvasive superficial tumor area and normal tissue from the same patients. This strategy led us to identify proteins involved in cellular morphology, assembly and movement, differentially expressed at the invasive front, as well as pathways like cell-to-cell signaling and interaction and a modulated response to oxidative stress as events related to endometrial carcinoma invasion. In conclusion, we could identify new players of myometrial infiltration by applying a subtractive proteomic approach to the endometrial carcinoma invasion front.
Collapse
|
59
|
Bech-Serra JJ, Borthwick A, Colomé N, Consortium P, Albar JP, Wells M, Sánchez del Pino M, Canals F. A multi-laboratory study assessing reproducibility of a 2D-DIGE differential proteomic experiment. J Biomol Tech 2009; 20:293-296. [PMID: 19949705 PMCID: PMC2777349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
60
|
Garcia-Ramírez M, Hernández C, Villarroel M, Canals F, Alonso MA, Fortuny R, Masmiquel L, Navarro A, García-Arumí J, Simó R. Interphotoreceptor retinoid-binding protein (IRBP) is downregulated at early stages of diabetic retinopathy. Diabetologia 2009; 52:2633-41. [PMID: 19823802 DOI: 10.1007/s00125-009-1548-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/02/2009] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS Interphotoreceptor retinoid-binding protein (IRBP) plays a major role in the visual cycle and is essential to the maintenance of photoreceptors. The aim of this study was to determine whether a decrease in IRBP production exists in the early stages of diabetic retinopathy. METHODS Vitreous samples from diabetic patients with proliferative and non-proliferative diabetic retinopathy (PDR, NPDR), and from non-diabetic patients with macular hole (control group) were selected for IRBP quantitative assessment by proteomic analysis (fluorescence-based difference gel electrophoresis) and western blot. Human post mortem eyes (n = 16) from diabetic donors without clinically detectable retinopathy and from non-diabetic donors (n = 16) were used to determine IRBP (also known as RBP3) mRNA levels (RT-PCR) and protein content (western blot and confocal microscopy). Retinal neurodegeneration was assessed by measuring glial fibrillar acidic protein (GFAP) and the apoptotic rate. Y79 human retinoblastoma cells were used to test the effects of glucose, TNF-alpha and IL-1beta on IRBP expression and IRBP levels. RESULTS Intravitreous IRBP concentration was significantly lower in PDR < NPDR < control in proteomic and western blot analysis. IRBP mRNA levels and IRBP protein content were significantly lower in the retinas from diabetic donors than in those from non-diabetic donors. Increased GFAP and a higher degree of apoptosis were observed in diabetic retinas compared with non-diabetic retinas. A dose-dependent downregulation of IRBP mRNA expression and IRBP content was detected with glucose, TNF-alpha and IL-1beta in cultures of Y79 human retinoblastoma cells. CONCLUSIONS/INTERPRETATION Underproduction of IRBP is an early event in the human diabetic retina and is associated with retinal neurodegeneration. The mechanisms leading to this deficit deserve further investigation.
Collapse
|
61
|
Esselens C, Malapeira J, Colomé N, Casal C, Rodríguez-Manzaneque JC, Canals F, Arribas J. The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem 2009; 285:2463-73. [PMID: 19915008 DOI: 10.1074/jbc.m109.055129] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a sequential process that allows cells to move from the primary tumor and grow elsewhere. Because of their ability to cleave a variety of extracellular signaling and adhesion molecules, metalloproteases have been long considered key components of the metastatic program. However, the function of certain metalloproteases, such as ADAMTS1, is not clear and seems to depend on the cellular environment and/or the stage of tumor progression. To characterize the function of ADAMTS1, we performed two alternative proteomic approaches, difference gel electrophoresis and stable isotope labeling by amino acids in cell culture, to identify novel substrates of the metalloprotease. Both techniques showed that overexpression of ADAMTS1 leads to the release of semaphorin 3C from the extracellular matrix. Although semaphorins are well known regulators of axon guidance, accumulating evidence shows that they may also participate in tumor progression. Here, we show that the cleavage of semaphorin 3C induced by ADAMTS1 promotes the migration of breast cancer cells, indicating that the co-expression of these molecules in tumors may contribute to the metastatic program.
Collapse
|
62
|
Hellin JL, Bech-Serra JJ, Moctezuma EL, Chocron S, Santin S, Madrid A, Vilalta R, Canals F, Torra R, Meseguer A, Nieto JL. Very Low-Molecular-Mass Fragments of Albumin in the Plasma of Patients With Focal Segmental Glomerulosclerosis. Am J Kidney Dis 2009; 54:871-80. [DOI: 10.1053/j.ajkd.2009.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 07/23/2009] [Indexed: 11/11/2022]
|
63
|
Rodríguez CE, Arranz JA, Colomé N, Bech-Serra JJ, Canals F, Del Toro M, Riudor E. Proteomic analysis in cerebrospinal fluid of patients with atypical nonketotic hyperglycinemia and pulmonary hypertension - A pilot study. Proteomics Clin Appl 2009; 3:1430-9. [DOI: 10.1002/prca.200800251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 11/11/2022]
|
64
|
Alonso-del-Rivero M, Trejo SA, Rodríguez de la Vega M, González Y, Bronsoms S, Canals F, Delfín J, Diaz J, Aviles FX, Chávez MA. A novel metallocarboxypeptidase-like enzyme from the marine annelid Sabellastarte magnifica--a step into the invertebrate world of proteases. FEBS J 2009; 276:4875-90. [PMID: 19694804 DOI: 10.1111/j.1742-4658.2009.07187.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After screening 25 marine invertebrates, a novel metallocarboxypeptidase (SmCP) has been identified by activity and MS analytical approaches, and isolated from the marine annelid Sabellastarte magnifica. The enzyme, which is a minor component of the molecularly complex animal body, as shown by 2D gel electrophoresis, has been purified from crude extracts to homogeneity by affinity chromatography on potato carboxypeptidase inhibitor and by ion exchange chromatography. SmCP is a protease of 33792 Da, displaying N-terminal and internal sequence homologies with M14 metallocarboxypeptidase-like enzymes, as determined by MS and automated Edman degradation. The enzyme contains one atom of Zn per molecule, is activated by Ca2+ and is drastically inhibited by the metal chelator 1,10-phenanthroline, as well as by excess Zn2+ or Cu2+, but moderately so by EDTA. SmCP is also strongly inhibited by specific inhibitors of metallocarboxypeptidases, such as benzylsuccinic acid and the protein inhibitors found in potato and leech (i.e. recombinant forms, both at nanomolar levels). The enzyme displays high peptidase efficiency towards pancreatic carboxypeptidase-A synthetic substrates, such as those with hydrophobic residues at the C-terminus but, remarkably, also towards the acidic ones. This property, previously described as for carboxypeptidase O-like activity, has been shown on long peptide substrates by MS. The results obtained in the present study indicate that SmCP is a novel member of the M14 metallocarboxypeptidases family (assignable to the M14A or pancreatic-like subfamily) with a wider specificity that has not been described previously.
Collapse
|
65
|
García-Castillo J, Pedersen K, Angelini PD, Bech-Serra JJ, Colomé N, Cunningham MP, Parra-Palau JL, Canals F, Baselga J, Arribas J. HER2 carboxyl-terminal fragments regulate cell migration and cortactin phosphorylation. J Biol Chem 2009; 284:25302-13. [PMID: 19589785 DOI: 10.1074/jbc.m109.001982] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A group of breast cancer patients with a higher probability of developing metastasis expresses a series of carboxyl-terminal fragments (CTFs) of the tyrosine kinase receptor HER2. One of these fragments, 611-CTF, is a hyperactive form of HER2 that constitutively establishes homodimers maintained by disulfide bonds, making it an excellent model to study overactivation of HER2 during tumor progression and metastasis. Here we show that expression of 611-CTF increases cell motility in a variety of assays. Since cell motility is frequently regulated by phosphorylation/dephosphorylation, we looked for phosphoproteins mediating the effect of 611-CTF using two alternative proteomic approaches, stable isotope labeling with amino acids in cell culture and difference gel electrophoresis, and found that the latter is particularly well suited to detect changes in multiphosphorylated proteins. The difference gel electrophoresis screening identified cortactin, a cytoskeleton-binding protein involved in the regulation of cell migration, as a phosphoprotein probably regulated by 611-CTF. This result was validated by characterizing cortactin in cells expressing this HER2 fragment. Finally, we showed that the knockdown of cortactin impairs 611-CTF-induced cell migration. These results suggest that cortactin is a target of 611-CTF involved in the regulation of cell migration and, thus, in the metastatic behavior of breast tumors expressing this CTF.
Collapse
|
66
|
Trejo SA, López LMI, Caffini NO, Natalucci CL, Canals F, Avilés FX. Sequencing and characterization of asclepain f: the first cysteine peptidase cDNA cloned and expressed from Asclepias fruticosa latex. PLANTA 2009; 230:319-328. [PMID: 19455353 DOI: 10.1007/s00425-009-0942-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/29/2009] [Indexed: 05/27/2023]
Abstract
Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZalpha vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.
Collapse
|
67
|
Monge M, Colas E, Doll A, Gil-Moreno A, Castellvi J, Diaz B, Gonzalez M, Lopez-Lopez R, Xercavins J, Carreras R, Alameda F, Canals F, Gabrielli F, Reventos J, Abal M. Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 2009; 30:1288-97. [DOI: 10.1093/carcin/bgp119] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
68
|
Esteve-Puig R, Canals F, Colomé N, Merlino G, Recio JÁ. Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One 2009; 4:e4771. [PMID: 19274086 PMCID: PMC2651576 DOI: 10.1371/journal.pone.0004771] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 02/11/2009] [Indexed: 12/31/2022] Open
Abstract
Background Understanding the biochemical mechanisms contributing to melanoma development and progression is critical for therapeutical intervention. LKB1 is a multi-task Ser/Thr kinase that phosphorylates AMPK controlling cell growth and apoptosis under metabolic stress conditions. Additionally, LKB1Ser428 becomes phosphorylated in a RAS-Erk1/2-p90RSK pathway dependent manner. However, the connection between the RAS pathway and LKB1 is mostly unknown. Methodology/Principal Findings Using the UV induced HGF transgenic mouse melanoma model to investigate the interplay among HGF signaling, RAS pathway and PI3K pathway in melanoma, we identified LKB1 as a protein directly modified by HGF induced signaling. A variety of molecular techniques and tissue culture revealed that LKB1Ser428 (Ser431 in the mouse) is constitutively phosphorylated in BRAFV600E mutant melanoma cell lines and spontaneous mouse tumors with high RAS pathway activity. Interestingly, BRAFV600E mutant melanoma cells showed a very limited response to metabolic stress mediated by the LKB1-AMPK-mTOR pathway. Here we show for the first time that RAS pathway activation including BRAFV600E mutation promotes the uncoupling of AMPK from LKB1 by a mechanism that appears to be independent of LKB1Ser428 phosphorylation. Notably, the inhibition of the RAS pathway in BRAFV600E mutant melanoma cells recovered the complex formation and rescued the LKB1-AMPKα metabolic stress-induced response, increasing apoptosis in cooperation with the pro-apoptotic proteins Bad and Bim, and the down-regulation of Mcl-1. Conclusions/Significance These data demonstrate that growth factor treatment and in particular oncogenic BRAFV600E induces the uncoupling of LKB1-AMPKα complexes providing at the same time a possible mechanism in cell proliferation that engages cell growth and cell division in response to mitogenic stimuli and resistance to low energy conditions in tumor cells. Importantly, this mechanism reveals a new level for therapeutical intervention particularly relevant in tumors harboring a deregulated RAS-Erk1/2 pathway.
Collapse
|
69
|
Lyakhovich A, Bech-Serra JJ, Canals F, Surralles J. Quick two-dimensional differential in gel electrophoresis-based method to determine length and secondary structures of telomeric DNA. Anal Biochem 2009; 384:356-8. [DOI: 10.1016/j.ab.2008.09.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/17/2022]
|
70
|
Esselens CW, Malapeira J, Colomé N, Moss M, Canals F, Arribas J. Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem 2008; 389:1075-84. [PMID: 18979631 DOI: 10.1515/bc.2008.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metalloproteases play a complex role in tumor progression. While the activity of some ADAM, ADAMTS and matrix metalloproteases (MMPs) seems to be protumorigenic, the activity of others seems to prevent tumor progression. The identification of the array of substrates of a given metalloprotease (degradome) seems an adequate approach to predict the effect of the inhibition of a metalloprotease in tumors. Here, we present the proteomic identification of a novel substrate for ADAM10 and -17. We used SILAC (Stable Isotope Labeling by Amino acids in Cell culture), a proteomic technique based on the differential metabolic labeling of cells in different conditions. This was applied to MCF7 cells derived from an invasive mammary tumor, and the same cells expressing shRNAs that knock down ADAM10 or -17. Following this approach, we have identified C4.4A as a substrate to both metalloproteases. Since C4.4A is likely involved in tumor invasion, these results indicate that the cleavage of C4.4A by ADAM10 and ADAM17 contributes to tumor progression.
Collapse
|
71
|
Simó R, Higuera M, García-Ramírez M, Canals F, García-Arumí J, Hernández C. Elevation of apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients. ACTA ACUST UNITED AC 2008; 126:1076-81. [PMID: 18695102 DOI: 10.1001/archopht.126.8.1076] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To determine levels of apolipoprotein (apo) A-I and apo H in the vitreous fluid of patients with proliferative diabetic retinopathy (PDR) and to examine whether apo A-I and apo H messenger RNA (mRNA) levels are overexpressed in the diabetic retina. METHODS Vitreous samples from 4 diabetic patients with PDR and 8 nondiabetic patients with macular hole were selected for proteomic analysis. Fourteen additional samples (7 from patients with PDR and 7 from patients with macular hole) were used for Western blot analysis. Fourteen postmortem eyes (7 from diabetic and 7 from nondiabetic donors) were used to perform quantitative real-time polymerase chain reaction analysis. RESULTS Intravitreous apo A-I and apo H levels were significantly higher in patients with PDR than in the control group. The apo A-I and apo H mRNA levels obtained from the retinas of diabetic donors were significantly higher than those obtained from nondiabetic donors. Retinal pigment epithelium was the main contributor to the differences. CONCLUSIONS Levels of apo A-I and apo H are elevated in the vitreous fluid of diabetic patients with PDR. In addition, we provide the first evidence, to our knowledge, that a higher expression of apo A-I and apo H mRNAs exists in the diabetic retina. CLINICAL RELEVANCE The results of this study may be relevant to new treatment strategies aimed toward reducing the development of diabetic retinopathy.
Collapse
|
72
|
Esselens CW, Malapeira J, Colomé N, Moss M, Canals F, Arribas J. Metastasis-associated C4.4A, a GPI-anchored protein cleaved by ADAM10 and ADAM17. Biol Chem 2008. [DOI: 10.1515/bc.2008.121_bchm.just-accepted] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
73
|
Alvarez I, Collado J, Daura X, Colomé N, Rodríguez-García M, Gallart T, Canals F, Jaraquemada D. The rheumatoid arthritis-associated allele HLA-DR10 (DRB1*1001) shares part of its repertoire with HLA-DR1 (DRB1*0101) and HLA-DR4 (DRB*0401). ACTA ACUST UNITED AC 2008; 58:1630-9. [PMID: 18512783 DOI: 10.1002/art.23503] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To identify the peptide anchor motif for the rheumatoid arthritis (RA)-related HLA allele, DR10, and find shared natural ligands or sequence similarities with the other disease-associated alleles, DR1 and DR4. METHODS The HLA-DR10-associated peptides were purified, and a proportion of these natural ligands were de novo sequenced by mass spectrometry. Based on crystallographic structures, the complexes formed by peptide influenza virus hemagglutinin HA306-318 with DR1, DR4, and DR10 were modeled, and binding scores were obtained. RESULTS A total of 238 peptides were sequenced, and the anchor motif of the HLA-DR10 peptide repertoire was defined. A large proportion of the DR10-associated peptides had the structural features to bind DR1 and DR4 but were theoretical nonbinders to the negatively associated alleles DR15 and DR7. Among the sequenced ligands, 10 had been reported as ligands to other RA-associated alleles. Modeling data showed that peptide HA306-318 can bind DR1, DR4, and DR10 with similar affinities. CONCLUSION The data show the presence of common peptides in the repertoires of RA-associated HLA alleles. The combination of the shared epitope present in DR1, DR4, and DR10 together with common putative arthritogenic peptide(s) could influence disease onset or outcome.
Collapse
|
74
|
Tallant C, García-Castellanos R, Marrero A, Canals F, Yang Y, Reymond JL, Solà M, Baumann U, Gomis-Rüth FX. Activity of ulilysin, an archaeal PAPP-A-related gelatinase and IGFBP protease. Biol Chem 2008; 388:1243-53. [PMID: 17976018 DOI: 10.1515/bc.2007.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human growth and development are conditioned by insulin-like growth factors (IGFs), which have also implications in pathology. Most IGF molecules are sequestered by IGF-binding proteins (IGFBPs) so that exertion of IGF activity requires disturbance of these complexes. This is achieved by proteolysis mediated by IGFBP proteases, among which the best characterised is human PAPP-A, the first member of the pappalysin family of metzincins. We have previously identified and studied the only archaeal homologue found to date, Methanosarcina acetivorans ulilysin. This is a proteolytically functional enzyme encompassing a pappalysin catalytic domain and a pro-domain involved in maintenance of latency of the zymogen, proulilysin. Once activated, the protein hydrolyses IGFBP-2 to -6 and insulin chain beta in vitro. We report here that ulilysin is also active against several other substrates, viz (azo)casein, azoalbumin, and extracellular matrix components. Ulilysin has gelatinolytic but not collagenolytic activity. Moreover, the proteolysis-resistant skeletal proteins actin and elastin are also cleaved, as is fibrinogen, but not plasmin and alpha1-antitrypsin from the blood coagulation cascade. Ulilysin develops optimal activity at pH 7.5 and strictly requires peptide bonds preceding an arginine residue, as determined by means of a novel fluorescence resonance energy transfer assay, thus pointing to biotechnological applications as an enzyme complementary to trypsin.
Collapse
|
75
|
Calpe-Berdiel L, Escolà-Gil JC, Julve J, Zapico-Muñiz E, Canals F, Blanco-Vaca F. Differential intestinal mucosal protein expression in hypercholesterolemic mice fed a phytosterol-enriched diet. Proteomics 2007; 7:2659-66. [PMID: 17610203 DOI: 10.1002/pmic.200600792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The molecular mechanisms involved in the phytosterol-induced decrease in intestinal cholesterol absorption remain unclear. Further, other biological properties such as immunomodulatory activity and protection against cancer have also been ascribed to these plant compounds. To gain insight into the mechanisms underlying phytosterol actions, we conducted a proteomic study in the intestinal mucosa of phytosterol-fed apolipoprotein E-deficient hypercholesterolemic (apoE-/-) mice. With respect to control-fed apoE-/- mice, nine differentially expressed proteins were identified in whole-enterocyte homogenates using 2-D DIGE and MALDI-TOF MS. These proteins are involved in plasma membrane stabilization, cytoskeleton assembly network, and cholesterol metabolism. Four of these proteins were selected for further study since they showed the highest abundance change or had a potential functional relationship with known effects of phytosterols. Annexin A2 (ANXA2) and beta-actin decrease and annexin A4 (ANXA4) and annexin A5 (ANXA5) increase were confirmed by Western blot analysis. Intestinal gene expression of ANXA2 and A5 and beta-actin was reduced, whereas that of ANXA4 was unchanged. The main results were retested in normocholesterolemic C57BL/6J mice. ANXA4 and ANXA5 protein upregulation and ANXA2 and beta-actin downregulation were reproduced in these animals. However, no changes in gene expression were found in C57BL/6J mice in either of the four proteins selected. ANXA2, A4, and A5 and beta-actin are proteins of special interest given their pleiotropic functions that include cholesterol-ester transport from caveolae, apoptosis, and anti-inflammatory properties. Therefore, the protein expression changes identified in this study might be involved in the biological effects of phytosterols.
Collapse
|