51
|
Wiedemann D, Kocher A, Stelzmüller ME, Vadehra A, Mahr S, Laufer G, Ehrlich M. Effect of cerebral protection strategy on outcome of patients with Stanford type A aortic dissection. Thorac Cardiovasc Surg 2013. [DOI: 10.1055/s-0032-1332429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
52
|
Henis YI, Marom B, Shapira KE, Knaus P, Ehrlich M. TGF-Beta and Bmp Receptors: Distinct Modes of Oligomeric Interactions and Implications for Signaling. Biophys J 2013. [DOI: 10.1016/j.bpj.2012.11.3393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
53
|
Elis E, Ehrlich M, Prizan-Ravid A, Laham-Karam N, Bacharach E. p12 tethers the murine leukemia virus pre-integration complex to mitotic chromosomes. PLoS Pathog 2012; 8:e1003103. [PMID: 23300449 PMCID: PMC3531515 DOI: 10.1371/journal.ppat.1003103] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 11/09/2012] [Indexed: 01/14/2023] Open
Abstract
The p12 protein of the murine leukemia virus (MLV) is a constituent of the pre-integration complex (PIC) but its function in this complex remains unknown. We developed an imaging system to monitor MLV PIC trafficking in live cells. This allowed the visualization of PIC docking to mitotic chromosomes and its release upon exit from mitosis. Docking occurred concomitantly with nuclear envelope breakdown and was impaired for PICs of viruses with lethal p12 mutations. Insertion of a heterologous chromatin binding module into p12 of one of these mutants restored PICs attachment to the chromosomes and partially rescued virus replication. Capsid dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants. Altogether, these results explain, in part, MLV restriction to dividing cells and reveal a role for p12 as a factor that tethers MLV PIC to mitotic chromosomes. Retroviruses, including the murine leukemia virus (MLV), reverse transcribe their RNA genome to a DNA copy, which travels from the cytoplasm to the nucleus as part of a ‘pre-integration complex’ (PIC), to integrate into cellular chromosomes. The viral p12 protein is a constituent of the MLV PIC, but its function in this complex has remained unknown. We developed a real-time imaging system to detect p12 and MLV PICs in live cells. This revealed that p12 tethers the MLV PIC to mitotic chromosomes. Accordingly, PICs derived from viruses with specific lethal mutations in p12 failed to attach to the chromosomes, and insertion of a heterologous chromatin binding module into p12 restored PICs attachment to the chromosomes and rescued virus replication. In addition, docking of wild type PICs to chromosomes coincided with nuclear envelope breakdown during mitosis, and detachment occurred upon exit from mitosis. Capsid - another viral component of the PIC - dissociated from wild type PICs in mitotic cells but remained associated with PICs harboring tethering-negative p12 mutants, suggesting interplay between these two proteins in regulating targeting of mitotic chromosomes by the PIC. These results highlight steps contributing to the high tropism of MLV to dividing cells.
Collapse
|
54
|
Cabilly Y, Barbi M, Geva M, Marom L, Chetrit D, Ehrlich M, Elroy-Stein O. Poor cerebral inflammatory response in eIF2B knock-in mice: implications for the aetiology of vanishing white matter disease. PLoS One 2012; 7:e46715. [PMID: 23056417 PMCID: PMC3464276 DOI: 10.1371/journal.pone.0046715] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/03/2012] [Indexed: 01/27/2023] Open
Abstract
Background Mutations in any of the five subunits of eukaryotic translation initiation factor 2B (eIF2B) can lead to an inherited chronic-progressive fatal brain disease of unknown aetiology termed leucoencephalopathy with vanishing white matter (VWM). VWM is one of the most prevalent childhood white matter disorders, which markedly deteriorates after inflammation or exposure to other stressors. eIF2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. A previous study demonstrated that Eif2b5R132H/R132H mice suffer delayed white matter development and fail to recover from cuprizone-induced demyelination, although eIF2B enzymatic activity in the mutant brain is reduced by merely 20%. Principal Findings Poor astrogliosis was observed in Eif2b5R132H/R132H mice brain in response to systemic stress induced by peripheral injections of lipopolysaccharide (LPS). Even with normal rates of protein synthesis under normal conditions, primary astrocytes and microglia isolated from mutant brains fail to adequately synthesise and secrete cytokines in response to LPS treatment despite proper induction of cytokine mRNAs. Conclusions The mild reduction in eIF2B activity prevents the appropriate increase in translation rates upon exposure to the inflammatory stressor LPS. The data underscore the importance of fully-functional translation machinery for efficient cerebral inflammatory response upon insults. It highlights the magnitude of proficient translation rates in restoration of brain homeostasis via microglia-astrocyte crosstalk. This study is the first to suggest the involvement of microglia in the pathology of VWM disease. Importantly, it rationalises the deterioration of clinical symptoms upon exposure of VWM patients to physiological stressors and provides possible explanation for their high phenotypic variability.
Collapse
|
55
|
Vernitsky H, Rechavi O, Rainy N, Besser MJ, Nagar M, Schachter J, Lerenthal Y, Ehrlich M, Kloog Y, Goldstein I. Ras Oncoproteins Transfer from Melanoma Cells to T Cells and Modulate Their Effector Functions. THE JOURNAL OF IMMUNOLOGY 2012; 189:4361-70. [DOI: 10.4049/jimmunol.1200019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
56
|
Shapira KE, Gross A, Ehrlich M, Henis YI. Coated pit-mediated endocytosis of the type I transforming growth factor-β (TGF-β) receptor depends on a di-leucine family signal and is not required for signaling. J Biol Chem 2012; 287:26876-89. [PMID: 22707720 DOI: 10.1074/jbc.m112.362848] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The roles of transforming growth factor-β (TGF-β) receptor endocytosis in signaling have been investigated in numerous studies, mainly through the use of endocytosis inhibitory treatments, yielding conflicting results. Two potential sources for these discrepancies were the pleiotropic effects of a general blockade of specific internalization pathways and the scarce information on the regulation of the endocytosis of the signal-transducing type I TGF-β receptor (TβRI). Here, we employed extracellularly tagged myc-TβRI (wild type, truncation mutants, and a series of endocytosis-defective and endocytosis-enhanced mutants) to directly investigate the relationship between TβRI endocytosis and signaling. Our findings indicate that TβRI is targeted for constitutive clathrin-mediated endocytosis via a di-leucine (Leu(180)-Ile(181)) signal and an acidic cluster motif. Using Smad-dependent transcriptional activation assays and following Smad2/3 nuclear translocation in response to TGF-β stimulation, we show that TβRI endocytosis is dispensable for TGF-β signaling and may play a role in signal termination. Alanine replacement of Leu(180)-Ile(181) led to partial constitutive activation of TβRI, resulting in part from its retention at the plasma membrane and in part from potential alterations of TβRI regulatory interactions in the vicinity of the mutated residues.
Collapse
|
57
|
Schmukler E, Shai B, Ehrlich M, Pinkas-Kramarski R. Neuregulin promotes incomplete autophagy of prostate cancer cells that is independent of mTOR pathway inhibition. PLoS One 2012; 7:e36828. [PMID: 22606295 PMCID: PMC3351469 DOI: 10.1371/journal.pone.0036828] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022] Open
Abstract
Background Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with cell death. Methodology/Principal Findings In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC), inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC. Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited. Conclusions/Significance Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR inhibition.
Collapse
|
58
|
Moskovich O, Herzog LO, Ehrlich M, Fishelson Z. Caveolin-1 and dynamin-2 are essential for removal of the complement C5b-9 complex via endocytosis. J Biol Chem 2012; 287:19904-15. [PMID: 22528500 DOI: 10.1074/jbc.m111.333039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The complement system, an important element of both innate and adaptive immunity, is executing complement-dependent cytotoxicity (CDC) with its C5b-9 protein complex that is assembled on cell surfaces and transmits to the cell death signals. In turn, cells, and in particular cancer cells, protect themselves from CDC in various ways. Thus, cells actively remove the C5b-9 complexes from their plasma membrane by endocytosis. Inhibition of clathrin by transfection with shRNA or of EPS-15 with a dominant negative plasmid had no effect on C5b-9 endocytosis and on cell death. In contrast, inhibition of caveolin-1 (Cav-1) by transfection with an shRNA or a dominant negative plasmid sensitized cells to CDC and inhibited C5b-9 endocytosis. Similarly, both inhibition of dynamin-2 by transfection with a dominant negative plasmid or by treatment with Dynasore reduced C5b-9 endocytosis and enhanced CDC. C5b-9 endocytosis was also disrupted by pretreatment of the cells with methyl-β-cyclodextrin or Filipin III, hence implicating membrane cholesterol in the process. Analyses by confocal microscopy demonstrated co-localization of Cav-1-EGFP with C5b-9 at the plasma membrane, in early endosomes, at the endocytic recycling compartment and in secreted vesicles. Further investigation of the process of C5b-9 removal by exo-vesiculation demonstrated that inhibition of Cav-1 and cholesterol depletion abrogated C5b-9 exo-vesiculation, whereas, over-expression of Cav-1 increased C5b-9 exo-vesiculation. Our results show that Cav-1 and dynamin-2 (but not clathrin) support cell resistance to CDC, probably by facilitating purging of the C5b-9 complexes by endocytosis and exo-vesiculation.
Collapse
|
59
|
Leidenroth A, Sorte HS, Gilfillan G, Ehrlich M, Lyle R, Hewitt J. P80 Diagnosis by sequencing: correction of misdiagnosis from FSHD2 to LGMD2A by whole exome analysis. Neuromuscul Disord 2012. [DOI: 10.1016/s0960-8966(12)70088-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
60
|
Ehrlich M, Gutman O, Knaus P, Henis YI. Oligomeric interactions of TGF-β and BMP receptors. FEBS Lett 2012; 586:1885-96. [PMID: 22293501 DOI: 10.1016/j.febslet.2012.01.040] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 01/15/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) cytokines participate in a multiplicity of ways in the regulation of numerous physiological and pathological processes. Their wide-ranging biological functions are controlled by several mechanisms, including regulation of transcription, complex formation among the signaling receptors (oligomerization) and with co-receptors, binding of the receptors to scaffolding proteins or their targeting to specific membrane domains. Here, we address the generation of TGF-β and BMP receptor homo- and hetero-oligomers and its roles as a mechanism capable of fast regulation of signaling by these crucial cytokines. We examine the available biochemical, biophysical and structural evidence for the ternary structure of these complexes, and the possible roles of homomeric and heteromeric receptor oligomers in signaling.
Collapse
|
61
|
Nachmias D, Sklan EH, Ehrlich M, Bacharach E. Human immunodeficiency virus type 1 envelope proteins traffic toward virion assembly sites via a TBC1D20/Rab1-regulated pathway. Retrovirology 2012; 9:7. [PMID: 22260459 PMCID: PMC3283470 DOI: 10.1186/1742-4690-9-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 01/08/2023] Open
Abstract
Background The cellular activity of many factors and pathways is required to execute the complex replication cycle of the human immunodeficiency virus type 1 (HIV-1). To reveal these cellular components, several extensive RNAi screens have been performed, listing numerous 'HIV-dependency factors'. However, only a small overlap between these lists exists, calling for further evaluation of the relevance of specific factors to HIV-1 replication and for the identification of additional cellular candidates. TBC1D20, the GTPase-activating protein (GAP) of Rab1, regulates endoplasmic reticulum (ER) to Golgi trafficking, was not identified in any of these screens, and its involvement in HIV-1 replication cycle is tested here. Findings Excessive TBC1D20 activity perturbs the early trafficking of HIV-1 envelope protein through the secretory pathway. Overexpression of TBC1D20 hampered envelope processing and reduced its association with detergent-resistant membranes, entailing a reduction in infectivity of HIV-1 virion like particles (VLPs). Conclusions These findings add TBC1D20 to the network of host factors regulating HIV replication cycle.
Collapse
|
62
|
Eisenberg S, Wolfenson H, Berkovich R, Prior IA, Ehrlich M, Klafter J, Urbakh M, Henis YI. Quantitative FRAP Analysis Demonstrates that Raft Protein Clustering Alters N-Ras Depalmitoylation, Membrane Interactions and Activation Pattern. Biophys J 2012. [DOI: 10.1016/j.bpj.2011.11.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
63
|
Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A. Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:413-23. [PMID: 21736652 DOI: 10.1111/j.1365-313x.2011.04696.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular leucine-rich repeat (LRR) receptor-like proteins (RLPs) represent a unique class of cell-surface receptors, as they lack a functional cytoplasmic domain. Our knowledge of how RLPs that do not contain a kinase or Toll domain function is very limited. The tomato RLP receptor LeEix2 signals to induce defense responses mediated by the fungal protein ethylene-inducing xylanase (EIX). The movement of FYVE-positive endosomes before and after EIX application was examined using spinning disc confocal microscopy. We found that while FYVE-positive endosomes generally observe a random movement pattern, following EIX application a subpopulation of FYVE-positive endosomes follow a directional movement pattern. Further, cellular endosomes travel greater distances at higher speeds following EIX application. Time-course experiments conducted with specific inhibitors demonstrate the involvement of endosomal signaling in EIX-triggered defense responses. Abolishing the existence of endosomes or the endocytic event prevented EIX-induced signaling. Endocytosis/endosome inhibitors, such as Dynasore or 1-butanol, inhibit EIX-induced signaling. Moreover, treatment with Endosidin1, which inhibits an early step in plasma membrane/endosome trafficking, enhances the induction of defense responses by EIX. Our data indicate a distinct endosomal signaling mechanism for induction of defense responses in this RLP system.
Collapse
|
64
|
Berkovich R, Wolfenson H, Eisenberg S, Ehrlich M, Weiss M, Klafter J, Henis YI, Urbakh M. Accurate quantification of diffusion and binding kinetics of non-integral membrane proteins by FRAP. Traffic 2011; 12:1648-57. [PMID: 21810156 DOI: 10.1111/j.1600-0854.2011.01264.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Non-integral membrane proteins frequently act as transduction hubs in vital signaling pathways initiated at the plasma membrane (PM). Their biological activity depends on dynamic interactions with the PM, which are governed by their lateral and cytoplasmic diffusion and membrane binding/unbinding kinetics. Accurate quantification of the multiple kinetic parameters characterizing their membrane interaction dynamics has been challenging. Despite a fair number of approximate fitting functions for analyzing fluorescence recovery after photobleaching (FRAP) data, no approach was able to cope with the full diffusion-exchange problem. Here, we present an exact solution and matlab fitting programs for FRAP with a stationary Gaussian laser beam, allowing simultaneous determination of the membrane (un)binding rates and the diffusion coefficients. To reduce the number of fitting parameters, the cytoplasmic diffusion coefficient is determined separately. Notably, our equations include the dependence of the exchange kinetics on the distribution of the measured protein between the PM and the cytoplasm, enabling the derivation of both k(on) and k(off) without prior assumptions. After validating the fitting function by computer simulations, we confirm the applicability of our approach to live-cell data by monitoring the dynamics of GFP-N-Ras mutants under conditions with different contributions of lateral diffusion and exchange to the FRAP kinetics.
Collapse
|
65
|
Czerny M, Stohr S, Aymard T, Sodeck GH, Ehrlich M, Dziodzio T, Juraszek A, Carrel T. Effect on false-lumen status of a combined vascular and endovascular approach for the treatment of acute type A aortic dissection. Eur J Cardiothorac Surg 2011; 41:409-13. [DOI: 10.1016/j.ejcts.2011.05.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
66
|
Barhoom S, Kaur J, Cooperman BS, Smorodinsky NI, Smilansky Z, Ehrlich M, Elroy-Stein O. Quantitative single cell monitoring of protein synthesis at subcellular resolution using fluorescently labeled tRNA. Nucleic Acids Res 2011; 39:e129. [PMID: 21795382 PMCID: PMC3201886 DOI: 10.1093/nar/gkr601] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have developed a novel technique of using fluorescent tRNA for translation monitoring (FtTM). FtTM enables the identification and monitoring of active protein synthesis sites within live cells at submicron resolution through quantitative microscopy of transfected bulk uncharged tRNA, fluorescently labeled in the D-loop (fl-tRNA). The localization of fl-tRNA to active translation sites was confirmed through its co-localization with cellular factors and its dynamic alterations upon inhibition of protein synthesis. Moreover, fluorescence resonance energy transfer (FRET) signals, generated when fl-tRNAs, separately labeled as a FRET pair occupy adjacent sites on the ribosome, quantitatively reflect levels of protein synthesis in defined cellular regions. In addition, FRET signals enable detection of intra-populational variability in protein synthesis activity. We demonstrate that FtTM allows quantitative comparison of protein synthesis between different cell types, monitoring effects of antibiotics and stress agents, and characterization of changes in spatial compartmentalization of protein synthesis upon viral infection.
Collapse
|
67
|
Ivanovic T, Boulant S, Ehrlich M, Demidenko AA, Arnold MM, Kirchhausen T, Nibert ML. Recruitment of cellular clathrin to viral factories and disruption of clathrin-dependent trafficking. Traffic 2011; 12:1179-95. [PMID: 21736684 DOI: 10.1111/j.1600-0854.2011.01233.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral factories of mammalian reovirus (MRV) are cytoplasmic structures that serve as sites of viral genome replication and particle assembly. A 721-aa MRV non-structural protein, µNS, forms the factory matrix and recruits other viral proteins to these structures. In this report, we show that µNS contains a conserved C-proximal sequence (711-LIDFS-715) that is similar to known clathrin-box motifs and is required for recruitment of clathrin to viral factories. Clathrin recruitment by µNS occurs independently of infecting MRV particles or other MRV proteins. Ala substitution for a single Leu residue (mutation L711A) within the putative clathrin-binding motif of µNS inhibits clathrin recruitment, but does not prevent formation or expansion of viral factories. Notably, clathrin-dependent cellular functions, including both endocytosis and secretion, are disrupted in cells infected with MRV expressing wild-type, but not L711A, µNS. These results identify µNS as a novel adaptor-like protein that recruits cellular clathrin to viral factories, disrupting normal functions of clathrin in cellular membrane trafficking. To our knowledge, this is the only viral or bacterial protein yet shown to interfere with clathrin functions in this manner. The results additionally establish a new approach for studies of clathrin functions, based on µNS-mediated sequestration.
Collapse
|
68
|
Barkan B, Kloog Y, Ehrlich M. Phenotypic reversion of invasive neurofibromin-deficient schwannoma by FTS: Ras inhibition reduces BMP4/Erk/Smad signaling. Mol Cancer Ther 2011; 10:1317-26. [PMID: 21632464 DOI: 10.1158/1535-7163.mct-10-1087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromin-deficient (Nf1(-/-)) malignant peripheral nerve sheath tumors (MPNST) are highly invasive, refractory to chemotherapy, and characterized by overactivated Ras. Ras activates mitogenic pathways and regulates morphogenic programs--such as those induced by bone morphogenetic proteins (BMP) and TGF-β. The role of such a cross-talk in determining the phenotype and transformation potential of MPNSTs is unknown. Here, we used MPNST cell lines and selective Ras inhibition with S-trans,trans-farnesylthiosalicylic-acid (FTS; salirasib) in conjunction with specific inhibitors of TGF-β and BMP signaling. FTS perturbed signaling of BMP4 and TGF-β1 to Smad-dependent and Erk-dependent pathways. Furthermore, FTS inhibited motility and spreading, reduced the gelatinase secretion, eliminated the expression and activation of regulators of cell-matrix interaction, and altered gene expression. These phenomena are indicative of a phenotypic reversion of NF1-deficient cells by FTS. Inhibition of BMP4 and TGF-β by noggin and SB-431542, respectively, mimicked the FTS-mediated effects on adhesion, spreading, and cell morphology. This strongly suggests that a cross-talk among TGF-β superfamily ligands and Ras plays a significant role in the transformation of NF1(-/-) MPNSTs. Our results support the therapeutic potential of FTS, in conjuncture with BMP and TGF-β pathway inhibitors, toward the inhibition of mitogenic and morphogenic signaling pathways and the alleviation of NF1 symptoms.
Collapse
|
69
|
Dumfarth J, Domaszewski F, Greitbauer M, Zimpfer D, Stampfl P, Lammer J, Czerny M, Grimm M, Laufer G, Ehrlich M. Endovascular treatment in acute traumatic thoracic aortic lesions. Thorac Cardiovasc Surg 2011. [DOI: 10.1055/s-0030-1269329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
70
|
Dumfarth J, Michel M, Schmidli J, Zimpfer D, Grimm M, Ehrlich M, Laufer G, Carrel T, Czerny M. Mechanisms of failure and outcome of secondary surgical interventions after thoracic endovascular aortic repair. Thorac Cardiovasc Surg 2011. [DOI: 10.1055/s-0030-1269219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
71
|
Chetrit D, Barzilay L, Horn G, Bielik T, Smorodinsky NI, Ehrlich M. Negative regulation of the endocytic adaptor disabled-2 (Dab2) in mitosis. J Biol Chem 2010; 286:5392-403. [PMID: 21097498 DOI: 10.1074/jbc.m110.161851] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitotic cells undergo extensive changes in shape and size through the altered regulation and function of their membrane trafficking machinery. Disabled 2 (Dab2), a multidomain cargo-specific endocytic adaptor and a mediator of signal transduction, is a potential integrator of trafficking and signaling. Dab2 binds effectors of signaling and trafficking that localize to different intracellular compartments. Thus, differential localization is a putative regulatory mechanism of Dab2 function. Furthermore, Dab2 is phosphorylated in mitosis and is thus regulated in the cell cycle. However, a detailed description of the intracellular localization of Dab2 in the different phases of mitosis and an understanding of the functional consequences of its phosphorylation are lacking. Here, we show that Dab2 is progressively displaced from the membrane in mitosis. This phenomenon is paralleled by a loss of co-localization with clathrin. Both phenomena culminate in metaphase/anaphase and undergo partial recovery in cytokinesis. Treatment with 2-methoxyestradiol, which arrests cells at the spindle assembly checkpoint, induces the same effects observed in metaphase cells. Moreover, 2-methoxyestradiol also induced Dab2 phosphorylation and reduced Dab2/clathrin interactions, endocytic vesicle motility, clathrin exchange dynamics, and the internalization of a receptor endowed with an NPXY endocytic signal. Serine/threonine to alanine mutations, of residues localized to the central region of Dab2, attenuated its phosphorylation, reduced its membrane displacement, and maintained its endocytic abilities in mitosis. We propose that the negative regulation of Dab2 is part of an accommodation of the cell to the altered physicochemical conditions prevalent in mitosis, aimed at allowing endocytic activity throughout the cell cycle.
Collapse
|
72
|
Tsumagari K, Chen D, Hackman JR, Bossler AD, Ehrlich M. FSH dystrophy and a subtelomeric 4q haplotype: a new assay and associations with disease. J Med Genet 2010; 47:745-51. [PMID: 20710047 DOI: 10.1136/jmg.2009.076703] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease associated with contraction of arrays of tandem 3.3-kb units (D4Z4) on subtelomeric 4q. Disease-linked arrays usually have fewer than 11 repeat units. Equally short D4Z4 arrays at subtelomeric 10q are not linked to FSHD. The newly described 4qA161 haplotype, which is more prevalent in pathogenic 4q alleles, involves sequences in and near D4Z4. METHODS We developed two new assays for 4qA161, which are based upon direct sequencing of PCR products or detecting restriction fragment length polymorphisms. They were used to analyse single nucleotide polymorphisms (SNPs) indicative of 4q161 alleles. RESULTS All (35/35) FSHD patients had one or two 4qA161 alleles (60% or 40%, respectively). In contrast, 46% (21/46) of control individuals had no 4qA161 allele (p<10(-4)), and 26% had homozygous 4qB163 alleles. CONCLUSIONS Our results from a heterogeneous population are consistent with the previously described association of the 4qA161 haplotype with FSHD, but a causal association with pathogenesis is uncertain. In addition, we found that haplotype analysis is complicated by the presence of minor 10q alleles. Nonetheless, our sequencing assay for the 4qA161allele can enhance molecular diagnosis of FSHD, including prenatal diagnosis, and is simpler to perform than the previously described assay.
Collapse
|
73
|
Danielli A, Porat N, Ehrlich M, Arie A. Rapid Homogeneous Detection of Biological Assays Using Magnetic Modulation Biosensing System. J Vis Exp 2010:1935. [DOI: 10.3791/1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
74
|
Juraszek A, Bayer G, Dziodzio T, Holfeld J, Dumfarth J, Gottardi R, Ehrlich M, Grimm M, Czerny M. Histopathologic evaluation of the intraoperative specimens of the entire aorta. Thorac Cardiovasc Surg 2010. [DOI: 10.1055/s-0029-1247026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
75
|
Danielli A, Porat N, Ehrlich M, Arie A. Magnetic Modulation Biosensing for Rapid and Homogeneous Detection of Biological Targets at Low Concentrations. Curr Pharm Biotechnol 2010; 11:128-37. [DOI: 10.2174/138920110790725375] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|