51
|
Ren Y, Wang Y, Bao X, Feng M, Xing B, Lian W, Yao Y, Wang R. Corrigendum to "Diagnosis of invasive non-functional pituitary adenomas using exosomal biomarkers" [Clinica Chimica Acta. 529 (2022) 25-33/(PMID: 35085587)]. Clin Chim Acta 2024; 556:117846. [PMID: 38423932 DOI: 10.1016/j.cca.2024.117846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
|
52
|
Lin W, Qin Y, Ren Y. Flunitrazepam and its metabolites induced brain toxicity: Insights from molecular dynamics simulation and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133113. [PMID: 38043427 DOI: 10.1016/j.jhazmat.2023.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Psychoactive drugs frequently contaminate aquatic environments after human consumption, raising concerns about their residues and ecological harm. This study investigates the effects of flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ), benzodiazepine-class psychoactive drugs, on brain accumulation, blood-brain barrier (BBB), and neuroinflammation of the model organism zebrafish. Molecular dynamics simulation and transcriptome sequencing were used to uncover their toxic mechanisms. Results demonstrate that both FLZ and 7-FLZ can accumulate in the brain, increasing Evans blue levels by 3.4 and 0.8 times, respectively. This increase results from abnormal expression of tight junction proteins, particularly ZO-1 and Occludin, leading to elevated BBB permeability. Furthermore, FLZ and 7-FLZ can also induce neuroinflammation, upregulating TNFα by 91% and 39%, respectively, leading to pathological changes and disrupted intracellular ion balance. Molecular dynamics simulation reveals conformational changes in ZO-1 and Occludin proteins, with FLZ exhibiting stronger binding forces and greater toxicity. Weighted gene co-expression network analysis identifies four modules correlated with BBB permeability and neuroinflammation. KEGG enrichment analysis of genes within these modules reveals pathways like protein processing in the endoplasmic reticulum, NOD-like receptor signaling pathway, and arginine and proline metabolism. This study enhances understanding of FLZ and 7-FLZ neurotoxicity and assesses environmental risks of psychoactive substances. ENVIRONMENTAL IMPLICATION: With the increasing prevalence of mental disorders and the discharge of psychoactive drugs into water, even low drug concentrations (ng/L-μg/L) can pose neurological risks. This study, utilizing molecular dynamic (MD) simulations and transcriptome sequencing, investigate the neurotoxicity and mechanisms of flunitrazepam and 7-aminoflunitrazepam. It reveals that they disrupt the blood-brain barrier in zebrafish and induce neuroinflammation primarily by inducing conformational changes in tight junction proteins. MD simulations are valuable for understanding pollutant-protein interactions. This research offers invaluable insights for the environmental risk assessment of psychoactive drugs and informs the development of strategies aimed at prevention and mitigation.
Collapse
|
53
|
Shi Y, Su C, Ding T, Zhao H, Wang Y, Ren Y, Wu L, Zhang Q, Liang J, Sun S, Wang J, Li J, Zeng X. Manganese suppresses the development of oral leukoplakia by activating the immune response. Oral Dis 2024; 30:462-476. [PMID: 36260219 DOI: 10.1111/odi.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Manganese ion (Mn2+ ) is reported to promote the antitumor immune response by activating the cGAS-STING pathway, but it is unknown whether Mn2+ can prevent the malignant transformation of precancerous lesions. The effects of Mn2+ in treating oral leukoplakia (OLK) were explored in this work. METHODS Peripheral blood Mn analysis of the patients was performed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). A coculture model of dendritic cells (DCs)/macrophages, CD8+ T cells, and dysplastic oral keratinocytes (DOKs) was employed to analyze the role and mechanism of Mn2+ in a simulated OLK immune microenvironment. Western blot, RT-PCR, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and lactate dehydrogenase (LDH) assays were adopted to detect the mechanism of Mn2+ in this model. 4-nitroquinoline oxide (4NQO)-induced OLK mice were used to assess the role of Mn2+ in suppressing OLK progression, and a novel Mn2+ -loaded guanosine-tannic acid hydrogel (G-TA@Mn2+ hydrogel) was fabricated and evaluated for its advantages in OLK therapy. RESULTS The content of Mn in patients' peripheral blood was negatively related to the progression of OLK. Mn2+ promoted the maturation and antigen presentation of DCs and macrophages and enhanced the activation of CD8+ T cells in the coculture model, resulting in effective killing of DOKs. Mechanistic analysis found that Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway. Moreover, Mn2+ suppressed the development of 4NQO-induced carcinogenesis in the mouse model. In addition, the G-TA@Mn2+ hydrogel had better anti-OLK effects. CONCLUSIONS Mn2+ enhanced the anti-OLK immune response by activating the cGAS-STING pathway, and the G-TA@Mn2+ hydrogel is a potential novel therapeutic approach for OLK treatment.
Collapse
|
54
|
Ren Y, Xu Y, Wang Z, Wang Y, Zhang J, Li Z, Chen Y, Go W, Javed MT, Li Q. Molecular cloning, biological description, and functional analysis of Ajfos transcription factor in pathogen-induced Apostichopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109814. [PMID: 38065305 DOI: 10.1016/j.cbpc.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.
Collapse
|
55
|
Wang M, Qin M, Xu P, Huang D, Jin X, Chen J, Dong D, Ren Y. Atmospheric particulate matter retention capacity of bark and leaves of urban tree species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123109. [PMID: 38086509 DOI: 10.1016/j.envpol.2023.123109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Urban vegetation can effectively filter and adsorb particulate matter (PM). However, limited studies have been conducted on the PM retention capacity of tree barks. This study investigated the ability of five common urban tree species in the Yangtze River Delta region to retain PM through their barks and leaves by conducting a 14-day tree PM retention experiment on the five tree species during autumn and winter. The results showed that (1) the PM retention per unit area of bark was 6.9 times and 11.8 times higher than that of leaves during autumn and winter, respectively; (2) when considering total surface area, bark and leaves exhibited comparable PM retention capacities at the whole-plant scale; (3) the ability of bark to retain PM is species-specific, which can be attributed to different bark morphology among different tree species; and (4) bark and leaves exhibited distinct preferences for retaining PM of different particle sizes, even when exposed to similar environmental conditions. This study highlights the remarkable ability of tree bark to PM removal and provides valuable insights into the role of urban trees in mitigating PM pollution. Furthermore, these findings can provide valuable insights into studies on dry deposition modelling, urban planning, and green space management strategies.
Collapse
|
56
|
Li L, Ren Y, Wang W, Pang W. Spacecraft Attitude Measurement and Control Using VSMSCSG and Fractional-Order Zeroing Neural Network Adaptive Steering Law. SENSORS (BASEL, SWITZERLAND) 2024; 24:766. [PMID: 38339483 PMCID: PMC10856917 DOI: 10.3390/s24030766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
In order to improve the accuracy and convergence speed of the steering law under the conditions of high dynamics, high bandwidth, and a small deflection angle, and in an effort to improve attitude measurement and control accuracy of the spacecraft, a spacecraft attitude measurement and control method based on variable speed magnetically suspended control sensitive gyroscopes (VSMSCSGs) and the fractional-order zeroing neural network (FO-ZNN) steering law is proposed. First, a VSMSCSG configuration is designed to realize attitude measurement and control integration in which the VSMSCSGs are employed as both actuators and attitude-rate sensors. Second, a novel adaptive steering law using FO-ZNN is designed. The matrix pseudoinverses are replaced by FO-ZNN outputs, which solves the problem of accuracy degradation in the traditional pseudoinverse steering laws due to the complexity of matrix pseudoinverse operations under high dynamics conditions. In addition, the convergence and robustness of the FO-ZNN are proven. The results show that the proposed FO-ZNN converges faster than the traditional zeroing neural network under external disturbances. Finally, a new weighting function containing rotor deflection angles is added to the steering law to ensure that the saturation of the rotor deflection angles can be avoided. Semi-physical simulation results demonstrate the correctness and superiority of the proposed method.
Collapse
|
57
|
Ma J, Liu D, Mao X, Huang L, Ren Y, Xu X, Huang X, Deng C, Shi F, Sun P. Enhanced Diagnostic Efficiency of Endometrial Carcinogenesis and Progression in Women with Abnormal Uterine Bleeding through Peripheral Blood Cytokine Testing: A Multicenter Retrospective Cohort Study. Int J Med Sci 2024; 21:601-611. [PMID: 38464838 PMCID: PMC10920852 DOI: 10.7150/ijms.91506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024] Open
Abstract
Objective: This study aimed to evaluate the role of plasma cytokine detection in endometrial cancer screening and tumor progression assessment in patients with abnormal uterine bleeding. Methods: In this multicenter retrospective cohort study of 287 patients with abnormal uterine bleeding, comprehensive clinical information and laboratory assessments, including cytokines, routine blood tests, and tumor markers, were performed. Associations between the clinical indicators and endometrial carcinogenesis/progression were evaluated. The independent risk factors for endometrial cancer and endometrial cancer with deep myometrial invasion were analyzed using multivariate binary logistic regression. Additionally, a diagnostic model was used to evaluate the predictive efficacy of these identified risk factors. Results: In patients with abnormal uterine bleeding, low IL-4 and high IL-8 levels were independent risk factors for endometrial cancer (p < 0.05). Combining IL-4, IL-8, CA125, and menopausal status improved the accuracy of assessing endometrial cancer risk. The area under curve of the model is 0.816. High IL-6 and IL-8 levels were independent risk factors for deep myometrial invasion in patients with endometrial cancer (p < 0.05). Similarly, combining IL-6, IL-8, and Monocyte counts enhanced the accuracy of assessing endometrial cancer risk with deep myometrial invasion. The area under curve of the model is 0.753. Conclusions: Cytokines such as IL-4, IL-8, and IL-6 can serve as markers for monitoring endometrial cancer and its progression in women with abnormal uterine bleeding.
Collapse
|
58
|
Lin W, Qin Y, Ren Y. Flunitrazepam and its metabolites compromise zebrafish nervous system functionality: An integrated microbiome, metabolome, and genomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122949. [PMID: 37981184 DOI: 10.1016/j.envpol.2023.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023]
Abstract
The psychotropic drug flunitrazepam (FLZ) is frequently detected in aquatic environments, yet its neurotoxicity to aquatic organisms has not received sufficient attention. In this study, microbiome, metabolome, and genome analyses were conducted to study the effects of FLZ and its metabolite 7-aminoflunitrazepam (7-FLZ) on the zebrafish nervous system and understand their toxic mechanisms. The results demonstrated that drug exposure induced gut dysbiosis, decreased short-chain fatty acids and promoted the production of lipopolysaccharides (LPS). LPS entered the brain and interacted with Toll-like receptors to cause neuroinflammation by upregulating the expression of proinflammatory cytokines TNFα and NF-κB. The increased ratio of S-adenosylmethionine to S-adenosylhomocysteine in brain tissues indicated abnormal expression of Dnmt1 gene. Whole-genome bisulfite sequencing displayed an increase in differentially methylated regions (DMRs) associated-genes and pertinent biological pathways encompassed the MAPK signaling pathway, calcium signaling pathway, and Wnt signaling pathway. Correlation analysis confirmed connections between gut microbiota, their metabolites, inflammatory factors, and DNA methylation-related markers in brain tissue. These findings indicate that while the toxicity is somewhat reduced in metabolized products, both FLZ and 7-FLZ can induce DNA methylation in brain tissue and ultimately affect the biological function of the nervous system by disrupting gut microbiota and their metabolites.
Collapse
|
59
|
Xie W, Ren Y, Jiang F, Huang XY, Yu B, Liu J, Li J, Chen K, Zou Y, Hu B, Deng Y. Solvent-pair surfactants enabled assembly of clusters and copolymers towards programmed mesoporous metal oxides. Nat Commun 2023; 14:8493. [PMID: 38129402 PMCID: PMC10739937 DOI: 10.1038/s41467-023-44193-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Organic-inorganic molecular assembly has led to numerous nano/mesostructured materials with fantastic properties, but it is dependent on and limited to the direct interaction between host organic structure-directing molecules and guest inorganic species. Here, we report a "solvent-pair surfactants" enabled assembly (SPEA) method to achieve a general synthesis of mesostructured materials requiring no direct host-guest interaction. Taking the synthesis of mesoporous metal oxides as an example, the dimethylformamide/water solvent pairs behave as surfactants and induce the formation of mesostructured polyoxometalates/copolymers nanocomposites, which can be converted into metal oxides. This SPEA method enables the synthesis of functional ordered mesoporous metal oxides with different pore sizes, structures, compositions and tailored pore-wall microenvironments that are difficult to access via conventional direct organic-inorganic assembly. Typically, nitrogen-doped mesoporous ε-WO3 with high specific surface area, uniform mesopores and stable framework is obtained and exhibits great application potentials such as gas sensing.
Collapse
|
60
|
Alhaddad H, Ospina OE, Khaled ML, Ren Y, Forsyth P, Pina Y, Macaulay R, Law V, Tsai KY, Cress WD, Fridley B, Smalley I. Spatial transcriptomics analysis identifies a unique tumor-promoting function of the meningeal stroma in melanoma leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572266. [PMID: 38187574 PMCID: PMC10769278 DOI: 10.1101/2023.12.18.572266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) remains a rapidly lethal complication for late-stage melanoma patients. The inaccessible nature of the disease site and lack of understanding of the biology of this unique metastatic site are major barriers to developing efficacious therapies for patients with melanoma LMD. Here, we characterize the tumor microenvironment of the leptomeningeal tissues and patient-matched extra-cranial metastatic sites using spatial transcriptomic analyses with in vitro and in vivo validation. We show the spatial landscape of melanoma LMD to be characterized by a lack of immune infiltration and instead exhibit a higher level of stromal involvement. We show that the tumor-stroma interactions at the leptomeninges activate pathways implicated in tumor-promoting signaling, mediated through upregulation of SERPINA3 at the tumor-stroma interface. Our functional experiments establish that the meningeal stroma is required for melanoma cells to survive in the CSF environment and that these interactions lead to a lack of MAPK inhibitor sensitivity in the tumor. We show that knocking down SERPINA3 or inhibiting the downstream IGR1R/PI3K/AKT axis results in re-sensitization of the tumor to MAPK-targeting therapy and tumor cell death in the leptomeningeal environment. Our data provides a spatial atlas of melanoma LMD, identifies the tumor-promoting role of meningeal stroma, and demonstrates a mechanism for overcoming microenvironment-mediated drug resistance unique to this metastatic site.
Collapse
|
61
|
Khaled ML, Ren Y, Kundalia R, Alhaddad H, Chen Z, Wallace GC, Evernden B, Ospina OE, Hall M, Liu M, Darville LN, Izumi V, Chen YA, Pilon-Thomas S, Stewart PA, Koomen JM, Corallo SA, Jain MD, Robinson TJ, Locke FL, Forsyth PA, Smalley I. Branched-chain keto acids promote an immune-suppressive and neurodegenerative microenvironment in leptomeningeal disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572239. [PMID: 38187773 PMCID: PMC10769272 DOI: 10.1101/2023.12.18.572239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.
Collapse
|
62
|
Zhang R, Ji Z, Quan Z, Lu Y, Ren Y, He Y. PEDF Prevents Mitochondrial Function Decay and ER Stress Induced by Rotenone in Aging RPE Cells. FRONT BIOSCI-LANDMRK 2023; 28:319. [PMID: 38062839 DOI: 10.31083/j.fbl2811319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases, including age-related macular degeneration (AMD), may be linked to mitochondrial dysfunction and endoplasmic reticulum (ER) stress. We examined whether Pigment epithelium-derived factor (PEDF) could prevent changes in the structure and function of these organelles by accelerating by rotenone (ROT), a mitochondrial inhibitor, in human retinal pigment epithelium (RPE) cells of chronological age. METHODS RPE cells from 9-20, 50-55, 60-70, and >70-year-old donors were isolated, grown as primary cultures, harvested, and treated with ROT and PEDF for electron microscope (EM), western blot analysis, and polymerase chain reaction (PCR). Reactive oxygen species (ROS) and cytoplasmic calcium [Ca2+]c and mitochondrial calcium [Ca2+]m levels were measured by flow cytometry using 2',7'-dichlorodihydrofluorescin diacetate (H2-DCF-DA), fluo-3/AM, and Rhod-2/AM, and ATP levels were measured using a luciferin/luciferase-based assay. Mitochondrial membrane potential (ΔΨm) was detected using 5,5',6,6'-tetrachloro1,1',3,3'-tetraethylbenzimid azolocarbocyanine iodide (JC-1), and susceptibility of the cells to ROT toxicity and PEDF-protective effect was determined by propidium iodide (PI) staining and lactate dehydrogenase (LDH) assay. The expression of ER stress-related genes was detected using real-time (RT)-PCR. RESULTS We observed decay in the mitochondria of aged RPE cells, including matrix abnormalities, elongation, loss of cristae, and disruption of membrane integrity after ROT treatment. We also observed lower [Ca2+]c, higher ROS and [Ca2+]m levels, decreased ΔΨm after ROT treatment, and greater susceptibility to ROT toxicity in aged RPE cells. PEDF can protect the cristae and integrity of the mitochondrial membrane, increase ATP levels and ΔΨm, and lower ROS, [Ca2+]c, and [Ca2+]m in aged RPE cells induced by ROT. In addition, there was an increase in RDH expression in RPE cells with increasing age after PEDF treatment. Similarly, PEDF decreased the expression of ROT-induced ER stress-related genes. CONCLUSIONS Our study provides evidence that PEDF can reduce bioenergetic deficiencies, mitochondrial decay, and ER stress in aging RPE, a condition that may trigger the onset of retinal diseases such as AMD.
Collapse
|
63
|
Lin W, Li K, Qin Y, Han X, Chen X, Ren Y. Flunitrazepam induces neurotoxicity in zebrafish through microbiota-gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165974. [PMID: 37532048 DOI: 10.1016/j.scitotenv.2023.165974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
The abuse of psychoactive substances has led to their frequent detection in the environment, with unknown effects on the nervous system. In this study, zebrafish were exposed to benzodiazepine drug flunitrazepam (FLZ, 0.2 and 5 μg/L) for 30 days to assess its neurotoxicity. Results revealed that FLZ disrupted the balance of gut microbiota and caused an increase in pathogenic bacteria, such as Paracoccus and Aeromonas, leading to pathological damage to the intestine. The upregulation of intestinal pro-inflammatory factors, IL-1β and TNF-α, by 2.4 and 6.3 times, respectively, along with the downregulation of tight junction proteins, Occludin and zonula occludens 1 (ZO-1), by 80 % and 50 %, increased in intestinal permeability. Moreover, untargeted metabolomics demonstrated that FLZ interfered with intestinal nucleotide metabolism and amino acid biosynthesis. FLZ could also increase the levels of lipopolysaccharide (LPS) and malondialdehyde (MDA) in the brain by 0.9 and 3.4 times, respectively, leading to pathological changes in brain tissue. Furthermore, FLZ significantly disturbed nucleotide metabolism and amino acid biosynthesis and metabolism pathways in the brain. Correlation analysis between gut microbiota and neurochemicals confirmed that FLZ can induce neurotoxicity through the microbiota-gut-brain axis. These findings elucidate the molecular mechanisms of psychoactive drugs on microbiota-gut-brain axis and provide a theoretical basis for the ecological environmental risk assessment of various psychoactive substances.
Collapse
|
64
|
Tang R, Li X, Qiu S, Zhu X, Liu T, Liu Z, Chen X, Ren Y. Simultaneous measurement of spin and precession based on light's orbital angular momentum. OPTICS EXPRESS 2023; 31:39995-40004. [PMID: 38041310 DOI: 10.1364/oe.503038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 12/03/2023]
Abstract
The rotational Doppler effect of the vortex beam is a recently emerged promising application of the optical vortex with orbital angular momentum. In this paper, we combine the method of the micro-Doppler effect of the traditional radar and the rotational Doppler effect of the vortex beam and propose an approach of rotational micro-Doppler effect, realizing the simultaneous measurement of spin and precession. We firstly analyze the rotational micro-Doppler characteristic introduced by precession under the illuminating of vortex beam and calculate the rotational micro-Doppler parameters related to the spin and precession. Then we conduct an experiment of using the vortex beam to detect a spinning object with precession and the rotational micro-Doppler frequency is successfully observed. By extracting the rotational micro-Doppler parameters, the simultaneous and independent measurement of spin and precession is realized. Both the theoretical analysis and experimental results indicate that the rotational micro-Doppler effect is an effective extension of the rotational Doppler effect and is also a feasible application of the vortex beam detection.
Collapse
|
65
|
Zhu X, Ding Y, Tang R, Liu T, Chen X, Qiu S, Liu Z, Ren Y. Analysis of rotational Doppler shift with multi-ring vortex beams. OPTICS EXPRESS 2023; 31:39356-39368. [PMID: 38041259 DOI: 10.1364/oe.500870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/15/2023] [Indexed: 12/03/2023]
Abstract
Vortex beams (VBs) with orbital angular momentum have shown great potential in the detection of transverse rotational motion of spatial targets which is undetectable in the classical radar scheme. However, most of the reported rotational Doppler measurements based on VBs can only be realized under ideal experimental conditions. The long-range detection is still a challenge. The detection distance based on rotational Doppler effect (RDE) is mainly limited by the scattered signal's signal-to-noise ratio (SNR). In this work, we investigated the influence of multi-ring vortex beams (MVBs) on the rotational Doppler frequency spectrum of scattered light from an object based on RDE and proposed a method of SNR enhancement of RDE signal. Firstly, different types of MVBs composed of a set of single-ring VBs with the same topological charge and different radii are designed, including multi-ring Laguerre Gaussian beam (MLGB), multi-ring perfect vortex beams (MPVB), and high-order Laguerre Gaussian beam (HLGB). Then, the influence of the number of rings and radial radius interval on the intensity profiles of MVBs and rotational Doppler frequency spectra under aligned and misaligned conditions is studied in detail. And the reasons why different types of MVBs lead to different SNR enhancement effectiveness with the increase of rings are also analyzed theoretically. Finally, proof-of-concept experiments were conducted to verify the effectiveness of the SNR enhancement method for RDE signals. The results showed that the amplitudes of the Doppler spectra generated by the MLGB and MPVB are improved substantially with the increase of rings, but the enhancement effect caused by the former is superior to the latter. The gain of HLGB on the RDE signal is the lowest. This study provides a useful reference for the optimization of rotational Doppler detection systems and may be of great application value in telemetry, long-range communication and optical imaging.
Collapse
|
66
|
Song J, Ren L, Ren Z, Ren X, Qi Y, Qin Y, Zhang X, Ren Y, Li Y. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of 4-butyl-polyhydroxybenzophenone compounds against NAFLD. Eur J Med Chem 2023; 260:115728. [PMID: 37625288 DOI: 10.1016/j.ejmech.2023.115728] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The mitochondria have been identified as key targets in nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver damage diseases globally. Meanwhile, the biological information analysis in this study revealed that SIRT1, PPARG, PPARA, and PPARGC1A (mitochondrial biogenesis-related proteins) were NAFLD therapeutic targets. Therefore, the design and synthesis of targeted drugs that promote mitochondrial biogenesis and improve mitochondrial function are particularly important for NAFLD treatment. Recently, we introduced butyls, hydroxyls, and halogens to benzophenone and synthesized a series of NAFLD-related 4-butylpolyhydroxybenzophenone compounds, aiming at investigating the hepatoprotective activity from the aspect of mitochondrial biogenesis. The structure-activity relationship demonstrated that hydroxyl and ketone groups were active groups interacting with mitochondrial biogenesis proteins (SIRT1 and PGC1α), and the activity was stronger when the o-hydroxyl group was present on the benzene ring. In contrast, the activity was little affected by the presence of the p-hydroxyl group, m-hydroxyl group, butyl group type, or halogen. In addition, in vitro studies confirmed that these compounds could directly bind to SIRT1 and PGC1α, markedly promote their interaction, significantly increase the expression of proteins and genes related to mitochondrial biogenesis (SIRT1, PGC1α, NRF1, TFAM, COX1, and ND6) and subsequently ameliorate mitochondria dysfunction, which was evidenced by the decreased ROS, upregulated ATP production, increased MMP, and enhanced mitochondrial number. According to the outcomes of our in vitro and in vivo experiments, 4-butyl-polyhydroxybenzophenone compounds could also effectively reduce the formation of lipid droplets and liver injury index (ALT, AST, LDH, AKP, γ-GT, and GDH) and improve the level of antioxidant enzymes (GSH and SOD). Particularly, the treatment of these compounds after a high-fat diet could significantly reduce body weight, decrease liver coefficient, attenuate liver damage, and ameliorate lipid accumulation in rat liver, demonstrating their therapeutic effects on NAFLD. Mechanistically, 4-butyl-polyhydroxybenzophenone compounds promoted mitochondrial biogenesis and eventually prevented NAFLD liver injury by activating the PGC1α signaling pathway in a SIRT1-dependent manner, which was strongly supported by SIRT1 inhibitor EX527.
Collapse
|
67
|
Lu Y, Chow MK, Sun J, Tao D, Jin Q, Ren Y, Wang WX, He Y. Identification of Transformation Products of Organic UV Filters by Photooxidation and Their Differential Estrogenicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17110-17122. [PMID: 37851929 DOI: 10.1021/acs.est.3c05015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Organic ultraviolet filters (OUVFs) are extensively released into aquatic environments, where they undergo complex phototransformation. However, there is little knowledge regarding their transformation products (TPs) and associated endocrine disruption potentials. In the present study, we characterized the chemical and toxicological profiles of TPs for two common OUVFs, oxybenzone (BP3) and ethylhexyl methoxycinnamate (EHMC), by photooxidation under environmentally relevant conditions. It is hypothesized that TPs of the tested OUVFs will show varied estrogenicity at different reaction times. High-resolution liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) identified 17 TPs of 7 m/z for BP-3 and 13 TPs of 8 m/z for EHMC at confidence levels ≤2. Five novel TPs of 2 m/z were reported for the first time with structure-diagnostic MS/MS spectra. Estrogenicity assessment using the MCF-7-luc cell line showed discrepant estrogenic activities exhibited by OUVF-TPs over time. Specifically, BP3-TPs exhibited significantly greater estrogenicity than the parent at several reaction times, whereas EHMC-TPs displayed fluctuating estrogenicity with a declining trend. Correlation analysis coupled with molecular docking simulations further suggested several TPs of BP3 as potential endocrine disruptive compounds. These findings underscore the necessity of considering mixtures during chemical testing and risk assessment and highlight the potentially greater risks associated with post-transformation cocktails.
Collapse
|
68
|
Peng Z, Fan B, Miao W, Wang Z, Ren Y, Li J, Shi S. A novel method for the measurement of superconducting transmission lines at terahertz frequencies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114703. [PMID: 37982723 DOI: 10.1063/5.0153049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Characterizing the properties (e.g., effective dielectric constant εeff, attenuation constant α, and characteristic impedance Z0) of terahertz (THz) superconducting transmission lines is of particular interest in designing on-chip integrated THz bandpass filters, which are a critical component for THz astronomical instruments, such as multi-color camera and broadband imaging spectrometers. Here, we propose a novel method for the characterization of three parameters (εeff, α, and Z0) of THz superconducting transmission lines. This method measures the ratio of the THz signal powers through two different-length branches of the superconducting transmission line to be measured. In addition, only one measurement is required for an all-in-one device chip, including an antenna, a half-power divider, the superconducting transmission line to be measured, and two detectors. The key point is that the superconducting transmission line to be measured is impedance-mismatched with the two integrated detectors. The method is validated through simulation and measurement for superconducting coplanar waveguide transmission lines around 400 GHz.
Collapse
|
69
|
Geng F, Ren Y, Hou H, Dai B, Scott JB, Strickland SL, Mehta S, Li J. Gender equity of authorship in pulmonary medicine over the past decade. Pulmonology 2023; 29:495-504. [PMID: 37210334 DOI: 10.1016/j.pulmoe.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Gender disparity in authorship broadly persists in medical literature, little is known about female authorship within pulmonary medicine. METHODS A bibliometric analysis of publications from 2012 to 2021 in 12 journals with the highest impact in pulmonary medicine was conducted. Only original research and review articles were included. Names of the first and last authors were extracted and their genders were identified using the Gender-API web. Female authorship was described by overall distribution and distribution by country/region/continent and journal. We compared the article citations by gender combinations, evaluated the trend in female authorship, and forecasted when parity for first and last authorship would be reached. We also conducted a systematic review of female authorship in clinical medicine. RESULTS 14,875 articles were included, and the overall percentage of female first authors was higher than last authors (37.0% vs 22.2%, p<0.001). Asia had the lowest percentage of female first (27.6%) and last (15.2%) authors. The percentages of female first and last authors increased slightly over time, except for a rapid increase in the COVID-19 pandemic periods. Parity was predicted in 2046 for the first authors and 2059 for the last authors. Articles with male authors were cited more than articles with female authors. However, male-male collaborations significantly decreased, whereas female-female collaborations significantly increased. CONCLUSIONS Despite the slow improvement in female authorship over the past decade, there is still a substantial gender disparity in female first and last authorship in high-impact medical journals in pulmonary medicine.
Collapse
|
70
|
Ye R, Wang L, Ren Y, Wang Y, Chen X, Liu Y. FilterformerPose: Satellite Pose Estimation Using Filterformer. SENSORS (BASEL, SWITZERLAND) 2023; 23:8633. [PMID: 37896725 PMCID: PMC10611225 DOI: 10.3390/s23208633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Satellite pose estimation plays a crucial role within the aerospace field, impacting satellite positioning, navigation, control, orbit design, on-orbit maintenance (OOM), and collision avoidance. However, the accuracy of vision-based pose estimation is severely constrained by the complex spatial environment, including variable solar illumination and the diffuse reflection of the Earth's background. To overcome these problems, we introduce a novel satellite pose estimation network, FilterformerPose, which uses a convolutional neural network (CNN) backbone for feature learning and extracts feature maps at various CNN layers. Subsequently, these maps are fed into distinct translation and orientation regression networks, effectively decoupling object translation and orientation information. Within the pose regression network, we have devised a filter-based transformer encoder model, named filterformer, and constructed a hypernetwork-like design based on the filter self-attention mechanism to effectively remove noise and generate adaptive weight information. The related experiments were conducted using the Unreal Rendered Spacecraft On-Orbit (URSO) dataset, yielding superior results compared to alternative methods. We also achieved better results in the camera pose localization task, indicating that FilterformerPose can be adapted to other computer vision downstream tasks.
Collapse
|
71
|
Su P, Mao X, Ma J, Huang L, Yu L, Tang S, Zhuang M, Lu Z, Osafo KS, Ren Y, Wang X, Lin X, Huang L, Huang X, Braicu EI, Sehouli J, Sun P. ERRα promotes glycolytic metabolism and targets the NLRP3/caspase-1/GSDMD pathway to regulate pyroptosis in endometrial cancer. J Exp Clin Cancer Res 2023; 42:274. [PMID: 37864196 PMCID: PMC10588109 DOI: 10.1186/s13046-023-02834-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/15/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Tumor cells can resist chemotherapy-induced pyroptosis through glycolytic reprogramming. Estrogen-related receptor alpha (ERRα) is a central regulator of cellular energy metabolism associated with poor cancer prognosis. Herein, we refine the oncogenic role of ERRα in the pyroptosis pathway and glycolytic metabolism. METHODS The interaction between ERRα and HIF-1α was verified using co-immunoprecipitation. The transcriptional binding sites of ERRα and NLRP3 were confirmed using dual-luciferase reporter assay and cleavage under targets and tagmentation (CUT&Tag). Flow cytometry, transmission electron microscopy, scanning electron microscopy, cell mito stress test, and extracellular acidification rate analysis were performed to investigate the effects of ERRα on the pyroptosis pathway and glycolytic metabolism. The results of these experiments were further confirmed in endometrial cancer (EC)-derived organoids and nude mice. In addition, the expression of ERRα-related pyroptosis genes was analyzed using The Cancer Genome Atlas and Gene Expression Omnibus database. RESULTS Triggered by a hypoxic microenvironment, highly expressed ERRα could bind to the promoter of NLRP3 and inhibit caspase-1/GSDMD signaling, which reduced inflammasome activation and increased pyroptosis resistance, thereby resulting in the resistance of cancer cells to cisplatin. Moreover, ERRα activated glycolytic rate-limiting enzyme to bridge glycolytic metabolism and pyroptosis in EC. This phenomenon was further confirmed in EC-derived organoids and nude mice. CUT & Tag sequencing and The Cancer Genome Atlas database analysis showed that ERRα participated in glycolysis and programmed cell death, which resulted in EC progression. CONCLUSIONS ERRα inhibits pyroptosis in an NLRP3-dependent manner and induces glycolytic metabolism, resulting in cisplatin resistance in EC cells.
Collapse
|
72
|
Ren Y, Li GH, Yu M, Yang D, Feng LF, Chen JQ. [Expression analysis of inflammatory factors in artificial quartz stone plate processing silicosis patients]. ZHONGHUA LAO DONG WEI SHENG ZHI YE BING ZA ZHI = ZHONGHUA LAODONG WEISHENG ZHIYEBING ZAZHI = CHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES 2023; 41:837-840. [PMID: 37935550 DOI: 10.3760/cma.j.cn121094-20220517-00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Objective: To investigate the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1beta (IL-1β) in the plasma and bronchoalveolar lavage fluid of silicosis patients with artificial quartz stone plate processing. Methods: In January 2022, 10 patients with artificial quartz stone plate processing silicosis and 20 patients with common silicosis who were hospitalized and diagnosed in a hospital at Zhejiang Province from June 2019 to December 2021 were retrospectively selected as the research objects, and 30 healthy people were selected as the control group during the same period. Plasma of all subjects and bronchoalveolar lavage fluid of all patients were collected. The levels of TNF-α, IL-6 and IL-1β in plasma and bronchoalveolar lavage fluid were detected by enzyme-linked immunosorbent assay and were analyzed. Results: The levels of TNF-α, IL-6 and IL-1β in the plasma of patients with silicosis were higher than those of the control group (P<0.05), and the levels of TNF-α and IL-1β in the plasma of silicosis patients with artificial quartz stone plate processing were higher than those of common silicosis patients (P<0.05). The levels of TNF-α and IL-1β in plasma of artificial quartz stone plate processing silicosis patients were higher than those of common silicosis patients at the same silicon stage (P<0.05). The levels of IL-1β in bronchoalveolar lavage fluid of silicosis patients with artificial quartz stone plate processing was higher than that of patients with common silicosis (P<0.05) . Conclusion: The levels of TNF-α, IL-6 and IL-1β in silicosis patients with artificial quartz stone plate processing are higher than those in patients with common silicosis, which may be related to dust components they are exposed to.
Collapse
|
73
|
Ren Y, Yang J, Fujita B, Jin H, Zhang Y, Berro J. Force redistribution in clathrin-mediated endocytosis revealed by coiled-coil force sensors. SCIENCE ADVANCES 2023; 9:eadi1535. [PMID: 37831774 PMCID: PMC10575576 DOI: 10.1126/sciadv.adi1535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Forces are central to countless cellular processes, yet in vivo force measurement at the molecular scale remains difficult if not impossible. During clathrin-mediated endocytosis, forces produced by the actin cytoskeleton are transmitted to the plasma membrane by a multiprotein coat for membrane deformation. However, the magnitudes of these forces remain unknown. Here, we present new in vivo force sensors that induce protein condensation under force. We measured the forces on the fission yeast Huntingtin-Interacting Protein 1 Related (HIP1R) homolog End4p, a protein that links the membrane to the actin cytoskeleton. End4p is under ~19-piconewton force near the actin cytoskeleton, ~11 piconewtons near the clathrin lattice, and ~9 piconewtons near the plasma membrane. Our results demonstrate that forces are collected and redistributed across the endocytic machinery.
Collapse
|
74
|
Lin W, Qin Y, Wang X, Du M, Wang Y, Chen X, Ren Y. Flunitrazepam and its metabolites exposure disturb the zebrafish gut-liver axis: Combined microbiome and metabolomic analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106688. [PMID: 37699776 DOI: 10.1016/j.aquatox.2023.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Due to clinical treatment and illegal use, psychoactive substances have been widely detected in the aquatic environment. In this study, we investigated the effects of the benzodiazepine drug flunitrazepam (FLZ) and its metabolite 7-aminoflunitrazepam (7-FLZ) on the gut-liver axis of zebrafish. Zebrafish were exposed to two concentrations of FLZ and 7-FLZ (0.05 and 1 μg/L) for 30 days. Results showed that both FLZ and 7-FLZ exposure altered the relative abundance of Proteobacteria at the phylum level, with significant differences observed at the genus level for pathogenic bacteria such as Paracoccus, Shewanella, and Aeromonas. Metabolomics results showed both exposures significantly interfered with nucleotide and amino acid metabolism. The imbalance of gut microbiota and metabolic disorder increased the level of malondialdehyde, which in turn heightened the permeability of the gut mucosal barrier. FLZ and 7-FLZ induced oxidative stress in the liver via the gut-liver axis, leading to decreased levels of glucose, total cholesterol, and triglyceride, as well as the down-regulation of glycolipid metabolism-related genes (PPARα, PPARγ, FABP2, Fabp11, PFKFB3, and LDHA). Metabolomics results revealed that FLZ and 7-FLZ significantly affected the biosynthesis of amino acids and arginine, and other metabolic pathways such as nucleotide, nicotinate and nicotinamide, and purine in the liver. Our results unveiled the mechanisms behind the toxicological effects of psychoactive substances on the gut-liver axis, providing valuable data for ecological and environmental risk assessments.
Collapse
|
75
|
Feng M, Tang Y, Fan M, Li L, Wang S, Yin Q, Ai H, Zhao S, Yin Y, Liu D, Ren Y, Li J, Li F, Lang J. Low-Dose Fractionated Radiotherapy Combined with Neoadjuvant Chemotherapy for T3-4 Nasopharyngeal Carcinoma Patients: The Preliminary Results of a Phase II Randomized Controlled Trial. Int J Radiat Oncol Biol Phys 2023; 117:e580-e581. [PMID: 37785764 DOI: 10.1016/j.ijrobp.2023.06.1921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
PURPOSE/OBJECTIVE(S) Over 70% of NPC patients were local advanced NPC (LANPC). The 5-year local recurrence-free survival rate is only 70% in T3-4 patients. Neoadjuvant chemotherapy (NACT) followed with concurrent chemoradiotherapy (CCRT) was recommended for LANPC patients. Low-dose fractionated radiotherapy (LDFRT), which is <100cGy, induces enhanced cell killing by the hyper-radiation sensitivity phenomenon and potentiates effects of chemotherapy. The synergy of LDFRT and NACT has not been used in the clinical practice and few studies focused on it. A single arm study found the ORR of primary site was improved to 90% for head and neck squamous carcinoma patients treated with LDFRT and NACT. Our previous study found the ORR of lymph nodes was higher in LDFRT group for high-risk LANPC patients. However, another study showed there was no significant difference between LDFRT and control group for LANPC patients. So, we aimed to investigate the potential efficacy of this novel neoadjuvant therapy for T3-4 NPC patients. MATERIALS/METHODS A total of 60 pathological confirmed T3-4 (UICC/AJCC8th) NPC patients were prospectively enrolled in our study. They were randomly assigned to two groups. For the LDFRT group, the patients received 3 cycles of NACT (docetaxel 75mg/m2 D1, cisplatin 80mg/m2 D1) with LDFRT, and followed with CCRT. LDFRT was delivered as 50cGy per fraction twice a day to primary site on D1,2 for each cycle of NACT. The patients in the control group only received NACT and followed with CCRT. All the patients underwent IGRT. RECIST criteria and CTCAE 5.0 was used to evaluate the ORR and toxicity at post-NACT and the completion of CCRT. RESULTS From February 2022 to December 2022, 60 T3-4 NPC patients were included, and 30 patients for each group. For the primary site, the median volume reduction rate and the ORR after NACT was significantly improved in LDFRT group (69.27% vs 40.10%, p<0.001;93.33% vs 73.33%, p = 0.038). For the median volume reduction rate of primary site and lymph node, it was also obviously improved in LDFRT group (86.59% vs 55.43%, p<0.001). Though there was a tendency of ORR improvement in LDFRT group, but no significant difference (96.67% vs 83.33%, p = 0.195). After the completion of CCRT, the median volume reduction rate of primary site had an increased tendency in LDFRT group (96.16% vs 88.3%, p = 0.065), but the ORR had no statistical significance (LDFRT group: CR 45.8%, PR 54.2%; control group: CR 37.5%, PR 62.5%). For the toxicity, the incidence of grade 3-4 adverse events had no difference between two groups (p = 0.786). No grade 5 adverse events occurred. CONCLUSION LDFRT combined with NACT could obviously improve the median volume reduction rate and ORR of primary tumor for T3-4 NPC patients, and the toxicity was similar and tolerable. This novel treatment could be a promising strategy to improve treatment response and needed to be confirmed further.
Collapse
|