51
|
Cuesta P, Bruña R, Shah E, Laohathai C, Garcia-Tarodo S, Funke M, Von Allmen G, Maestú F. An individual data-driven virtual resection model based on epileptic network dynamics in children with intractable epilepsy: a magnetoencephalography interictal activity application. Brain Commun 2023; 5:fcad168. [PMID: 37274829 PMCID: PMC10236945 DOI: 10.1093/braincomms/fcad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/24/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Epilepsy surgery continues to be a recommended treatment for intractable (medication-resistant) epilepsy; however, 30-70% of epilepsy surgery patients can continue to have seizures. Surgical failures are often associated with incomplete resection or inaccurate localization of the epileptogenic zone. This retrospective study aims to improve surgical outcome through in silico testing of surgical hypotheses through a personalized computational neurosurgery model created from individualized patient's magnetoencephalography recording and MRI. The framework assesses the extent of the epileptic network and evaluates underlying spike dynamics, resulting in identification of one single brain volume as a candidate for resection. Dynamic-locked networks were utilized for virtual cortical resection. This in silico protocol was tested in a cohort of 24 paediatric patients with focal drug-resistant epilepsy who underwent epilepsy surgery. Of 24 patients who were included in the analysis, 79% (19 of 24) of the models agreed with the patient's clinical surgery outcome and 21% (5 of 24) were considered as model failures (accuracy 0.79, sensitivity 0.77, specificity 0.82). Patients with unsuccessful surgery outcome typically showed a model cluster outside of the resected cavity, while those with successful surgery showed the cluster model within the cavity. Two of the model failures showed the cluster in the vicinity of the resected tissue and either a functional disconnection or lack of precision of the magnetoencephalography-MRI overlapping could explain the results. Two other cases were seizure free for 1 year but developed late recurrence. This is the first study that provides in silico personalized protocol for epilepsy surgery planning using magnetoencephalography spike network analysis. This model could provide complementary information to the traditional pre-surgical assessment methods and increase the proportion of patients achieving seizure-free outcome from surgery.
Collapse
|
research-article |
2 |
|
52
|
Torres-Simon L, Del Cerro-León A, Yus M, Bruña R, Gil-Martinez L, Marcos Dolado A, Maestú F, Arrazola-Garcia J, Cuesta P. Decoding the Best Automated Segmentation Tools for Vascular White Matter Hyperintensities in the Aging Brain: A Clinician's Guide to Precision and Purpose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.03.30.23287946. [PMID: 38798616 PMCID: PMC11118558 DOI: 10.1101/2023.03.30.23287946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise WMH segmentation software, offering insights into methodology and usability to balance clinical precision with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.
Collapse
|
Preprint |
1 |
|
53
|
Tarfa R, Yu SE, Ahmed OH, Moore JA, Bruña R, Velasquez N, Poplawsky AJ, Coffman BA, Lee SE. Neuromapping olfactory stimulation using magnetoencephalography - visualizing smell, a proof-of-concept study. FRONTIERS IN ALLERGY 2023; 3:1019265. [PMID: 36698377 PMCID: PMC9869273 DOI: 10.3389/falgy.2022.1019265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/14/2022] [Indexed: 01/12/2023] Open
Abstract
Importance Currently, clinical assessment of olfaction is largely reliant on subjective methods that require patient participation. The objective method for measuring olfaction, using electroencephalogram (EEG) readings, can be supplemented with the improved temporal resolution of magnetoencephalography (MEG) for olfactory measurement that can delineate cortical and peripheral olfactory loss. MEG provides high temporal and spatial resolution which can enhance our understanding of central olfactory processing compared to using EEG alone. Objective To determine the feasibility of building an in-house portable olfactory stimulator paired with electrophysiological neuroimaging technique with MEG to assess olfaction in the clinical setting. Design setting and participants This proof-of-concept study utilized a paired MEG-olfactometer paradigm to assess olfaction in three normosmic participants. We used a two-channel olfactory stimulator to deliver odorants according to a programmed stimulus-rest paradigm. Two synthetic odorants: 2% phenethyl alcohol (rose) and 0.5% amyl acetate (banana) were delivered in increasing increments of time followed by periods of rest. Cortical activity was measured via a 306-channel MEG system. Main outcomes and measures Primary outcome measure was the relative spectral power for each frequency band, which was contrasted between rest and olfactory stimulation. Results Compared to rest, olfactory stimulation produced a 40% increase in relative alpha power within the olfactory cortex bilaterally with both odorants. A 25%-30% increase in relative alpha power occurred in the left orbitofrontal cortex and precentral gyrus with phenethyl alcohol stimulation but not amyl acetate. Conclusion and relevance In this proof-of-concept study, we demonstrate the feasibility of olfactory measurement via an olfactometer-MEG paradigm. We found that odorant-specific cortical signatures can be identified using this paradigm, setting the basis for further investigation of this system as a prognostic tool for olfactory loss.
Collapse
|
research-article |
2 |
|
54
|
Torres-Simon L, Del Cerro-León A, Yus M, Bruña R, Gil-Martinez L, Dolado AM, Maestú F, Arrazola-Garcia J, Cuesta P. Decoding the best automated segmentation tools for vascular white matter hyperintensities in the aging brain: a clinician's guide to precision and purpose. GeroScience 2024; 46:5485-5504. [PMID: 38869712 PMCID: PMC11493928 DOI: 10.1007/s11357-024-01238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
White matter hyperintensities of vascular origin (WMH) are commonly found in individuals over 60 and increase in prevalence with age. The significance of WMH is well-documented, with strong associations with cognitive impairment, risk of stroke, mental health, and brain structure deterioration. Consequently, careful monitoring is crucial for the early identification and management of individuals at risk. Luckily, WMH are detectable and quantifiable on standard MRI through visual assessment scales, but it is time-consuming and has high rater variability. Addressing this issue, the main aim of our study is to decipher the utility of quantitative measures of WMH, assessed with automatic tools, in establishing risk profiles for cerebrovascular deterioration. For this purpose, first, we work to determine the most precise WMH segmentation open access tool compared to clinician manual segmentations (LST-LPA, LST-LGA, SAMSEG, and BIANCA), offering insights into methodology and usability to balance clinical precision with practical application. The results indicated that supervised algorithms (LST-LPA and BIANCA) were superior, particularly in detecting small WMH, and can improve their consistency when used in parallel with unsupervised tools (LST-LGA and SAMSEG). Additionally, to investigate the behavior and real clinical utility of these tools, we tested them in a real-world scenario (N = 300; age > 50 y.o. and MMSE > 26), proposing an imaging biomarker for moderate vascular damage. The results confirmed its capacity to effectively identify individuals at risk comparing the cognitive and brain structural profiles of cognitively healthy adults above and below the resulted threshold.
Collapse
|
research-article |
1 |
|
55
|
Carrasco-Gómez M, García-Colomo A, Nebreda A, Bruña R, Santos A, Maestú F. Dynamic functional connectivity is modulated by the amount of p-Tau231 in blood in cognitively intact participants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596323. [PMID: 38854147 PMCID: PMC11160744 DOI: 10.1101/2024.05.29.596323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Electrophysiology and plasma biomarkers are early and non-invasive candidates for Alzheimer's disease detection. The purpose of this paper is to evaluate changes in dynamic functional connectivity measured with magnetoencephalography, associated with the plasma pathology marker p-tau231 in unimpaired adults. METHODS 73 individuals were included. Static and dynamic functional connectivity were calculated using leakage corrected amplitude envelope correlation. Each source's strength entropy across trials was calculated. A data-driven statistical analysis was performed to find the association between functional connectivity and plasma p-tau231 levels. Regression models were used to assess the influence of other variables over the clusters' connectivity. RESULTS Frontotemporal dynamic connectivity positively associated with p-tau231 levels. Linear regression models identified pathological, functional and structural factors that influence dynamic functional connectivity. DISCUSSION These results expand previous literature on dynamic functional connectivity in healthy individuals at risk of AD, highlighting its usefulness as an early, non-invasive and more sensitive biomarker.
Collapse
|
Preprint |
1 |
|
56
|
Doval S, López-Sanz D, Bruña R, Cuesta P, Antón-Toro L, Taguas I, Torres-Simón L, Chino B, Maestú F. When Maturation is Not Linear: Brain Oscillatory Activity in the Process of Aging as Measured by Electrophysiology. Brain Topogr 2024; 37:1068-1088. [PMID: 38900389 DOI: 10.1007/s10548-024-01064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Changes in brain oscillatory activity are commonly used as biomarkers both in cognitive neuroscience and in neuropsychiatric conditions. However, little is known about how its profile changes across maturation. Here we use regression models to characterize magnetoencephalography power changes within classical frequency bands in a sample of 792 healthy participants, covering the range 13 to 80 years old. Our findings unveil complex, non-linear power trajectories that defy the traditional linear paradigm, with notable cortical region variations. Interestingly, slow wave activity increases correlate with improved cognitive performance throughout life and larger gray matter volume in the elderly. Conversely, fast wave activity diminishes in adulthood. Elevated low-frequency activity during aging, traditionally seen as compensatory, may also signify neural deterioration. This dual interpretation, highlighted by our study, reveals the intricate dynamics between brain oscillations, cognitive performance, and aging. It advances our understanding of neurodevelopment and aging by emphasizing the regional specificity and complexity of brain rhythm changes, with implications for cognitive and structural integrity.
Collapse
|
|
1 |
|
57
|
Tamburro G, Bruña R, Fiedler P, De Fano A, Raeisi K, Khazaei M, Zappasodi F, Comani S. An Analytical Approach for Naturalistic Cooperative and Competitive EEG-Hyperscanning Data: A Proof-of-Concept Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2995. [PMID: 38793851 PMCID: PMC11125252 DOI: 10.3390/s24102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Investigating the neural mechanisms underlying both cooperative and competitive joint actions may have a wide impact in many social contexts of human daily life. An effective pipeline of analysis for hyperscanning data recorded in a naturalistic context with a cooperative and competitive motor task has been missing. We propose an analytical pipeline for this type of joint action data, which was validated on electroencephalographic (EEG) signals recorded in a proof-of-concept study on two dyads playing cooperative and competitive table tennis. Functional connectivity maps were reconstructed using the corrected imaginary part of the phase locking value (ciPLV), an algorithm suitable in case of EEG signals recorded during turn-based competitive joint actions. Hyperbrain, within-, and between-brain functional connectivity maps were calculated in three frequency bands (i.e., theta, alpha, and beta) relevant during complex motor task execution and were characterized with graph theoretical measures and a clustering approach. The results of the proof-of-concept study are in line with recent findings on the main features of the functional networks sustaining cooperation and competition, hence demonstrating that the proposed pipeline is promising tool for the analysis of joint action EEG data recorded during cooperation and competition using a turn-based motor task.
Collapse
|
research-article |
1 |
|
58
|
Haraldsen IH, Hatlestad-Hall C, Marra C, Renvall H, Maestú F, Acosta-Hernández J, Alfonsin S, Andersson V, Anand A, Ayllón V, Babic A, Belhadi A, Birck C, Bruña R, Caraglia N, Carrarini C, Christensen E, Cicchetti A, Daugbjerg S, Di Bidino R, Diaz-Ponce A, Drews A, Giuffrè GM, Georges J, Gil-Gregorio P, Gove D, Govers TM, Hallock H, Hietanen M, Holmen L, Hotta J, Kaski S, Khadka R, Kinnunen AS, Koivisto AM, Kulashekhar S, Larsen D, Liljeström M, Lind PG, Marcos Dolado A, Marshall S, Merz S, Miraglia F, Montonen J, Mäntynen V, Øksengård AR, Olazarán J, Paajanen T, Peña JM, Peña L, Peniche DL, Perez AS, Radwan M, Ramírez-Toraño F, Rodríguez-Pedrero A, Saarinen T, Salas-Carrillo M, Salmelin R, Sousa S, Suyuthi A, Toft M, Toharia P, Tveitstøl T, Tveter M, Upreti R, Vermeulen RJ, Vecchio F, Yazidi A, Rossini PM. Intelligent digital tools for screening of brain connectivity and dementia risk estimation in people affected by mild cognitive impairment: the AI-Mind clinical study protocol. Front Neurorobot 2024; 17:1289406. [PMID: 38250599 PMCID: PMC10796757 DOI: 10.3389/fnbot.2023.1289406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
More than 10 million Europeans show signs of mild cognitive impairment (MCI), a transitional stage between normal brain aging and dementia stage memory disorder. The path MCI takes can be divergent; while some maintain stability or even revert to cognitive norms, alarmingly, up to half of the cases progress to dementia within 5 years. Current diagnostic practice lacks the necessary screening tools to identify those at risk of progression. The European patient experience often involves a long journey from the initial signs of MCI to the eventual diagnosis of dementia. The trajectory is far from ideal. Here, we introduce the AI-Mind project, a pioneering initiative with an innovative approach to early risk assessment through the implementation of advanced artificial intelligence (AI) on multimodal data. The cutting-edge AI-based tools developed in the project aim not only to accelerate the diagnostic process but also to deliver highly accurate predictions regarding an individual's risk of developing dementia when prevention and intervention may still be possible. AI-Mind is a European Research and Innovation Action (RIA H2020-SC1-BHC-06-2020, No. 964220) financed between 2021 and 2026. First, the AI-Mind Connector identifies dysfunctional brain networks based on high-density magneto- and electroencephalography (M/EEG) recordings. Second, the AI-Mind Predictor predicts dementia risk using data from the Connector, enriched with computerized cognitive tests, genetic and protein biomarkers, as well as sociodemographic and clinical variables. AI-Mind is integrated within a network of major European initiatives, including The Virtual Brain, The Virtual Epileptic Patient, and EBRAINS AISBL service for sensitive data, HealthDataCloud, where big patient data are generated for advancing digital and virtual twin technology development. AI-Mind's innovation lies not only in its early prediction of dementia risk, but it also enables a virtual laboratory scenario for hypothesis-driven personalized intervention research. This article introduces the background of the AI-Mind project and its clinical study protocol, setting the stage for future scientific contributions.
Collapse
|
research-article |
1 |
|
59
|
Bruña R, Poza J, Gómez C, Fernández A, Hornero R. Analysis of spontaneous MEG activity in mild cognitive impairment using spectral entropies and disequilibrium measures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:6296-9. [PMID: 21097360 DOI: 10.1109/iembs.2010.5628085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to explore the ability of several spectral entropies and disequilibrium measures to discriminate between spontaneous magnetoencephalographic (MEG) oscillations from 18 mild cognitive impairment (MCI) patients and 24 controls. The Shannon spectral entropy (SSE), Tsallis spectral entropy (TSE), and Rényi spectral entropy (RSE) were calculated from the normalized power spectral density to evaluate the irregularity patterns. In addition, the Euclidean (ED) and Wootters (WD) distances were computed as disequilibrium measures. Results revealed statistically significant lower SSE and TSE(2) values for MCI patients than for controls (p < 0.05) in the right lateral region of the brain. ED also obtained statistically significant lower values for MCI patients than for controls using the (p < 0.05) in the right lateral region of the brain. These findings suggest that MCI is associated with a significant decrease in irregularity of MEG activity. In addition, the highest accuracy of 64.3% was achieved by the SSE. We conclude that measures from information theory can be useful to both characterize abnormal brain dynamics and help in MCI detection.
Collapse
|
|
15 |
|
60
|
Antón-Toro LF, Shpakivska-Bilan D, Del Cerro-León A, Bruña R, Uceta M, García-Moreno LM, Maestú F. Longitudinal change of inhibitory control functional connectivity associated with the development of heavy alcohol drinking. Front Psychol 2023; 14:1069990. [PMID: 36818101 PMCID: PMC9935580 DOI: 10.3389/fpsyg.2023.1069990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Heavy drinking (HD) prevalent pattern of alcohol consumption among adolescents, particularly concerning because of their critical vulnerability to the neurotoxic effects of ethanol. Adolescent neurodevelopment is characterized by critical neurobiological changes of the prefrontal, temporal and parietal regions, important for the development of executive control processes, such as inhibitory control (IC). In the present Magnetoencephalography (MEG) study, we aimed to describe the relationship between electrophysiological Functional Connectivity (FC) during an IC task and HD development, as well as its impact on functional neuromaturation. Methods We performed a two-year longitudinal protocol with two stages. In the first stage, before the onset of HD, we recorded brain electrophysiological activity from a sample of 67 adolescents (mean age = 14.6 ± 0.7) during an IC task. Alcohol consumption was measured using the AUDIT test and a semi-structured interview. Two years later, in the second stage, 32 of the 67 participants (mean age 16.7 ± 0.7) completed a similar protocol. As for the analysis in the first stage, the source-space FC matrix was calculated, and then, using a cluster-based permutation test (CBPT) based on Spearman's correlation, we calculated the correlation between the FC of each cortical source and the number of standard alcohol units consumed two years later. For the analysis of longitudinal change, we followed a similar approach. We calculated the symmetrized percentage change (SPC) between FC at both stages and performed a CBPT analysis, analyzing the correlation between FC change and the level of alcohol consumed in a regular session. Results The results revealed an association between higher beta-band FC in the prefrontal and temporal regions and higher consumption years later. Longitudinal results showed that greater future alcohol consumption was associated with an exacerbated reduction in the FC of the same areas. Discussion These results underline the existence of several brain functional differences prior to alcohol misuse and their impact on functional neuromaturation.
Collapse
|
research-article |
2 |
|