1
|
López-Sanz D, Bruña R, Garcés P, Martín-Buro MC, Walter S, Delgado ML, Montenegro M, López Higes R, Marcos A, Maestú F. Functional Connectivity Disruption in Subjective Cognitive Decline and Mild Cognitive Impairment: A Common Pattern of Alterations. Front Aging Neurosci 2017; 9:109. [PMID: 28484387 PMCID: PMC5399035 DOI: 10.3389/fnagi.2017.00109] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/04/2017] [Indexed: 11/28/2022] Open
Abstract
Functional connectivity (FC) alterations represent a key feature in Alzheimer's Disease (AD) and provide a useful tool to characterize and predict the course of the disease. Those alterations have been also described in Mild Cognitive Impairment (MCI), a prodromal stage of AD. There is a growing interest in detecting AD pathology in the brain in the very early stages of the disorder. Subjective Cognitive Decline (SCD) could represent a preclinical asymptomatic stage of AD but very little is known about this population. In the present work we assessed whether FC disruptions are already present in this stage, and if they share any spatial distribution properties with MCI alterations (a condition known to be highly related to AD). To this end, we measured electromagnetic spontaneous activity with MEG in 39 healthy control elders, 41 elders with SCD and 51 MCI patients. The results showed FC alterations in both SCD and MCI compared to the healthy control group. Interestingly, both groups exhibited a very similar spatial pattern of altered links: a hyper-synchronized anterior network and a posterior network characterized by a decrease in FC. This decrease was more pronounced in the MCI group. These results highlight that elders with SCD present FC alterations. More importantly, those disruptions affected AD typically related areas and showed great overlap with the alterations exhibited by MCI patients. These results support the consideration of SCD as a preclinical stage of AD and may indicate that FC alterations appear very early in the course of the disease.
Collapse
|
Journal Article |
8 |
89 |
2
|
Bruña R, Maestú F, Pereda E. Phase locking value revisited: teaching new tricks to an old dog. J Neural Eng 2018; 15:056011. [PMID: 29952757 DOI: 10.1088/1741-2552/aacfe4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Despite the increase in calculation power over the last few decades, the estimation of brain connectivity is still a tedious task. The high computational cost of the algorithms escalates with the square of the number of signals evaluated, usually in the range of thousands. In this work we propose a re-formulation of a widely used algorithm that allows the estimation of whole brain connectivity in much smaller times. APPROACH We start from the original implementation of phase locking value (PLV) and re-formulated it in a computationally very efficient way. What is more, this formulation stresses its strong similarity with coherence, which we used to introduce two new metrics insensitive to zero lag synchronization: the imaginary part of PLV (iPLV) and its corrected counterpart (ciPLV). MAIN RESULTS The new implementation of PLV avoids some highly CPU-expensive operations and achieves a 100-fold speedup over the original algorithm. The new derived metrics were highly robust in the presence of volume conduction. Moreover, ciPLV proved capable of ignoring zero-lag connectivity, while correctly estimating nonzero-lag connectivity. SIGNIFICANCE Our implementation of PLV makes it possible to calculate whole-brain connectivity in much shorter times. The results of the simulations using ciPLV suggest that this metric is ideal to measure synchronization in the presence of volume conduction or source leakage effects.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
79 |
3
|
López ME, Bruña R, Aurtenetxe S, Pineda-Pardo JÁ, Marcos A, Arrazola J, Reinoso AI, Montejo P, Bajo R, Maestú F. Alpha-band hypersynchronization in progressive mild cognitive impairment: a magnetoencephalography study. J Neurosci 2014; 34:14551-9. [PMID: 25355209 PMCID: PMC6608420 DOI: 10.1523/jneurosci.0964-14.2014] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 12/23/2022] Open
Abstract
People with mild cognitive impairment (MCI) show a high risk to develop Alzheimer's disease (AD; Petersen et al., 2001). Nonetheless, there is a lack of studies about how functional connectivity patterns may distinguish between progressive (pMCI) and stable (sMCI) MCI patients. To examine whether there were differences in functional connectivity between groups, MEG eyes-closed recordings from 30 sMCI and 19 pMCI subjects were compared. The average conversion time of pMCI was 1 year, so they were considered as fast converters. To this end, functional connectivity in different frequency bands was assessed with phase locking value in source space. Then the significant differences between both groups were correlated with neuropsychological scores and entorhinal, parahippocampal, and hippocampal volumes. Both groups did not differ in age, gender, or educational level. pMCI patients obtained lower scores in episodic and semantic memory and also in executive functioning. At the structural level, there were no differences in hippocampal volume, although some were found in left entorhinal volume between both groups. Additionally, pMCI patients exhibit a higher synchronization in the alpha band between the right anterior cingulate and temporo-occipital regions than sMCI subjects. This hypersynchronization was inversely correlated with cognitive performance, both hippocampal volumes, and left entorhinal volume. The increase in phase synchronization between the right anterior cingulate and temporo-occipital areas may be predictive of conversion from MCI to AD.
Collapse
|
research-article |
11 |
75 |
4
|
López-Sanz D, Bruña R, Garcés P, Camara C, Serrano N, Rodríguez-Rojo IC, Delgado ML, Montenegro M, López-Higes R, Yus M, Maestú F. Alpha band disruption in the AD-continuum starts in the Subjective Cognitive Decline stage: a MEG study. Sci Rep 2016; 6:37685. [PMID: 27883082 PMCID: PMC5121589 DOI: 10.1038/srep37685] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/01/2016] [Indexed: 11/09/2022] Open
Abstract
The consideration of Subjective Cognitive Decline (SCD) as a preclinical stage of AD remains still a matter of debate. Alpha band alterations represent one of the most significant changes in the electrophysiological profile of AD. In particular, AD patients exhibit reduced alpha relative power and frequency. We used alpha band activity measured with MEG to study whether SCD and MCI elders present these electrophysiological changes characteristic of AD, and to determine the evolution of the observed alterations across AD spectrum. The total sample consisted of 131 participants: 39 elders without SCD, 41 elders with SCD and 51 MCI patients. All of them underwent MEG and MRI scans and neuropsychological assessment. SCD and MCI patients exhibited a similar reduction in alpha band activity compared with the no SCD group. However, only MCI patients showed a slowing in their alpha peak frequency compared with both SCD and no SCD. These changes in alpha band were related to worse cognition. Our results suggest that AD-related alterations may start in the SCD stage, with a reduction in alpha relative power. It is later, in the MCI stage, where the slowing of the spectral profile takes place, giving rise to objective deficits in cognitive functioning.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
5
|
Cuesta P, Garcés P, Castellanos NP, López ME, Aurtenetxe S, Bajo R, Pineda-Pardo JA, Bruña R, Marín AG, Delgado M, Barabash A, Ancín I, Cabranes JA, Fernandez A, del Pozo F, Sancho M, Marcos A, Nakamura A, Maestú F. Influence of the APOE ε4 Allele and Mild Cognitive Impairment Diagnosis in the Disruption of the MEG Resting State Functional Connectivity in Sources Space. ACTA ACUST UNITED AC 2015; 44:493-505. [DOI: 10.3233/jad-141872] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
10 |
48 |
6
|
Bruña R, Poza J, Gómez C, García M, Fernández A, Hornero R. Analysis of spontaneous MEG activity in mild cognitive impairment and Alzheimer's disease using spectral entropies and statistical complexity measures. J Neural Eng 2012; 9:036007. [PMID: 22571870 DOI: 10.1088/1741-2560/9/3/036007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Over the last few years, a considerable effort has been devoted to exploring new biomarkers. Nevertheless, a better understanding of brain dynamics is still required to optimize therapeutic strategies. In this regard, the characterization of mild cognitive impairment (MCI) is crucial, due to the high conversion rate from MCI to AD. However, only a few studies have focused on the analysis of magnetoencephalographic (MEG) rhythms to characterize AD and MCI. In this study, we assess the ability of several parameters derived from information theory to describe spontaneous MEG activity from 36 AD patients, 18 MCI subjects and 26 controls. Three entropies (Shannon, Tsallis and Rényi entropies), one disequilibrium measure (based on Euclidean distance ED) and three statistical complexities (based on Lopez Ruiz-Mancini-Calbet complexity LMC) were used to estimate the irregularity and statistical complexity of MEG activity. Statistically significant differences between AD patients and controls were obtained with all parameters (p < 0.01). In addition, statistically significant differences between MCI subjects and controls were achieved by ED and LMC (p < 0.05). In order to assess the diagnostic ability of the parameters, a linear discriminant analysis with a leave-one-out cross-validation procedure was applied. The accuracies reached 83.9% and 65.9% to discriminate AD and MCI subjects from controls, respectively. Our findings suggest that MCI subjects exhibit an intermediate pattern of abnormalities between normal aging and AD. Furthermore, the proposed parameters provide a new description of brain dynamics in AD and MCI.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
43 |
7
|
Pusil S, López ME, Cuesta P, Bruña R, Pereda E, Maestú F. Hypersynchronization in mild cognitive impairment: the ‘X’ model. Brain 2019; 142:3936-3950. [DOI: 10.1093/brain/awz320] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022] Open
Abstract
Hypersynchronization has been considered as a biomarker of synaptic dysfunction along the Alzheimeŕs disease continuum. In a longitudinal MEG study, Pusil et al. reveal changes in functional connectivity upon progression from MCI to Alzheimer’s disease. They propose the ‘X’ model to explain their findings, and suggest that hypersynchronization predicts conversion.
Collapse
|
|
6 |
43 |
8
|
Pineda-Pardo JA, Bruña R, Woolrich M, Marcos A, Nobre AC, Maestú F, Vidaurre D. Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. Neuroimage 2014; 101:765-77. [PMID: 25111472 PMCID: PMC4312351 DOI: 10.1016/j.neuroimage.2014.08.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 01/18/2023] Open
Abstract
Whole brain resting state connectivity is a promising biomarker that might help to obtain an early diagnosis in many neurological diseases, such as dementia. Inferring resting-state connectivity is often based on correlations, which are sensitive to indirect connections, leading to an inaccurate representation of the real backbone of the network. The precision matrix is a better representation for whole brain connectivity, as it considers only direct connections. The network structure can be estimated using the graphical lasso (GL), which achieves sparsity through l1-regularization on the precision matrix. In this paper, we propose a structural connectivity adaptive version of the GL, where weaker anatomical connections are represented as stronger penalties on the corresponding functional connections. We applied beamformer source reconstruction to the resting state MEG recordings of 81 subjects, where 29 were healthy controls, 22 were single-domain amnestic Mild Cognitive Impaired (MCI), and 30 were multiple-domain amnestic MCI. An atlas-based anatomical parcellation of 66 regions was obtained for each subject, and time series were assigned to each of the regions. The fiber densities between the regions, obtained with deterministic tractography from diffusion-weighted MRI, were used to define the anatomical connectivity. Precision matrices were obtained with the region specific time series in five different frequency bands. We compared our method with the traditional GL and a functional adaptive version of the GL, in terms of log-likelihood and classification accuracies between the three groups. We conclude that introducing an anatomical prior improves the expressivity of the model and, in most cases, leads to a better classification between groups. We propose an anatomy-driven method for functional connectivity estimation in MEG. Structural prior contributes to a better representation of the functional connectivity. The proposed method is shown to be useful as a biomarker for classification of MCI.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
41 |
9
|
López ME, Turrero A, Cuesta P, López-Sanz D, Bruña R, Marcos A, Gil P, Yus M, Barabash A, Cabranes JA, Maestú F, Fernández A. Searching for Primary Predictors of Conversion from Mild Cognitive Impairment to Alzheimer's Disease: A Multivariate Follow-Up Study. J Alzheimers Dis 2017; 52:133-43. [PMID: 27060953 DOI: 10.3233/jad-151034] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent proposals of diagnostic criteria within the healthy aging-Alzheimer's disease (AD) continuum stressed the role of biomarker information. More importantly, such information might be critical to predict those mild cognitive impairment (MCI) patients at a higher risk of conversion to AD. Usually, follow-up studies utilize a reduced number of potential markers although the conversion phenomenon may be deemed as multifactorial in essence. In addition, not only biological but also cognitive markers may play an important role. Considering this background, we investigated the role of cognitive reserve, cognitive performance in neuropsychological testing, hippocampal volumes, APOE genotype, and magnetoencephalography power sources to predict the conversion to AD in a sample of 33 MCI patients. MCIs were followed up during a 2-year period and divided into two subgroups according to their outcome: The "stable" MCI group (sMCI, 21 subjects) and the "progressive" MCI group (pMCI, 12 subjects). Baseline multifactorial information was submitted to a hierarchical logistic regression analysis to build a predictive model of conversion to AD. Results indicated that the combination of left hippocampal volume, occipital cortex theta power, and clock drawing copy subtest scores predicted conversion to AD with a 100% of sensitivity and 94.7% of specificity. According to these results it might be suggested that anatomical, cognitive, and neurophysiological markers may be considered as "first order" predictors of progression to AD, while APOE or cognitive reserve proxies might play a more secondary role.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
39 |
10
|
Dimitriadis SI, López ME, Bruña R, Cuesta P, Marcos A, Maestú F, Pereda E. How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters. Front Neurosci 2018; 12:306. [PMID: 29910704 PMCID: PMC5992286 DOI: 10.3389/fnins.2018.00306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022] Open
Abstract
Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α1:α2 and 94% for the iPLV in α2. Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.
Collapse
|
research-article |
7 |
38 |
11
|
López ME, Aurtenetxe S, Pereda E, Cuesta P, Castellanos NP, Bruña R, Niso G, Maestú F, Bajo R. Cognitive reserve is associated with the functional organization of the brain in healthy aging: a MEG study. Front Aging Neurosci 2014; 6:125. [PMID: 24982632 PMCID: PMC4056015 DOI: 10.3389/fnagi.2014.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023] Open
Abstract
The proportion of elderly people in the population has increased rapidly in the last century and consequently “healthy aging” is expected to become a critical area of research in neuroscience. Evidence reveals how healthy aging depends on three main behavioral factors: social lifestyle, cognitive activity, and physical activity. In this study, we focused on the role of cognitive activity, concentrating specifically on educational and occupational attainment factors, which were considered two of the main pillars of cognitive reserve (CR). Twenty-one subjects with similar rates of social lifestyle, physical and cognitive activity were selected from a sample of 55 healthy adults. These subjects were divided into two groups according to their level of CR; one group comprised subjects with high CR (9 members) and the other one contained those with low CR (12 members). To evaluate the cortical brain connectivity network, all participants were recorded by Magnetoencephalography (MEG) while they performed a memory task (modified version of the Sternberg's Task). We then applied two algorithms [Phase Locking Value (PLV) and Phase Lag Index (PLI)] to study the dynamics of functional connectivity. In response to the same task, the subjects with lower CR presented higher functional connectivity than those with higher CR. These results may indicate that participants with low CR needed a greater “effort” than those with high CR to achieve the same level of cognitive performance. Therefore, we conclude that CR contributes to the modulation of the functional connectivity patterns of the aging brain.
Collapse
|
Journal Article |
11 |
21 |
12
|
García-Alba J, Ramírez-Toraño F, Esteba-Castillo S, Bruña R, Moldenhauer F, Novell R, Romero-Medina V, Maestú F, Fernández A. Neuropsychological and neurophysiological characterization of mild cognitive impairment and Alzheimer's disease in Down syndrome. Neurobiol Aging 2019; 84:70-79. [PMID: 31518951 DOI: 10.1016/j.neurobiolaging.2019.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/03/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
Down syndrome (DS) has been considered a unique model for the investigation of Alzheimer's disease (AD) but intermediate stages in the continuum are poorly defined. Considering this, we investigated the neurophysiological (i.e., magnetoencephalography [MEG]) and neuropsychological patterns of mild cognitive impairment (MCI) and AD in middle-aged adults with DS. The sample was composed of four groups: Control-DS (n = 14, mean age 44.64 ± 3.30 years), MCI-DS (n = 14, 51.64 ± 3.95 years), AD-DS (n = 13, 53.54 ± 6.58 years), and Control-no-DS (healthy controls, n = 14, 45.21 ± 4.39 years). DS individuals were studied with neuropsychological tests and MEG, whereas the Control-no-DS group completed only the MEG session. Our results showed that the AD-DS group exhibited a significantly poorer performance as compared with the Control-DS group in all tests. Furthermore, this effect was crucially evident in AD-DS individuals when compared with the MCI-DS group in verbal and working memory abilities. In the neurophysiological domain, the Control-DS group showed a widespread increase of theta activity when compared with the Control-no-DS group. With disease progression, this increased theta was substituted by an augmented delta, accompanied with a reduction of alpha activity. Such spectral pattern-specifically observed in occipital, posterior temporal, cuneus, and precuneus regions-correlated with the performance in cognitive tests. This is the first MEG study in the field incorporating both neuropsychological and neurophysiological information, and demonstrating that this combination of markers is sensitive enough to characterize different stages along the AD continuum in DS.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
19 |
13
|
Hughes LE, Henson RN, Pereda E, Bruña R, López-Sanz D, Quinn AJ, Woolrich MW, Nobre AC, Rowe JB, Maestú F. Biomagnetic biomarkers for dementia: A pilot multicentre study with a recommended methodological framework for magnetoencephalography. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:450-462. [PMID: 31431918 PMCID: PMC6579903 DOI: 10.1016/j.dadm.2019.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction An increasing number of studies are using magnetoencephalography (MEG) to study dementia. Here we define a common methodological framework for MEG resting-state acquisition and analysis to facilitate the pooling of data from different sites. Methods Two groups of patients with mild cognitive impairment (MCI, n = 84) and healthy controls (n = 84) were combined from three sites, and site and group differences inspected in terms of power spectra and functional connectivity. Classification accuracy for MCI versus controls was compared across three different types of MEG analyses, and compared with classification based on structural MRI. Results The spectral analyses confirmed frequency-specific differences in patients with MCI, both in power and connectivity patterns, with highest classification accuracy from connectivity. Critically, site acquisition differences did not dominate the results. Discussion This work provides detailed protocols and analyses that are sensitive to cognitive impairment, and that will enable standardized data sharing to facilitate large-scale collaborative projects.
Collapse
|
Journal Article |
6 |
18 |
14
|
López-Sanz D, Bruña R, Delgado-Losada ML, López-Higes R, Marcos-Dolado A, Maestú F, Walter S. Electrophysiological brain signatures for the classification of subjective cognitive decline: towards an individual detection in the preclinical stages of dementia. Alzheimers Res Ther 2019; 11:49. [PMID: 31151467 PMCID: PMC6544924 DOI: 10.1186/s13195-019-0502-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/05/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) prevalence is rapidly growing as worldwide populations grow older. Available treatments have failed to slow down disease progression, thus increasing research focus towards early or preclinical stages of the disease. Subjective cognitive decline (SCD) is known to increase the risk of developing AD and several other negative outcomes. However, it is still very scarcely characterized and there is no neurophysiological study devoted to its individual classification which could improve targeted sample recruitment for clinical trials. METHODS Two hundred fifty-two older adults (70 healthy controls, 91 SCD, and 91 MCI) underwent a magnetoencephalography scan. Alpha relative power in the source space was employed to train a LASSO classifier and applied to distinguish between healthy controls and SCD. Moreover, MCI participants were used to further validate the previously trained algorithm. RESULTS The classifier was significantly associated to SCD with an AUC of 0.81 in the whole sample. After randomly splitting the sample in 2/3 for discovery and 1/3 for validation, the newly trained classifier was also able to correctly classify SCD individuals with an AUC of 0.75 in the validation sample. The regions selected by the algorithm included medial frontal, temporal, and occipital areas. The algorithm trained to select SCD individuals was also significantly associated to MCI diagnostic. CONCLUSIONS According to our results, magnetoencephalography could be a useful tool for distinguishing individuals with SCD and healthy older adults without cognitive concerns. Furthermore, our classifier showed good external validity, being not only successful for an unseen SCD sample, but also in a different population with MCI cases. This supports its utility in the context of preclinical dementia. These findings highlight the potential applications of electrophysiological techniques to improve sample recruitment at the individual level in the context of clinical trials.
Collapse
|
research-article |
6 |
15 |
15
|
de Frutos-Lucas J, Cuesta P, López-Sanz D, Peral-Suárez Á, Cuadrado-Soto E, Ramírez-Toraño F, Brown BM, Serrano JM, Laws SM, Rodríguez-Rojo IC, Verdejo-Román J, Bruña R, Delgado-Losada ML, Barabash A, López-Sobaler AM, López-Higes R, Marcos A, Maestú F. The relationship between physical activity, apolipoprotein E ε4 carriage, and brain health. Alzheimers Res Ther 2020; 12:48. [PMID: 32331531 PMCID: PMC7183121 DOI: 10.1186/s13195-020-00608-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuronal hyperexcitability and hypersynchrony have been described as key features of neurophysiological dysfunctions in the Alzheimer's disease (AD) continuum. Conversely, physical activity (PA) has been associated with improved brain health and reduced AD risk. However, there is controversy regarding whether AD genetic risk (in terms of APOE ε4 carriage) modulates these relationships. The utilization of multiple outcome measures within one sample may strengthen our understanding of this complex phenomenon. METHOD The relationship between PA and functional connectivity (FC) was examined in a sample of 107 healthy older adults using magnetoencephalography. Additionally, we explored whether ε4 carriage modulates this association. The correlation between FC and brain structural integrity, cognition, and mood was also investigated. RESULTS A relationship between higher PA and decreased FC (hyposynchrony) in the left temporal lobe was observed among all individuals (across the whole sample, in ε4 carriers, and in ε4 non-carriers), but its effects manifest differently according to genetic risk. In ε4 carriers, we report an association between this region-specific FC profile and preserved brain structure (greater gray matter volumes and higher integrity of white matter tracts). In this group, decreased FC also correlated with reduced anxiety levels. In ε4 non-carriers, this profile is associated with improved cognition (working and episodic memory). CONCLUSIONS PA could mitigate the increase in FC (hypersynchronization) that characterizes preclinical AD, being beneficial for all individuals, especially ε4 carriers.
Collapse
|
research-article |
5 |
14 |
16
|
Camara C, Warwick K, Bruña R, Aziz T, del Pozo F, Maestú F. A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease. J Med Syst 2015; 39:155. [PMID: 26385550 DOI: 10.1007/s10916-015-0328-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/18/2015] [Indexed: 12/27/2022]
Abstract
Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
13 |
17
|
Antón-Toro LF, Bruña R, Suárez-Méndez I, Correas Á, García-Moreno LM, Maestú F. Abnormal organization of inhibitory control functional networks in future binge drinkers. Drug Alcohol Depend 2021; 218:108401. [PMID: 33246710 DOI: 10.1016/j.drugalcdep.2020.108401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Adolescent Binge drinking has become an increasing health and social concern, which cause several detrimental consequences for brain integrity. However, research on neurophysiological traits of vulnerability for binge drinking predisposition is limited at this time. In this work, we conducted a two-year longitudinal study with magnetoencephalography (MEG) over a cohort of initially alcohol-naive adolescents with the purpose of characterize inhibitory cortical networks' anomalies prior to alcohol consumption onset in those youths who will transit into binge drinkers years later. METHODS Sixty-seven participant's inhibitory functional networks, and dysexecutive/impulsivity traits were measured by means of inhibitory task (go/no-go) and questionnaires battery. After a follow-up period of two years, we evaluated their alcohol consumption habits, sub-dividing them in two groups according to their alcohol intake patterns: future binge drinkers (fBD): n = 22; future Light/non-drinkers (fLD): n = 17. We evaluated whole-brain and seed-based functional connectivity profiles, as well as its correlation with impulsive and dysexecutive behaviours, searching for early abnormalities before consumption onset. RESULTS For the first time, abnormalities in MEG functional networks and higher dysexecutive and impulsivity profiles were detected in alcohol-naïve adolescents who two years later became binge drinkers. Concretely, fBD exhibit a distinctive pattern of beta band hyperconnectivity among crucial regions of inhibitory control networks, positively correlated with behavioral traits and future alcohol intake rate. CONCLUSIONS These findings strongly support the idea of early neurobiological vulnerabilities for substances consumption initiation, with inhibitory functional networks' abnormalities as a relevant neurophysiological marker of subjects at risk- we hypothesize this profile is due to neurodevelopmental and neurobiological differences involving cognitive control networks and neurotransmission pathways.
Collapse
|
|
4 |
13 |
18
|
Cohen AD, Bruña R, Chang YF, Cheng Y, Doman J, Huppert T, Kim T, Maestu F, Roush RE, Snitz BE, Becker JT. Connectomics in Brain Aging and Dementia - The Background and Design of a Study of a Connectome Related to Human Disease. Front Aging Neurosci 2021; 13:669490. [PMID: 34690734 PMCID: PMC8530182 DOI: 10.3389/fnagi.2021.669490] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The natural history of Alzheimer’s Disease (AD) includes significant alterations in the human connectome, and this disconnection results in the dementia of AD. The organizing principle of our research project is the idea that the expression of cognitive dysfunction in the elderly is the result of two independent processes — the neuropathology associated with AD, and second the neuropathological changes of cerebrovascular disease. Synaptic loss, senile plaques, and neurofibrillary tangles are the functional and diagnostic hallmarks of AD, but it is the structural changes as a consequence of vascular disease that reduce brain reserve and compensation, resulting in an earlier expression of the clinical dementia syndrome. This work is being completed under the auspices of the Human Connectome Project (HCP). We have achieved an equal representation of Black individuals (vs. White individuals) and enrolled 60% Women. Each of the participants contributes demographic, behavioral and laboratory data. We acquire data relative to vascular risk, and the participants also undergo in vivo amyloid imaging, and magnetoencephalography (MEG). All of the data are publicly available under the HCP guidelines using the Connectome Coordinating Facility and the NIMH Data Archive. Locally, we use these data to address specific questions related to structure, function, AD, aging and vascular disease in multi-modality studies leveraging the differential advantages of magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), MEG, and in vivo beta amyloid imaging.
Collapse
|
|
4 |
13 |
19
|
Serrano N, López-Sanz D, Bruña R, Garcés P, Rodríguez-Rojo IC, Marcos A, Crespo DP, Maestú F. Spatiotemporal Oscillatory Patterns During Working Memory Maintenance in Mild Cognitive Impairment and Subjective Cognitive Decline. Int J Neural Syst 2019; 30:1950019. [DOI: 10.1142/s0129065719500199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Working memory (WM) is a crucial cognitive process and its disruption is among the earliest symptoms of Alzheimer’s disease. While alterations of the neuronal processes underlying WM have been evidenced in mild cognitive impairment (MCI), scarce literature is available in subjective cognitive decline (SCD). We used magnetoencephalography during a WM task performed by MCI [Formula: see text], SCD [Formula: see text] and healthy elders [Formula: see text] to examine group differences during the maintenance period (0–4000[Formula: see text]ms). Data were analyzed using time–frequency analysis and significant oscillatory differences were localized at the source level. Our results indicated significant differences between groups, mainly during the early maintenance (250–1250[Formula: see text]ms) in the theta, alpha and beta bands and in the late maintenance (2750–3750[Formula: see text]ms) in the theta band. MCI showed lower local synchronization in fronto-temporal cortical regions in the early theta–alpha window relative to controls [Formula: see text] and SCD [Formula: see text], and in the late theta window relative to controls [Formula: see text] and SCD [Formula: see text]. Early theta–alpha power was significantly correlated with memory scores [Formula: see text] and late theta power was correlated with task performance [Formula: see text] and functional activity scores [Formula: see text]. In the early beta window, MCI showed reduced power in temporo-posterior regions relative to controls [Formula: see text] and SCD [Formula: see text]. Our results may suggest that these alterations would reflect that memory-related networks are damaged.
Collapse
|
|
6 |
12 |
20
|
Hatlestad-Hall C, Bruña R, Syvertsen MR, Erichsen A, Andersson V, Vecchio F, Miraglia F, Rossini PM, Renvall H, Taubøll E, Maestú F, Haraldsen IH. Source-level EEG and graph theory reveal widespread functional network alterations in focal epilepsy. Clin Neurophysiol 2021; 132:1663-1676. [PMID: 34044189 DOI: 10.1016/j.clinph.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/19/2021] [Accepted: 04/20/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The hypersynchronous neuronal activity associated with epilepsy causes widespread functional network disruptions extending beyond the epileptogenic zone. This altered network topology is considered a mediator for non-seizure symptoms, such as cognitive impairment. The aim of this study was to investigate functional network alterations in focal epilepsy patients with good seizure control and high quality of life. METHODS We compared twenty-two focal epilepsy patients and sixteen healthy controls on graph metrics derived from functional connectivity of source-level resting-state EEG. Graph metrics were calculated over a range of network densities in five frequency bands. RESULTS We observed a significantly increased small world index in patients relative to controls. On the local level, two left-hemisphere regions displayed a shift towards greater alpha band "hubness". The findings were not mediated by age, sex or education, nor by age of epilepsy onset, duration or focus lateralisation. CONCLUSIONS Widespread functional network alterations are evident in focal epilepsy, even in a cohort characterised by successful anti-seizure medication therapy and high quality of life. These findings might support the position that functional network analysis could hold clinical relevance for epilepsy. SIGNIFICANCE Focal epilepsy is accompanied by global and local functional network aberrancies which might be implied in the sustenance of non-seizure symptoms.
Collapse
|
Journal Article |
4 |
12 |
21
|
Hatlestad-Hall C, Bruña R, Liljeström M, Renvall H, Heuser K, Taubøll E, Maestú F, Haraldsen IH. Reliable evaluation of functional connectivity and graph theory measures in source-level EEG: How many electrodes are enough? Clin Neurophysiol 2023; 150:1-16. [PMID: 36972647 DOI: 10.1016/j.clinph.2023.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Using EEG to characterise functional brain networks through graph theory has gained significant interest in clinical and basic research. However, the minimal requirements for reliable measures remain largely unaddressed. Here, we examined functional connectivity estimates and graph theory metrics obtained from EEG with varying electrode densities. METHODS EEG was recorded with 128 electrodes in 33 participants. The high-density EEG data were subsequently subsampled into three sparser montages (64, 32, and 19 electrodes). Four inverse solutions, four measures of functional connectivity, and five graph theory metrics were tested. RESULTS The correlation between the results obtained with 128-electrode and the subsampled montages decreased as a function of the number of electrodes. As a result of decreased electrode density, the network metrics became skewed: mean network strength and clustering coefficient were overestimated, while characteristic path length was underestimated. CONCLUSIONS Several graph theory metrics were altered when electrode density was reduced. Our results suggest that, for optimal balance between resource demand and result precision, a minimum of 64 electrodes should be utilised when graph theory metrics are used to characterise functional brain networks in source-reconstructed EEG data. SIGNIFICANCE Characterisation of functional brain networks derived from low-density EEG warrants careful consideration.
Collapse
|
|
2 |
12 |
22
|
Ramírez-Toraño F, Bruña R, de Frutos-Lucas J, Rodríguez-Rojo IC, Marcos de Pedro S, Delgado-Losada ML, Gómez-Ruiz N, Barabash A, Marcos A, López Higes R, Maestú F. Functional Connectivity Hypersynchronization in Relatives of Alzheimer’s Disease Patients: An Early E/I Balance Dysfunction? Cereb Cortex 2020; 31:1201-1210. [DOI: 10.1093/cercor/bhaa286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract
Alzheimer’s disease (AD) studies on animal models, and humans showed a tendency of the brain tissue to become hyperexcitable and hypersynchronized, causing neurodegeneration. However, we know little about either the onset of this phenomenon or its early effects on functional brain networks. We studied functional connectivity (FC) on 127 participants (92 middle-age relatives of AD patients and 35 age-matched nonrelatives) using magnetoencephalography. FC was estimated in the alpha band in areas known both for early amyloid accumulation and disrupted FC in MCI converters to AD. We found a frontoparietal network (anterior cingulate cortex, dorsal frontal, and precuneus) where relatives of AD patients showed hypersynchronization in high alpha (not modulated by APOE-ε4 genotype) in comparison to age-matched nonrelatives. These results represent the first evidence of neurophysiological events causing early network disruption in humans, opening a new perspective for intervention on the excitation/inhibition unbalance.
Collapse
|
|
5 |
10 |
23
|
Shumbayawonda E, López-Sanz D, Bruña R, Serrano N, Fernández A, Maestú F, Abasolo D. Complexity changes in preclinical Alzheimer’s disease: An MEG study of subjective cognitive decline and mild cognitive impairment. Clin Neurophysiol 2020; 131:437-445. [DOI: 10.1016/j.clinph.2019.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
|
|
5 |
10 |
24
|
Carrasco-Gómez M, Keijzer HM, Ruijter BJ, Bruña R, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM. EEG functional connectivity contributes to outcome prediction of postanoxic coma. Clin Neurophysiol 2021; 132:1312-1320. [PMID: 33867260 DOI: 10.1016/j.clinph.2021.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate the additional value of EEG functional connectivity features, in addition to non-coupling EEG features, for outcome prediction of comatose patients after cardiac arrest. METHODS Prospective, multicenter cohort study. Coherence, phase locking value, and mutual information were calculated in 19-channel EEGs at 12 h, 24 h and 48 h after cardiac arrest. Three sets of machine learning classification models were trained and validated with functional connectivity, EEG non-coupling features, and a combination of these. Neurological outcome was assessed at six months and categorized as "good" (Cerebral Performance Category [CPC] 1-2) or "poor" (CPC 3-5). RESULTS We included 594 patients (46% good outcome). A sensitivity of 51% (95% CI: 34-56%) at 100% specificity in predicting poor outcome was achieved by the best functional connectivity-based classifier at 12 h after cardiac arrest, while the best non-coupling-based model reached a sensitivity of 32% (0-54%) at 100% specificity using data at 12 h and 48 h. Combination of both sets of features achieved a sensitivity of 73% (50-77%) at 100% specificity. CONCLUSION Functional connectivity measures improve EEG based prediction models for poor outcome of postanoxic coma. SIGNIFICANCE Functional connectivity features derived from early EEG hold potential to improve outcome prediction of coma after cardiac arrest.
Collapse
|
Journal Article |
4 |
9 |
25
|
López-Sanz D, Bruña R, de Frutos-Lucas J, Maestú F. Magnetoencephalography applied to the study of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 165:25-61. [PMID: 31481165 DOI: 10.1016/bs.pmbts.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetoencephalography (MEG) is a relatively modern neuroimaging technique able to study normal and pathological brain functioning with temporal resolution in the order of milliseconds and adequate spatial resolution. Although its clinical applications are still relatively limited, great advances have been made in recent years in the field of dementia and Alzheimer's disease (AD) in particular. In this chapter, we briefly describe the physiological phenomena underlying MEG brain signals and the different metrics that can be computed from these data in order to study the alterations disrupting brain activity not only in demented patients, but also in the preclinical and prodromal stages of the disease. Changes in non-linear brain dynamics, power spectral properties, functional connectivity and network topological changes observed in AD are narratively summarized in the context of the pathophysiology of the disease. Furthermore, the potential of MEG as a potential biomarker to identify AD pathology before dementia onset is discussed in the light of current knowledge and the relationship between potential MEG biomarkers and current established hallmarks of the disease is also reviewed. To this aim, findings from different approaches such as resting state or during the performance of different cognitive paradigms are discussed.Lastly, there is an increasing interest in current scientific literature in promoting interventions aimed at modifying certain lifestyles, such as nutrition or physical activity among others, thought to reduce or delay AD risk. We discuss the utility of MEG as a potential marker of the success of such interventions from the available literature.
Collapse
|
Review |
6 |
8 |