51
|
Kingsolver JG, Buckley LB. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. CURRENT OPINION IN INSECT SCIENCE 2020; 41:17-24. [PMID: 32599547 DOI: 10.1016/j.cois.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Insects have distinct life stages that can differ in their responses to environmental factors. We discuss empirical evidence and theoretical models for ontogenetic variation in thermal sensitivity and performance curves (TPCs). Data on lower thermal limits for development (T0) demonstrate variation between stages within a species that is of comparable magnitude to variation among species; we illustrate the consequences of such ontogenetic variation for developmental responses to changing temperature. Ontogenetic variation in optimal temperatures and upper thermal limits has been reported in some systems, but current data are too limited to identify general patterns. The shapes of TPCs for different fitness components such as juvenile survival, adult fecundity, and generation time differ in characteristic ways, with important consequences for understanding fitness in varying thermal environments. We highlight a theoretical framework for incorporating ontogenetic variation into process-based models of population responses to seasonal variation and climate change.
Collapse
|
Review |
5 |
47 |
52
|
Kingsolver JG, Buckley LB. Evolution of plasticity and adaptive responses to climate change along climate gradients. Proc Biol Sci 2017; 284:rspb.2017.0386. [PMID: 28814652 DOI: 10.1098/rspb.2017.0386] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/21/2017] [Indexed: 12/28/2022] Open
Abstract
The relative contributions of phenotypic plasticity and adaptive evolution to the responses of species to recent and future climate change are poorly understood. We combine recent (1960-2010) climate and phenotypic data with microclimate, heat balance, demographic and evolutionary models to address this issue for a montane butterfly, Colias eriphyle, along an elevational gradient. Our focal phenotype, wing solar absorptivity, responds plastically to developmental (pupal) temperatures and plays a central role in thermoregulatory adaptation in adults. Here, we show that both the phenotypic and adaptive consequences of plasticity vary with elevation. Seasonal changes in weather generate seasonal variation in phenotypic selection on mean and plasticity of absorptivity, especially at lower elevations. In response to climate change in the past 60 years, our models predict evolutionary declines in mean absorptivity (but little change in plasticity) at high elevations, and evolutionary increases in plasticity (but little change in mean) at low elevation. The importance of plasticity depends on the magnitude of seasonal variation in climate relative to interannual variation. Our results suggest that selection and evolution of both trait means and plasticity can contribute to adaptive response to climate change in this system. They also illustrate how plasticity can facilitate rather than retard adaptive evolutionary responses to directional climate change in seasonal environments.
Collapse
|
Journal Article |
8 |
46 |
53
|
Kingsolver JG. Experimental Manipulation of Wing Pigment Pattern and Survival in Western White Butterflies. Am Nat 1996. [DOI: 10.1086/285852] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
|
29 |
45 |
54
|
Higgins JK, MacLean HJ, Buckley LB, Kingsolver JG. Geographic differences and microevolutionary changes in thermal sensitivity of butterfly larvae in response to climate. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12218] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
12 |
45 |
55
|
Buckley LB, Nufio CR, Kirk EM, Kingsolver JG. Elevational differences in developmental plasticity determine phenological responses of grasshoppers to recent climate warming. Proc Biol Sci 2016; 282:20150441. [PMID: 26041342 DOI: 10.1098/rspb.2015.0441] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Annual species may increase reproduction by increasing adult body size through extended development, but risk being unable to complete development in seasonally limited environments. Synthetic reviews indicate that most, but not all, species have responded to recent climate warming by advancing the seasonal timing of adult emergence or reproduction. Here, we show that 50 years of climate change have delayed development in high-elevation, season-limited grasshopper populations, but advanced development in populations at lower elevations. Developmental delays are most pronounced for early-season species, which might benefit most from delaying development when released from seasonal time constraints. Rearing experiments confirm that population, elevation and temperature interact to determine development time. Population differences in developmental plasticity may account for variability in phenological shifts among adults. An integrated consideration of the full life cycle that considers local adaptation and plasticity may be essential for understanding and predicting responses to climate change.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
44 |
56
|
Buckley LB, Nufio CR, Kingsolver JG. Phenotypic clines, energy balances and ecological responses to climate change. J Anim Ecol 2013; 83:41-50. [DOI: 10.1111/1365-2656.12083] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 03/10/2013] [Indexed: 11/26/2022]
|
|
12 |
43 |
57
|
Kingsolver JG, Watt WB. Mechanistic Constraints and Optimality Models: Thermoregulatory Strategies in Colias Butterflies. Ecology 1984. [DOI: 10.2307/1937780] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
41 |
43 |
58
|
Buckley LB, Arakaki AJ, Cannistra AF, Kharouba HM, Kingsolver JG. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments. Integr Comp Biol 2018; 57:988-998. [PMID: 28662575 DOI: 10.1093/icb/icx032] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Historical data show that recent climate change has caused advances in seasonal timing (phenology) in many animals and plants, particularly in temperate and higher latitude regions. The population and fitness consequences of these phenological shifts for insects and other ectotherms have been heterogeneous: warming can increase development rates and the number of generations per year (increasing fitness), but can also lead to seasonal mismatches between animals and their resources and increase exposure to environmental variability (decreasing fitness). Insect populations exhibit local adaptation in their developmental responses to temperature, including lower developmental thresholds and the thermal requirements to complete development, but climate change can potentially disrupt seasonal timing of juvenile and adult stages and alter population fitness. We investigate these issues using a global dataset describing how insect developmental responds to temperature via two traits: lower temperature thresholds for development (T0) and the cumulative degree-days required to complete development (G). As suggested by previous analyses, T0 decreases and G increases with increasing (absolute) latitude; however, these traits and the relationship between G and latitude varies significantly among taxonomic orders. The mean number of generations per year (a metric of fitness) increases with both decreasing T0 and G, but the effects of these traits on fitness vary strongly with latitude, with stronger selection on both traits at higher (absolute) latitudes. We then use the traits to predict developmental timing and temperatures for multiple generations within seasons and across years (1970-2010). Seasonality drives developmental temperatures to peak mid-season and for generation lengths to decline across seasons, particularly in temperate regions. We predict that climate warming has advanced phenology and increased the number of generations, particularly at high latitudes. The magnitude of increases in developmental temperature varies little across latitude. Increases in the number of seasonal generations have been greatest for populations experiencing the greatest phenological advancements and warming. Shifts in developmental rate and timing due to climate change will have complex implications for selection and fitness in seasonal environments.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
43 |
59
|
Buckley LB, Miller EF, Kingsolver JG. Ectotherm Thermal Stress and Specialization Across Altitude and Latitude. Integr Comp Biol 2013; 53:571-81. [DOI: 10.1093/icb/ict026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
|
12 |
42 |
60
|
Kingsolver JG, Umbanhowar J. The analysis and interpretation of critical temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.167858. [PMID: 29724777 DOI: 10.1242/jeb.167858] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Critical temperatures are widely used to quantify the upper and lower thermal limits of organisms. But measured critical temperatures often vary with methodological details, leading to spirited discussions about the potential consequences of stress and acclimation during the experiments. We review a model based on the simple assumption that failure rate increases with increasing temperature, independent of previous temperature exposure, water loss or metabolism during the experiment. The model predicts that mean critical thermal maximal temperature (CTmax) increases non-linearly with starting temperature and ramping rate, a pattern frequently observed in empirical studies. We then develop a statistical model that estimates a failure rate function (the relationship between failure rate and current temperature) using maximum likelihood; the best model accounts for 58% of the variation in CTmax in an exemplary dataset for tsetse flies. We then extend the model to incorporate potential effects of stress and acclimation on the failure rate function; the results show how stress accumulation at low ramping rate may increase the failure rate and reduce observed values of CTmax We also applied the model to an acclimation experiment with hornworm larvae that used a single starting temperature and ramping rate; the analyses show that increasing acclimation temperature significantly reduced the slope of the failure rate function, increasing the temperature at which failure occurred. The model directly applies to critical thermal minima, and can utilize data from both ramping and constant-temperature assays. Our model provides a new approach to analyzing and interpreting critical temperatures.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
41 |
61
|
Kingsolver JG. Evolution and Coadaptation of Thermoregulatory Behavior and Wing Pigmentation Pattern in Pierid Butterflies. Evolution 1987. [DOI: 10.2307/2409250] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
38 |
38 |
62
|
Kingsolver JG. EXPERIMENTAL ANALYSES OF WING SIZE, FLIGHT, AND SURVIVAL IN THE WESTERN WHITE BUTTERFLY. Evolution 2017; 53:1479-1490. [DOI: 10.1111/j.1558-5646.1999.tb05412.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1998] [Accepted: 04/06/1999] [Indexed: 11/28/2022]
|
|
8 |
37 |
63
|
|
|
15 |
37 |
64
|
Kingsolver JG, Buckley LB. Climate variability slows evolutionary responses of Colias butterflies to recent climate change. Proc Biol Sci 2016; 282:rspb.2014.2470. [PMID: 25631995 DOI: 10.1098/rspb.2014.2470] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
9 |
35 |
65
|
Kingsolver JG, Diamond SE, Seiter SA, Higgins JK. Direct and indirect phenotypic selection on developmental trajectories in Manduca sexta. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.01972.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
|
13 |
34 |
66
|
Kingsolver JG. Viability Selection on Seasonally Polyphenic Traits: Wing Melanin Pattern in Western White Butterflies. Evolution 1995. [DOI: 10.2307/2410415] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
|
30 |
34 |
67
|
Wiernasz DC, Kingsolver JG. Wing melanin pattern mediates species recognition in Pieris occidentalis. Anim Behav 1992. [DOI: 10.1016/s0003-3472(05)80074-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
|
33 |
33 |
68
|
Kingsolver JG, Pfennig DW. INDIVIDUAL-LEVEL SELECTION AS A CAUSE OF COPE'S RULE OF PHYLETIC SIZE INCREASE. Evolution 2004. [DOI: 10.1554/04-003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
21 |
32 |
69
|
Siepielski AM, Morrissey MB, Carlson SM, Francis CD, Kingsolver JG, Whitney KD, Kruuk LEB. No evidence that warmer temperatures are associated with selection for smaller body sizes. Proc Biol Sci 2019; 286:20191332. [PMID: 31337312 DOI: 10.1098/rspb.2019.1332] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reductions in animal body size over recent decades are often interpreted as an adaptive evolutionary response to climate warming. However, for reductions in size to reflect adaptive evolution, directional selection on body size within populations must have become negative, or where already negative, to have become more so, as temperatures increased. To test this hypothesis, we performed traditional and phylogenetic meta-analyses of the association between annual estimates of directional selection on body size from wild populations and annual mean temperatures from 39 longitudinal studies. We found no evidence that warmer environments were associated with selection for smaller size. Instead, selection consistently favoured larger individuals, and was invariant to temperature. These patterns were similar in ectotherms and endotherms. An analysis using year rather than temperature revealed similar patterns, suggesting no evidence that selection has changed over time, and also indicating that the lack of association with annual temperature was not an artefact of choosing an erroneous time window for aggregating the temperature data. Although phenotypic trends in size will be driven by a combination of genetic and environmental factors, our results suggest little evidence for a necessary ingredient-negative directional selection-for declines in body size to be considered an adaptive evolutionary response to changing selection pressures.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
32 |
70
|
Tsuji JS, Kingsolver JG, Watt WB. Thermal physiological ecology of Colias butterflies in flight. Oecologia 1986; 69:161-170. [DOI: 10.1007/bf00377616] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/1985] [Indexed: 10/26/2022]
|
|
39 |
32 |
71
|
Angilletta MJ, Ashley Steel E, Bartz KK, Kingsolver JG, Scheuerell MD, Beckman BR, Crozier LG. Big dams and salmon evolution: changes in thermal regimes and their potential evolutionary consequences. Evol Appl 2015; 1:286-99. [PMID: 25567632 PMCID: PMC3352442 DOI: 10.1111/j.1752-4571.2008.00032.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 02/04/2008] [Indexed: 11/30/2022] Open
Abstract
Dams designed for hydropower and other purposes alter the environments of many economically important fishes, including Chinook salmon (Oncorhynchus tshawytscha). We estimated that dams on the Rogue River, the Willamette River, the Cowlitz River, and Fall Creek decreased water temperatures during summer and increased water temperatures during fall and winter. These thermal changes undoubtedly impact the behavior, physiology, and life histories of Chinook salmon. For example, relatively high temperatures during the fall and winter should speed growth and development, leading to early emergence of fry. Evolutionary theory provides tools to predict selective pressures and genetic responses caused by this environmental warming. Here, we illustrate this point by conducting a sensitivity analysis of the fitness consequences of thermal changes caused by dams, mediated by the thermal sensitivity of embryonic development. Based on our model, we predict Chinook salmon likely suffered a decrease in mean fitness after the construction of a dam in the Rogue River. Nevertheless, these demographic impacts might have resulted in strong selection for compensatory strategies, such as delayed spawning by adults or slowed development by embryos. Because the thermal effects of dams vary throughout the year, we predict dams impacted late spawners more than early spawners. Similar analyses could shed light on the evolutionary consequences of other environmental perturbations and their interactions.
Collapse
|
Journal Article |
10 |
32 |
72
|
Kingsolver JG, Nagle A. Evolutionary Divergence in Thermal Sensitivity and Diapause of Field and Laboratory Populations ofManduca sexta. Physiol Biochem Zool 2007; 80:473-9. [PMID: 17717810 DOI: 10.1086/519962] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2007] [Indexed: 11/03/2022]
Abstract
The tobacco hornworm Manduca sexta has been an important model system in insect biology for more than half a century. Here we report the evolutionary divergence in thermal sensitivity and diapause initiation between field and laboratory populations that were separated for more than 35 yr (>240 laboratory generations) and that are descendants from the same field populations in central North Carolina. At intermediate rearing temperatures (20 degrees-25 degrees C), mean body size was significantly larger and development time significantly faster in the laboratory than in the field populations. At higher temperatures (30 degrees -35 degrees C), these mean differences between populations were reduced or eliminated, and larval survival at 35 degrees C was significantly lower in the laboratory population than in the field population. F(1) crosses had survival and development time to wandering similar to the field population times at both 25 degrees and 35 degrees C; body mass at wandering for F(1) crosses was intermediate compared with that of the field and laboratory populations. Comparisons with earlier field and laboratory studies suggest evolutionary reductions in thermal tolerance and performance at high temperatures in the laboratory population. The critical photoperiod initiating diapause in field populations in North Carolina did not change detectably between the 1960s and 2005. In contrast, the laboratory population has evolved a reduced tendency to diapause under short-day conditions, relative to the field population.
Collapse
|
|
18 |
29 |
73
|
Kingsolver JG, MacLean HJ, Goddin SB, Augustine KE. Plasticity of upper thermal limits to acute and chronic temperature variation in Manduca sexta larvae. J Exp Biol 2016; 219:1290-4. [DOI: 10.1242/jeb.138321] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/24/2016] [Indexed: 11/20/2022]
Abstract
In many ectotherms, exposure to high temperatures can improve subsequent tolerance to higher temperatures. However, the differential effects of single, repeated, or continuous exposure to high temperatures are less clear. We measured the effects of single heat shocks and of diurnally fluctuating or constant rearing temperatures on the critical thermal maximum temperatures (CTmax) for final instar larvae of Manduca sexta. Brief (2h) heat shocks at temperatures of 35°C and above significantly increased CTmax relative to control temperatures (25°C). Increasing mean temperatures (from 25 to 30°C) or greater diurnal fluctuations (from constant to ±10°C) during larval development also significantly increased CTmax. Combining these data showed that repeated or continuous temperature exposure during development improved heat tolerance beyond the effects of a single exposure to the same maximum temperature. These results suggest that both acute and chronic temperature exposure can result in adaptive plasticity of upper thermal limits.
Collapse
|
|
9 |
28 |
74
|
MacLean HJ, Nielsen ME, Kingsolver JG, Buckley LB. Using museum specimens to track morphological shifts through climate change. Philos Trans R Soc Lond B Biol Sci 2018; 374:rstb.2017.0404. [PMID: 30455218 DOI: 10.1098/rstb.2017.0404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Museum specimens offer a largely untapped resource for detecting morphological shifts in response to climate change. However, morphological shifts can be obscured by shifts in phenology or distribution or sampling biases. Additionally, interpreting phenotypic shifts requires distinguishing whether they result from plastic or genetic changes. Previous studies using collections have documented consistent historical size changes, but the limited studies of other morphological traits have often failed to support, or even test, hypotheses. We explore the potential of collections by investigating shifts in the functionally significant coloration of a montane butterfly, Colias meadii, over the past 60 years within three North American geographical regions. We find declines in ventral wing melanism, which correspond to reduced absorption of solar radiation and thus reduced risk of overheating, in two regions. However, contrary to expected responses to climate warming, we find melanism increases in the most thoroughly sampled region. Relationships among temperature, phenology and morphology vary across years and complicate the distinction between plastic and genetic responses. Differences in these relationships may account for the differing morphological shifts among regions. Our findings highlight the promise of using museum specimens to test mechanistic hypotheses for shifts in functional traits, which is essential for deciphering interacting responses to climate change.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
27 |
75
|
Ragland GJ, Kingsolver JG. Influence of seasonal timing on thermal ecology and thermal reaction norm evolution in Wyeomyia smithii. J Evol Biol 2007; 20:2144-53. [PMID: 17903189 DOI: 10.1111/j.1420-9101.2007.01428.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Evolutionary changes in the seasonal timing of life-history events can alter a population's exposure to seasonally variable environmental factors. We illustrate this principle in Wyeomyia smithii by showing that: (1) geographic divergence in diapause timing reduces differences among populations in the thermal habitat experienced by nondiapause stages; and (2) the thermal habitat of the growing season is more divergent at high compared with low temperatures with respect to daily mean temperatures. Geographic variation in thermal reaction norms for development time was greater in a warm compared with a cool rearing treatment, mirroring the geographic trend in daily mean temperature. Geographic variation in body size was unrelated to geographic temperature variation, but was also unrelated to development time or fecundity. Our results suggest that proper interpretation of geographic trends may often require detailed knowledge of life-history timing.
Collapse
|
|
18 |
27 |