1
|
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 1999; 400:256-61. [PMID: 10421366 DOI: 10.1038/22307] [Citation(s) in RCA: 1151] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
World wheat grain yields increased substantially in the 1960s and 1970s because farmers rapidly adopted the new varieties and cultivation methods of the so-called 'green revolution'. The new varieties are shorter, increase grain yield at the expense of straw biomass, and are more resistant to damage by wind and rain. These wheats are short because they respond abnormally to the plant growth hormone gibberellin. This reduced response to gibberellin is conferred by mutant dwarfing alleles at one of two Reduced height-1 (Rht-B1 and Rht-D1) loci. Here we show that Rht-B1/Rht-D1 and maize dwarf-8 (d8) are orthologues of the Arabidopsis Gibberellin Insensitive (GAI) gene. These genes encode proteins that resemble nuclear transcription factors and contain an SH2-like domain, indicating that phosphotyrosine may participate in gibberellin signalling. Six different orthologous dwarfing mutant alleles encode proteins that are altered in a conserved amino-terminal gibberellin signalling domain. Transgenic rice plants containing a mutant GAI allele give reduced responses to gibberellin and are dwarfed, indicating that mutant GAI orthologues could be used to increase yield in a wide range of crop species.
Collapse
|
|
26 |
1151 |
2
|
Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000; 405:360-4. [PMID: 10830966 DOI: 10.1038/35012636] [Citation(s) in RCA: 832] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 5 (cdk5) and its neuron-specific activator p35 are required for neurite outgrowth and cortical lamination. Proteolytic cleavage of p35 produces p25, which accumulates in the brains of patients with Alzheimer's disease. Conversion of p35 to p25 causes prolonged activation and mislocalization of cdk5. Consequently, the p25/cdk5 kinase hyperphosphorylates tau, disrupts the cytoskeleton and promotes the death (apoptosis) of primary neurons. Here we describe the mechanism of conversion of p35 to p25. In cultured primary cortical neurons, excitotoxins, hypoxic stress and calcium influx induce the production of p25. In fresh brain lysates, addition of calcium can stimulate cleavage of p35 to p25. Specific inhibitors of calpain, a calcium-dependent cysteine protease, effectively inhibit the calcium-induced cleavage of p35. In vitro, calpain directly cleaves p35 to release a fragment with relative molecular mass 25,000. The sequence of the calpain cleavage product corresponds precisely to that of p25. Application of the amyloid beta-peptide A beta(1-42) induces the conversion of p35 to p25 in primary cortical neurons. Furthermore, inhibition of cdk5 or calpain activity reduces cell death in A beta-treated cortical neurons. These observations indicate that cleavage of p35 to p25 by calpain may be involved in the pathogenesis of Alzheimer's disease.
Collapse
|
|
25 |
832 |
3
|
Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 1997; 11:3194-205. [PMID: 9389651 PMCID: PMC316750 DOI: 10.1101/gad.11.23.3194] [Citation(s) in RCA: 745] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1997] [Accepted: 09/17/1997] [Indexed: 02/05/2023]
Abstract
The Arabidopsis gai mutant allele confers a reduction in gibberellin (GA) responsiveness. Here we report the molecular cloning of GAI and a closely related gene GRS. The predicted GAI (wild-type) and gai (mutant) proteins differ only by the deletion of a 17-amino-acid segment from within the amino-terminal region. GAI and GRS contain nuclear localization signals, a region of homology to a putative transcription factor, and motifs characteristic of transcriptional coactivators. Genetic analysis indicates that GAI is a repressor of GA responses, that GA can release this repression, and that gai is a mutant repressor that is relatively resistant to the effects of GA. Mutations at SPY and GAR2 suppress the gai phenotype, indicating the involvement of GAI, SPY, and GAR2 in a signaling pathway that regulates GA responses negatively. The existence of this pathway suggests that GA modulates plant growth through derepression rather than through simple stimulation.
Collapse
|
research-article |
28 |
745 |
4
|
Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997; 11:2622-32. [PMID: 9334325 PMCID: PMC316609 DOI: 10.1101/gad.11.20.2622] [Citation(s) in RCA: 583] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1997] [Accepted: 08/21/1997] [Indexed: 02/05/2023]
Abstract
P-TEFb is a key regulator of the process controlling the processivity of RNA polymerase II and possesses a kinase activity that can phosphorylate the carboxy-terminal domain of the largest subunit of RNA polymerase II. Here we report the cloning of the small subunit of Drosophila P-TEFb and the finding that it encodes a Cdc2-related protein kinase. Sequence comparison suggests that a protein with 72% identity, PITALRE, could be the human homolog of the Drosophila protein. Functional homology was suggested by transcriptional analysis of an RNA polymerase II promoter with HeLa nuclear extract depleted of PITALRE. Because the depleted extract lost the ability to produce long DRB-sensitive transcripts and this loss was reversed by the addition of purified Drosophila P-TEFb, we propose that PITALRE is a component of human P-TEFb. In addition, we found that PITALRE associated with the activation domain of HIV-1 Tat, indicating that P-TEFb is a Tat-associated kinase (TAK). An in vitro transcription assay demonstrates that the effect of Tat on transcription elongation requires P-TEFb and suggests that the enhancement of transcriptional processivity by Tat is attributable to enhanced function of P-TEFb on the HIV-1 LTR.
Collapse
|
research-article |
28 |
583 |
5
|
Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 1996; 271:27176-83. [PMID: 8900211 DOI: 10.1074/jbc.271.43.27176] [Citation(s) in RCA: 513] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The entry of RNA polymerase II into a productive mode of elongation is controlled, in part, by the postinitiation activity of positive transcription elongation factor b (P-TEFb) (Marshall, N. F., and Price, D. H. (1995) J. Biol. Chem. 270, 12335-12338). We report here that removal of the carboxyl-terminal domain (CTD) of the large subunit of RNA polymerase II abolishes productive elongation. Correspondingly, we found that P-TEFb can phosphorylate the CTD of pure RNA polymerase II. Furthermore, P-TEFb can phosphorylate the CTD of RNA polymerase II when the polymerase is in an early elongation complex. Both the function and kinase activity of P-TEFb are blocked by the drugs 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and H-8. P-TEFb is distinct from transcription factor IIH (TFIIH) because the two factors have no subunits in common, P-TEFb is more sensitive to DRB than is TFIIH, and most importantly, TFIIH cannot substitute functionally for P-TEFb. We propose that phosphorylation of the CTD by P-TEFb controls the transition from abortive into productive elongation mode.
Collapse
|
|
29 |
513 |
6
|
Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997; 11:2633-44. [PMID: 9334326 PMCID: PMC316604 DOI: 10.1101/gad.11.20.2633] [Citation(s) in RCA: 451] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1997] [Accepted: 08/22/1997] [Indexed: 02/05/2023]
Abstract
To identify novel inhibitors of transcriptional activation by the HIV Tat protein, we used a combination of in vitro and in vivo Tat-dependent transcription assays to screen >100,000 compounds. All compounds identified blocked Tat-dependent stimulation of transcriptional elongation. Analysis of a panel of structurally diverse inhibitors indicated that their target is the human homolog of Drosophila positive transcription elongation factor b (P-TEFb). Loss of Tat transactivation in extracts depleted of the kinase subunit of human P-TEFb, PITALRE, was reversed by addition of partially purified human P-TEFb. Transfection experiments with wild-type or kinase knockout PITALRE demonstrated that P-TEFb is required for Tat function. Our results suggest that P-TEFb represents an attractive target for the development of novel HIV therapeutics.
Collapse
|
research-article |
28 |
451 |
7
|
Abstract
Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. In contrast to a cell's static genome, the proteome is both complex and dynamic. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). However, this technique is under scrutiny because of a failure to detect low-abundance proteins from the analysis of whole cell lysates. Alternative approaches integrate a diversity of separation technologies and make use of the tremendous peptide separation and sequencing power provided by MS/MS. When liquid chromatography is combined with tandem mass spectrometry (LC/MS/MS) and applied to the direct analysis of mixtures, many of the limitations of 2DE for proteome analysis can be overcome. This tutorial addresses current approaches to identify and characterize large numbers of proteins and measure dynamic changes in protein expression directly from complex protein mixtures (total cell lysates).
Collapse
|
Review |
24 |
443 |
8
|
Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 1998; 12:755-62. [PMID: 9499409 PMCID: PMC316581 DOI: 10.1101/gad.12.5.755] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 02/03/1998] [Indexed: 02/06/2023]
Abstract
The transition from abortive into productive elongation is proposed to be controlled by a positive transcription elongation factor b (P-TEFb) through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Drosophila P-TEFb was identified recently as a cyclin-dependent kinase (CDK9) paired with a cyclin subunit (cyclin T). We demonstrate here the cloning of multiple cyclin subunits of human P-TEFb (T1 and T2). Cyclin T2 has two forms (T2a and T2b) because of alternative splicing. Both cyclin T1 and T2 are ubiquitously expressed. Immunoprecipitation and immunodepletion experiments carried out on HeLa nuclear extract (HNE) indicated that cyclin T1 and T2 were associated with CDK9 in a mutually exclusive manner and that almost all CDK9 was associated with either cyclin T1 or T2. Recombinant CDK9/cyclin T1, CDK9/cyclin T2a, and CDK9/cyclin T2b produced in Sf9 cells possessed DRB-sensitive kinase activity and functioned in transcription elongation in vitro. Either cyclin T1 or T2 was required to activate CDK9, and the truncation of the carboxyl terminus of the cyclin reduced, but did not eliminate, P-TEFb activity. Cotransfection experiments indicated that all three CDK9/cyclin combinations dramatically activated the CMV promoter.
Collapse
|
research-article |
27 |
425 |
9
|
Niethammer M, Smith DS, Ayala R, Peng J, Ko J, Lee MS, Morabito M, Tsai LH. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000; 28:697-711. [PMID: 11163260 DOI: 10.1016/s0896-6273(00)00147-1] [Citation(s) in RCA: 382] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Disruption of one allele of the LIS1 gene causes a severe developmental brain abnormality, type I lissencephaly. In Aspergillus nidulans, the LIS1 homolog, NUDF, and cytoplasmic dynein are genetically linked and regulate nuclear movements during hyphal growth. Recently, we demonstrated that mammalian LIS1 regulates dynein functions. Here we characterize NUDEL, a novel LIS1-interacting protein with sequence homology to gene products also implicated in nuclear distribution in fungi. Like LIS1, NUDEL is robustly expressed in brain, enriched at centrosomes and neuronal growth cones, and interacts with cytoplasmic dynein. Furthermore, NUDEL is a substrate of Cdk5, a kinase known to be critical during neuronal migration. Inhibition of Cdk5 modifies NUDEL distribution in neurons and affects neuritic morphology. Our findings point to cross-talk between two prominent pathways that regulate neuronal migration.
Collapse
|
|
25 |
382 |
10
|
Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. THE PLANT CELL 1993; 5:757-68. [PMID: 8364355 PMCID: PMC160314 DOI: 10.1105/tpc.5.7.757] [Citation(s) in RCA: 375] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytochrome is a family of photoreceptors that regulates plant photomorphogenesis; the best-characterized member of this family is phytochrome A. Here, we report the identification of novel mutations at three Arabidopsis loci (fhy1, fhy2, and fhy3) that confer an elongated hypocotyl in far-red but not in white light. fhy2 mutants are phytochrome A deficient, have reduced or undetectable levels of PHYA transcripts, and contain structural alterations within the PHYA gene. When grown in white light, fhy2 mutants are morphologically indistinguishable from wild-type plants. Thus, phytochrome A appears to be dispensable in white light-grown Arabidopsis plants. fhy2 alleles confer partially dominant phenotypes in far-red light, suggesting that the relative abundance of phytochrome A can affect the extent of the far-red-mediated hypocotyl growth inhibition response. Plants homozygous for the recessive fhy1 and fhy3 mutations have normal levels of functional phytochrome A. The FHY1 and FHY3 gene products may be responsible for the transduction of the far-red light signal from phytochrome A to downstream processes involved in hypocotyl growth regulation.
Collapse
|
research-article |
32 |
375 |
11
|
Peng J, Zhang L, Drysdale L, Fong GH. The transcription factor EPAS-1/hypoxia-inducible factor 2alpha plays an important role in vascular remodeling. Proc Natl Acad Sci U S A 2000; 97:8386-91. [PMID: 10880563 PMCID: PMC26957 DOI: 10.1073/pnas.140087397] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have studied the role of the basic helix-loop-helix-PAS transcription factor EPAS-1/hypoxia-inducible factor 2alpha in vascular development by gene targeting. In ICR/129 Sv outbred background, more than half of the mutants displayed varying degrees of vascular disorganization, typically in the yolk sac, and died in utero between embryonic day (E)9.5 and E13.5. In mutant embryos directly derived from EPAS-1(-/-) embryonic stem cells (hence in 129 Sv background), all embryos developed severe vascular defects both in the yolk sac and embryo proper and died between E9.5 and E12.5. Normal blood vessels were formed by vasculogenesis but they either fused improperly or failed to assemble into larger vessels later during development. Our results suggest that EPAS-1 plays an important role at postvasculogenesis stages and is required for the remodeling of the primary vascular network into a mature hierarchy pattern.
Collapse
|
research-article |
25 |
340 |
12
|
Fong GH, Zhang L, Bryce DM, Peng J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 1999; 126:3015-25. [PMID: 10357944 DOI: 10.1242/dev.126.13.3015] [Citation(s) in RCA: 268] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(−/−) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(−/−) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(−/−) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(−/−) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(−/−) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(−/−) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.
Collapse
|
|
26 |
268 |
13
|
Liu Y, Cheng Y, Xu Y, Wang Z, Du X, Li C, Peng J, Gao L, Liang X, Ma C. Increased expression of programmed cell death protein 1 on NK cells inhibits NK-cell-mediated anti-tumor function and indicates poor prognosis in digestive cancers. Oncogene 2017; 36:6143-6153. [PMID: 28692048 PMCID: PMC5671935 DOI: 10.1038/onc.2017.209] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/13/2022]
Abstract
Abnormal expression of activating/inhibitory receptors leads to natural killer (NK) cells dysfunction in tumor. Here we show that programmed cell death protein 1 (PD-1), a well-known immune checkpoint of T cells, is highly expressed on peripheral and tumor-infiltrating NK cells from patients with digestive cancers including esophageal, liver, colorectal, gastric and biliary cancer. The increased PD-1 expression on NK cells indicates poorer survival in esophageal and liver cancers. Blocking PD-1/PD-L1 signaling markedly enhances cytokines production and degranulation and suppresses apoptosis of NK cells in vitro. PD-1/PD-L1 exerts inhibitory effect through repressing the activation of PI3K/AKT signaling in NK cells. More importantly, a PD-1 blocking antibody was found to significantly suppress the growth of xenografts in nude mice, and this inhibition of tumor growth was completely abrogated by NK depletion. These findings strongly suggested that PD-1 is an inhibitory regulator of NK cells in digestive cancers. PD-1 blockade might be an efficient strategy in NK cell-based tumor immunotherapy.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
266 |
14
|
Zhu Y, Yuan M, Meng HY, Wang AY, Guo QY, Wang Y, Peng J. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis Cartilage 2013; 21:1627-37. [PMID: 23933379 DOI: 10.1016/j.joca.2013.07.017] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 02/02/2023]
Abstract
Cartilage defects (CDs) and the most common joint disease, osteoarthritis (OA), are characterized by degeneration of the articular cartilage that ultimately leads to joint destruction. Current treatment strategies are inadequate: none results in restoration of fully functional hyaline cartilage, for uncertain long-term prognosis. Tissue engineering of cartilage with auto-cartilage cells or appropriate mesenchymal stem cell (MSC)-derived cartilage cells is currently being investigated to search for new therapies. Platelet-rich plasma (PRP), an autologous source of factors obtained by centrifugation, possesses various functions. For culture of MSCs and cartilage cells, it might be substituted for fetal bovine serum (FBS) with high efficiency and safety. It enhances the regeneration of cartilage cells when added to cartilage tissue engineering constructs for repairing CDs and as regenerative injection therapy for OA. But challenges also remain. Some of the growth factors (GFs) present in PRP have negative effects on the OA joint. It is therefore unlikely that a mix of GFs some of which have negative effects in the OA joint, as present in PRP, will be of benefit in OA. Future directions of PRP application may concentrate on seeking an appropriate and innocuous agent like anti-VEGF antibody that can modulate and control the effect of PRP.
Collapse
|
Review |
12 |
229 |
15
|
Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 2014; 22:1077-89. [PMID: 24928319 DOI: 10.1016/j.joca.2014.05.023] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
Abstract
Currently, osteoarthritis (OA) is considered a disease of the entire joint, which is not simply a process of wear and tear but rather abnormal remodelling and joint failure of an organ. The bone-cartilage interface is therefore a functioning synergistic unit, with a close physical association between subchondral bone and cartilage suggesting the existence of biochemical and molecular crosstalk across the OA interface. The crosstalk at the bone-cartilage interface may be elevated in OA in vivo and in vitro. Increased vascularisation and formation of microcracks associated with abnormal bone remodelling in joints during OA facilitate molecular transport from cartilage to bone and vice versa. Recent reports suggest that several critical signalling pathways and biological factors are key regulators and activate cellular and molecular processes in crosstalk among joint compartments. Therapeutic interventions including angiogenesis inhibitors, agonists/antagonists of molecules and drugs targeting bone remodelling are potential candidates for this interaction. This review summarised the premise for the presence of crosstalk in bone-cartilage interface as well as the current knowledge of the major signalling pathways and molecular interactions that regulate OA progression. A better understanding of crosstalk in bone-cartilage interface may lead to development of more effective strategies for treating OA patients.
Collapse
|
Review |
11 |
208 |
16
|
Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20:5077-86. [PMID: 10866664 PMCID: PMC85957 DOI: 10.1128/mcb.20.14.5077-5086.2000] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat stimulates human immunodeficiency virus type 1 (HIV-1) transcriptional elongation by recruitment of carboxyl-terminal domain (CTD) kinases to the HIV-1 promoter. Using an immobilized DNA template assay, we have analyzed the effect of Tat on kinase activity during the initiation and elongation phases of HIV-1 transcription. Our results demonstrate that cyclin-dependent kinase 7 (CDK7) (TFIIH) and CDK9 (P-TEFb) both associate with the HIV-1 preinitiation complex. Hyperphosphorylation of the RNA polymerase II (RNAP II) CTD in the HIV-1 preinitiation complex, in the absence of Tat, takes place at CTD serine 2 and serine 5. Analysis of preinitiation complexes formed in immunodepleted extracts suggests that CDK9 phosphorylates serine 2, while CDK7 phosphorylates serine 5. Remarkably, in the presence of Tat, the substrate specificity of CDK9 is altered, such that the kinase phosphorylates both serine 2 and serine 5. Tat-induced CTD phosphorylation by CDK9 is strongly inhibited by low concentrations of 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole, an inhibitor of transcription elongation by RNAP II. Analysis of stalled transcription elongation complexes demonstrates that CDK7 is released from the transcription complex between positions +14 and +36, prior to the synthesis of transactivation response (TAR) RNA. In contrast, CDK9 stays associated with the complex through +79. Analysis of CTD phosphorylation indicates a biphasic modification pattern, one in the preinitiation complex and the other between +36 and +79. The second phase of CTD phosphorylation is Tat-dependent and TAR-dependent. These studies suggest that the ability of Tat to increase transcriptional elongation may be due to its ability to modify the substrate specificity of the CDK9 complex.
Collapse
|
research-article |
25 |
205 |
17
|
Tarricone C, Dhavan R, Peng J, Areces LB, Tsai LH, Musacchio A. Structure and regulation of the CDK5-p25(nck5a) complex. Mol Cell 2001; 8:657-69. [PMID: 11583627 DOI: 10.1016/s1097-2765(01)00343-4] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CDK5 plays an indispensable role in the central nervous system, and its deregulation is involved in neurodegeneration. We report the crystal structure of a complex between CDK5 and p25, a fragment of the p35 activator. Despite its partial structural similarity with the cyclins, p25 displays an unprecedented mechanism for the regulation of a cyclin-dependent kinase. p25 tethers the unphosphorylated T loop of CDK5 in the active conformation. Residue Ser159, equivalent to Thr160 on CDK2, contributes to the specificity of the CDK5-p35 interaction. Its substitution with threonine prevents p35 binding, while the presence of alanine affects neither binding nor kinase activity. Finally, we provide evidence that the CDK5-p25 complex employs a distinct mechanism from the phospho-CDK2-cyclin A complex to establish substrate specificity.
Collapse
|
|
24 |
204 |
18
|
Andes D, van Ogtrop ML, Peng J, Craig WA. In vivo pharmacodynamics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 2002; 46:3484-9. [PMID: 12384354 PMCID: PMC128755 DOI: 10.1128/aac.46.11.3484-3489.2002] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Linezolid is a new oxazolidinone with activity against gram-positive cocci. We determined the in vivo activity of linezolid against four strains of Staphylococcus aureus (two methicillin-susceptible S. aureus [MSSA] strains and two methicillin-resistant S. aureus strains) and one penicillin-susceptible Streptococcus pneumoniae (PSSP) strain, two penicillin-intermediate S. pneumoniae strains, and five penicillin-resistant S. pneumoniae strains. The mice had 10(6.3) to 10(7.7) CFU/thigh before therapy and were then treated for 24 h with 5 to 1,280 mg of linezolid/kg divided into 1, 2, 4, 8, or 16 doses. The killing activities after 4 h of therapy ranged from 2.4 to 5.0 log(10) CFU/thigh against S. pneumoniae and 1.35 to 2.2 log(10) CFU/thigh against S. aureus. Increasing doses produced minimal concentration-dependent killing; doses of 20 and 80 mg/kg produced no in vivo postantibiotic effects (PAEs) with PSSP and modest PAEs (3.4 and 3.2 h) with MSSA. Pharmacokinetic studies at doses of 20 and 80 mg/kg by high-pressure liquid chromatography analysis exhibited peak dose values of 0.68 and 0.71 and elimination half-lives of 1.02 and 1.00 h. Linezolid MICs ranged from 0.5 to 1.0 micro g/ml for S. pneumoniae and from 1.0 to 4.0 micro g/ml for S. aureus. A sigmoid dose-response model was used to estimate the dose required to achieve a net bacteriostatic effect over 24 h. Static doses against S. pneumoniae ranged from 22.2 to 97.1 mg/kg/24 h and from 133 to 167 mg/kg/24 h for S. aureus. The 24-h area under the concentration-time curve (AUC)/MIC ratio was the major parameter determining the efficacy of linezolid against PSSP (R(2) = 82% for AUC/MIC versus 57% for T>MIC and 59% for the peak level in serum/MIC [peak/MIC]). It was difficult to determine the most relevant pharmacokinetic/pharmacodynamic parameter with S. aureus, although the outcomes correlated slightly better with the 24-h AUC/MIC ratio (R(2) = 75%) than with the other parameters (T>MIC R(2) = 75% and peak/MIC R(2) = 65%). The 24-h AUC/MIC ratio required for a bacteriostatic effect with linezolid varied from 22 to 97 (mean = 48) for pneumococci and from 39 to 167 (mean = 83) for staphylococci. Based upon a pharmacokinetic goal of a 24-h AUC/MIC of 50 to 100, a dosage regimen of 600 mg given either intravenously or orally twice daily would achieve success against organisms with MICs as high as 2 to 4 micro g/ml.
Collapse
|
research-article |
23 |
199 |
19
|
Lis JT, Mason P, Peng J, Price DH, Werner J. P-TEFb kinase recruitment and function at heat shock loci. Genes Dev 2000. [DOI: 10.1101/gad.14.7.792] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
P-TEFb, a heterodimer of the kinase Cdk9 and cyclin T, was isolated as a factor that stimulates formation of productive transcription elongation complexes in vitro. Here, we show that P-TEFb is located at >200 distinct sites on Drosophila polytene chromosomes. Upon heat shock, P-TEFb, like the regulatory factor HSF, is rapidly recruited to heat shock loci, and this recruitment is blocked in an HSF mutant. Yet, HSF binding to DNA is not sufficient to recruit P-TEFb in vivo, and HSF and P-TEFb immunostainings within a heat shock locus are not coincident. Insight to the function of P-TEFb is offered by experiments showing that the direct recruitment of a Gal4-binding domain P-TEFb hybrid to an hsp70 promoter in Drosophilacells is sufficient to activate transcription in the absence of heat shock. Analyses of point mutants show this P-TEFb stimulation is dependent on Cdk9 kinase activity and on Cdk9's interaction with cyclin T. These results, coupled with the frequent colocalization of P-TEFb and the hypophosphorylated form of RNA polymerase II (Pol II) found at promoter-pause sites, support a model in which P-TEFb acts to stimulate promoter-paused Pol II to enter into productive elongation.
Collapse
|
|
25 |
171 |
20
|
Fu TJ, Peng J, Lee G, Price DH, Flores O. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 1999; 274:34527-30. [PMID: 10574912 DOI: 10.1074/jbc.274.49.34527] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Important progress in the understanding of elongation control by RNA polymerase II (RNAPII) has come from the recent identification of the positive transcription elongation factor b (P-TEFb) and the demonstration that this factor is a protein kinase that phosphorylates the carboxyl-terminal domain (CTD) of the RNAPII largest subunit. The P-TEFb complex isolated from mammalian cells contains a catalytic subunit (CDK9), a cyclin subunit (cyclin T1 or cyclin T2), and additional, yet unidentified, polypeptides of unknown function. To identify additional factors involved in P-TEFb function we performed a yeast two-hybrid screen using CDK9 as bait and found that cyclin K interacts with CDK9 in vivo. Biochemical analyses indicate that cyclin K functions as a regulatory subunit of CDK9. The CDK9-cyclin K complex phosphorylated the CTD of RNAPII and functionally substituted for P-TEFb comprised of CDK9 and cyclin T in in vitro transcription reactions.
Collapse
|
|
26 |
168 |
21
|
Peng J, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 2000; 10:1509-31. [PMID: 11042150 PMCID: PMC310947 DOI: 10.1101/gr.150300] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2000] [Accepted: 08/09/2000] [Indexed: 11/24/2022]
Abstract
The main objectives of the study reported here were to construct a molecular map of wild emmer wheat, Triticum dicoccoides, to characterize the marker-related anatomy of the genome, and to evaluate segregation and recombination patterns upon crossing T. dicoccoides with its domesticated descendant Triticum durum (cultivar Langdon). The total map length exceeded 3000 cM and possibly covered the entire tetraploid genome (AABB). Clusters of molecular markers were observed on most of the 14 chromosomes. AFLP (amplified fragment length polymorphism) markers manifested a random distribution among homologous groups, but not among genomes and chromosomes. Genetic differentiation between T. dicoccoides and T. durum was attributed mainly to the B genome as revealed by AFLP markers. The segregation-distorted markers were mainly clustered on 4A, 5A, and 5B chromosomes. Homeoalleles, differentially conferring the vigor of gametes, might be responsible for the distortion on 5A and 5B chromosomes. Quasilinkage, deviation from free recombination between markers of nonhomologous chromosomes, was discovered. Massive negative interference was observed in most of the chromosomes (an excess of double crossovers in adjacent intervals relative to the expected rates on the assumption of no interference). The general pattern of distribution of islands of negative interference included near-centromeric location, spanning the centromere, and median/subterminal location. [An appendix describing the molecular marker loci is available as an online supplement at http://www.genome.org.]
Collapse
|
Comparative Study |
25 |
147 |
22
|
Fujinaga K, Cujec TP, Peng J, Garriga J, Price DH, Graña X, Peterlin BM. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J Virol 1998; 72:7154-9. [PMID: 9696809 PMCID: PMC109937 DOI: 10.1128/jvi.72.9.7154-7159.1998] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By binding to the transactivation response element (TAR) RNA, the transcriptional transactivator (Tat) from the human immunodeficiency virus increases rates of elongation rather than initiation of viral transcription. Two cyclin-dependent serine/threonine kinases, CDK7 and CDK9, which phosphorylate the C-terminal domain of RNA polymerase II, have been implicated in Tat transactivation in vivo and in vitro. In this report, we demonstrate that CDK9, which is the kinase component of the positive transcription elongation factor b (P-TEFb) complex, can activate viral transcription when tethered to the heterologous Rev response element RNA via the regulator of expression of virion proteins (Rev). The kinase activity of CDK9 and cyclin T1 is essential for these effects. Moreover, P-TEFb binds to TAR only in the presence of Tat. We conclude that Tat-P-TEFb complexes bind to TAR, where CDK9 modifies RNA polymerase II for the efficient copying of the viral genome.
Collapse
|
research-article |
27 |
140 |
23
|
Peng J, Marshall NF, Price DH. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem 1998; 273:13855-60. [PMID: 9593731 DOI: 10.1074/jbc.273.22.13855] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb is required for the transition from abortive elongation into productive elongation and is capable of phosphorylating the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. We cloned a cDNA encoding the large subunit of Drosophila P-TEFb and found the predicted protein contained a cyclin motif. We now name the large subunit cyclin T and the previously cloned small subunit (Zhu, Y. R., Peery, T., Peng, J. M., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Genes Dev. 11, 2622-2632) cyclin-dependent kinase 9 (CDK9). Recombinant P-TEFb produced in baculovirus-transfected Sf9 cells exhibited 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-sensitive kinase activity similar to native P-TEFb. Kc cell nuclear extract depleted of P-TEFb failed to generate long DRB-sensitive transcripts, but this activity was restored upon addition of either native or recombinant P-TEFb. Like other CDKs, CDK9 is essentially inactive in the absence of its cyclin partner. P-TEFb containing a CDK9 mutation that knocked out the kinase activity did not function in transcription. Deletion of the carboxyl-terminal domain of cyclin T in P-TEFb reduced both the kinase and transcription activity to about 10%. The CDK-activating kinase in TFIIH was unable to activate the CTD kinase activity of P-TEFb.
Collapse
|
|
27 |
135 |
24
|
Liu Z, Peng J, Mo R, Hui C, Huang CH. Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 2001; 276:1424-33. [PMID: 11024028 DOI: 10.1074/jbc.m007528200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ammonium transporters play a key functional role in nitrogen uptake and assimilation in microorganisms and plants; however, little is known about their structural counterpart in mammals. Here, we report the molecular cloning and biochemical characterization of Rh type B glycoproteins, human RhBG and mouse Rhbg, two new members of the Rh family with distinct tissue specificities. The RhBG orthologues possess a conserved 12-transmembrane topology and most resemble bacterial and archaeal ammonium transporters. Human RHBG resides at chromosome 1q21.3, which harbors candidate genes for medullary cystic kidney disease, whereas mouse Rhbg is syntenic on chromosome 3. Northern blot and in situ hybridization revealed that RHBG and Rhbg are predominantly expressed in liver, kidney, and skin, the specialized organs involving ammonia genesis, excretion, or secretion. Confocal microscopy showed that RhBG is located in the plasma membrane and in some intracellular granules. Western blots of membrane proteins from stable HEK293 cells and from mouse kidney and liver confirmed this distribution. N-Glycanase digestion showed that RhBG/Rhbg has a carbohydrate moiety probably attached at the NHS motif on exoloop 1. Phylogenetic clustering, tissue-specific expression, and plasma membrane location suggest that RhBG homologous proteins are the long sought major ammonium transporters in mammalians.
Collapse
|
Comparative Study |
24 |
133 |
25
|
Bi LH, Wang EB, Peng J, Huang RD, Xu L, Hu CW. Crystal structure and replacement reaction of coordinated water molecules of the heteropoly compounds of sandwich-type tungstoarsenates. Inorg Chem 2000; 39:671-9. [PMID: 11272560 DOI: 10.1021/ic990596v] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Six new heteropoly compounds in the [M4(H2O)2(As2W15O56)2]16- series (M = CuII, MnII, CoII, NiII, ZnII, CdII), previously unknown, were synthesized and characterized by means of IR, UV-vis, CV, 183W NMR, TG-DSC, and elemental analyses. The synthetic method used in preparing this type of heteropoly compounds was different from that in preparing the corresponding tungstophosphates in that the starting materials were transition metal chlorides in 1.5 times the stoichiometric amount and the required pH value is lower than 2. The crystal structure of Na16[Cu4(H2O)2(As2W15O56)2].47H2O was solved in triclinic, P1 symmetry, with a = 12.721(3) A, b = 24.516(5) A, c = 26.450(5) A, alpha = 89.90(3) degrees, beta = 77.32(3) degrees, gamma = 89.96(3)degrees, V = 8048(3) A3, Z = 2, and R = 0.0966. This anion is isostructural with the previously reported [Cu4(H2O)2(P2W15O56)2]16-, having a rhombic tetrameric cluster Cu4O16 sandwiched by two trivacant Dawson-Wells anions [As2W15O56]12-. The range of the bond lengths of the equatorial Cu-O bonds is 1.83-2.05 A, while that of the axial Cu-O bonds is 2.30-2.39 A. The distortion of the Cu4O16 cluster is smaller in the As species than in the P species. Two copper atoms in the Cu4O16 cluster are coordinated by water molecules. The replacement reactions of the coordinated water molecules of this series of heteropoly compounds in aqueous solutions and in selected organic solvents are also reported here for the first time. The results show that [Fe(CN)6]4-, [Fe(CN)6]3-, H2NCH2CH2NH2, etc., can replace the coordinated water to form its characteristic color in aqueous solutions, while in organic solvents the coordinated water molecules are lost, leaving unshared coordination positions that can be occupied by some organic ligands such as pyridine, lactic acid, and acetone to restore the octahedral coordination of M2+. The crystallographic morphologies of this series of heteropolyanions after phase transfer are dependent on different transition metal ions present in the central M4O16 clusters although the anions are isostructural with each other.
Collapse
|
|
25 |
127 |