51
|
Brescia G, Parrino D, Nicolè L, Zanotti C, Lanza C, Barion U, Marino F, Marioni G. Cortactin expression in nasal polyps of Aspirin-Exacerbated Respiratory Disease (AERD) patients. Am J Otolaryngol 2018. [PMID: 29534838 DOI: 10.1016/j.amjoto.2018.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The term aspirin-exacerbated respiratory disease (AERD) refers to a combination of asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), and acute respiratory tract reactions to nonsteroidal anti-inflammatory drugs. AERD has now been included among the CRSwNP endotypes, and is considered one of the most aggressive in terms of disease recurrence. Cortactin is a multi-domain protein with a part in several cellular mechanisms involving actin assembly and cytoskeleton arrangement. Cortactin seems to have a role in inflammatory responses and to be implicated in human airway secretion and contraction mechanisms. The novel aim of the present study was to examine cortactin expression in nasal polyps of a consecutive cohort of AERD patients and in nasal mucosa of a control group of patients. MATERIALS AND METHODS Cortactin expression was assessed immunohistochemically in nasal polyps from 18 consecutive AERD patients who underwent endoscopic sinus surgery and in nasal mucosa of 19 patients without chronic rhinosinusitis. RESULTS Concomitant allergy was found in 11 AERD patients, most of them male (8 cases; p = 0.02). Cortactin expression in nasal polyps was definitely high (+3) in 17 out of 18 cases, in both epithelial cells (cytoplasmic and membranous immunoreactivity) and activated fibroblasts. A higher cortactin expression was seen in female than in male AERD patients (p = 0.05). CONCLUSIONS Given this preliminary evidence of cortactin upregulation in the polyps of AERD patients, prospective studies could further investigate the role of cortactin in the biology of AERD, and the potential role of cortactin-targeted approaches in integrated AERD treatments.
Collapse
|
52
|
Manaenko A, Yang P, Nowrangi D, Budbazar E, Hartman RE, Obenaus A, Pearce WJ, Zhang JH, Tang J. Inhibition of stress fiber formation preserves blood-brain barrier after intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 2018; 38:87-102. [PMID: 27864464 PMCID: PMC5757435 DOI: 10.1177/0271678x16679169] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracerebral hemorrhage (ICH) represents the deadliest subtype of all strokes. The development of brain edema, a consequence of blood-brain barrier (BBB) disruption, is the most life-threatening event after ICH. Pathophysiological conditions activate the endothelium, one of the components of BBB, inducing rearrangement of the actin cytoskeleton. Upon activation, globular actin assembles into a filamentous actin resulting in the formation of contractile actin bundles, stress fibers. The contraction of stress fibers leads to the formation of intercellular gaps between endothelial cells increasing the permeability of BBB. In the present study, we investigated the effect of ICH on stress fiber formation in CD1 mice. We hypothesized that ICH-induced formation of stress fiber is triggered by the activation of PDGFR-β and mediated by the cortactin/RhoA/LIMK pathway. We demonstrated that ICH induces formation of stress fibers. Furthermore, we demonstrated that the inhibition of PDGFR-β and its downstream reduced the number of stress fibers, preserving BBB and resulting in the amelioration of brain edema and improvement of neurological functions in mice after ICH.
Collapse
|
53
|
Abstract
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is present in virtually all actin-based structures, participating in the formation of branched actin networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance and organization, as well as adhesion, migration and invasion. To migrate and invade through three-dimensional environments, cells have developed specialized actin-based structures called invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a critical regulator of invadosome formation, function and disassembly. Underscoring this role, Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the roles played by Cortactin in these specific invasive structures.
Collapse
|
54
|
Bissinger O, Kolk A, Drecoll E, Straub M, Lutz C, Wolff KD, Götz C. EGFR and Cortactin: Markers for potential double target therapy in oral squamous cell carcinoma. Exp Ther Med 2017; 14:4620-4626. [PMID: 29201160 PMCID: PMC5704320 DOI: 10.3892/etm.2017.5120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Survival periods of patients following surgical therapy of oral squamous cell carcinoma (OSCC) have previously been demonstrated to decrease over recent decades. Epidermal growth factor receptor (EGFR) and Cortactin are molecular markers that are important in tumour progression and development, and interact within the EGF pathway. Although EGFR antibody therapy exists, sufficient efforts for increased survival are still lacking due to the present limited response rates. The aim of the present study was to examine the association between EGFR and Cortactin expression on survival rates of OSCC patients and to determine whether EGFR and Cortactin expression levels are associated with advanced tumor sizes and lymphnode-metastases. In total, 222 OSCC patients were included in the study. EGFR and Cortactin expression in tumor tissue was evaluated by immunohistochemistry. Cox regression was used for survival analysis. Categories were tested for associations by using cross tabs (Chi-square test). Groups were compared by the non-parametric Mann Whitney U-test. Probabilities of less than 0.05 were considered significant and significant expression of Cortactin was observed in Advanced Union Internationale Contre le Cancer stage (P=0.032), including advanced tumour stage (P=0.021) and lymph node metastasis (P=0.049). High Cortactin expression was significantly associated with poorer survival rates (P=0.037). Further Cortactin expression was not associated with extracapsular spread, however EGFR exhibited a significant association (P=0.034). Neither EGFR nor Cortactin expression was correlated to grading. EGFR and Cortactin co-expression was demonstrated to be significantly associated with poorer survival rates in OSCC patients, suggesting that identification of predictive biomarkers for adjuvant therapies are of primary concern in OSCC. In particular, efficient dual-target therapy may act as an appropriate therapy to improve survival time for patients at advanced OSCC tumor stages.
Collapse
|
55
|
Bati-Ayaz G, Can A, Pesen-Okvur D. Cellular distribution of invadopodia is regulated by nanometer scale surface protein patterns. Eur J Cell Biol 2017; 96:673-684. [PMID: 28847588 DOI: 10.1016/j.ejcb.2017.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 06/26/2017] [Accepted: 08/14/2017] [Indexed: 10/25/2022] Open
Abstract
Invadopodia are proteolytic structures formed by cancer cells. It is not known whether their cellular distribution can be regulated by the organization of the extracellular matrix or the organization of the golgi complex or whether they have an adhesion requirement. Here, we used electron beam lithography to fabricate fibronectin (FN) nanodots with isotropic and gradient micrometer scale spacings on K-casein and laminin backgrounds. Investigating cancer cells cultured on protein nanopatterns, we showed that (i) presence of FN nanodots on a K-casein background decreased percent of cells with neutral invadopodia polarization compared to FN control surfaces; (ii) presence of a gradient of FN nanodots on a K-casein background increased percent of cells with negative invadopodia polarization compared to FN control surfaces; (iii) polarization of the golgi complex was similar to that of invadopodia in agreement with a spatial link; (iv) local adhesion did not necessarily appear to be a prerequisite for invadopodia formation.
Collapse
|
56
|
Thomas SG, Poulter NS, Bem D, Finney B, Machesky LM, Watson SP. The actin binding proteins cortactin and HS1 are dispensable for platelet actin nodule and megakaryocyte podosome formation. Platelets 2017; 28:372-379. [PMID: 27778524 PMCID: PMC5274539 DOI: 10.1080/09537104.2016.1235688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/06/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022]
Abstract
A dynamic, properly organised actin cytoskeleton is critical for the production and haemostatic function of platelets. The Wiskott Aldrich Syndrome protein (WASp) and Actin-Related Proteins 2 & 3 Complex (Arp2/3 complex) are critical mediators of actin polymerisation and organisation in many cell types. In platelets and megakaryocytes, these proteins have been shown to be important for proper platelet production and function. The cortactin family of proteins (Cttn & HS1) are known to regulate WASp-Arp2/3-mediated actin polymerisation in other cell types and so here we address the role of these proteins in platelets using knockout mouse models. We generated mice lacking Cttn and HS1 in the megakaryocyte/platelet lineage. These mice had normal platelet production, with platelet number, size and surface receptor profile comparable to controls. Platelet function was also unaffected by loss of Cttn/HS1 with no differences observed in a range of platelet function assays including aggregation, secretion, spreading, clot retraction or tyrosine phosphorylation. No effect on tail bleeding time or in thrombosis models was observed. In addition, platelet actin nodules, and megakaryocyte podosomes, actin-based structures known to be dependent on WASp and the Arp2/3 complex, formed normally. We conclude that despite the importance of WASp and the Arp2/3 complex in regulating F-actin dynamics in many cells types, the role of cortactin in their regulation appears to be fulfilled by other proteins in platelets.
Collapse
|
57
|
Martini V, Gattazzo C, Frezzato F, Trimarco V, Pizzi M, Chiodin G, Severin F, Scomazzon E, Guzzardo V, Saraggi D, Raggi F, Martinello L, Facco M, Visentin A, Piazza F, Brunati AM, Semenzato G, Trentin L. Cortactin, a Lyn substrate, is a checkpoint molecule at the intersection of BCR and CXCR4 signalling pathway in chronic lymphocytic leukaemia cells. Br J Haematol 2017; 178:81-93. [PMID: 28419476 DOI: 10.1111/bjh.14642] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/31/2016] [Indexed: 12/17/2022]
Abstract
Cortactin (CTTN) is a substrate of the Src kinase Lyn that is known to play an actin cytoskeletal regulatory role involved in cell migration and cancer progression following its phosphorylation at Y421. We recently demonstrated that Cortactin is overexpressed in patients with chronic lymphocytic leukaemia (CLL). This work was aimed at defining the functional role of Cortactin in these patients. We found that Cortactin is variably expressed in CLL patients both in the peripheral blood and lymph nodes and that its expression correlates with the release of matrix metalloproteinase 9 (MMP-9) and the motility of neoplastic cells. Cortactin knockdown, by siRNA, induced a reduction in MMP-9 release as well as a decrease of migration capability of leukaemic B cells in vitro, also after chemotactic stimulus. Furthermore, Cortactin phosphorylation was lowered by the Src kinase-inhibitor PP2 with a consequent decrease of MMP-9 release in culture medium. An impaired migration, as compared to control experiments without Cortactin knockdown, was observed following CXCL12 triggering. Reduced Cortactin expression and phosphorylation were also detected both in vivo and in vitro after treatment with Ibrutinib, a Btk inhibitor. Our results highlight the role of Cortactin in CLL as a check-point molecule between the BCR and CXCR4 signalling pathways.
Collapse
|
58
|
Cortactin and phosphorylated cortactin tyr 466 expression in temporal bone carcinoma. Am J Otolaryngol 2017; 38:208-212. [PMID: 28131549 DOI: 10.1016/j.amjoto.2017.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/17/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Cortactin is a multidomain protein engaged in several cellular mechanisms involving actin assembly and cytoskeletal arrangement. Cortactin overexpression in several malignancies has been associated with increased cell migration, invasion, and metastatic potential. Cortactin needs to be activated by tyrosine or serine/threonine phosphorylation. The role of cortactin and phosphorylated cortactin (residue tyr466) was investigated in temporal bone squamous cell carcinoma (TBSCC). MATERIALS AND METHODS Immunohistochemical expression of cortactin and phosphorylated cortactin (residue tyr466) was assessed in 27 consecutively-operated TBSCCs. RESULTS Several clinicopathological variables correlated with recurrence (pT stage, dura mater involvement), and disease-free survival (DFS) (cT stage, pT stage, pN status, dura mater involvement). Twenty-three of 24 immunohistochemically evaluable TBSCCs were cortactin-positive. Median cortactin expression was 75.0%. Cortactin reaction in the cytoplasm was more intense in carcinoma cells than in normal adjacent tissue. Recurrence and DFS rates did not correlate with cortactin and phosphorylated cortactin (residue tyr466) expression in TBSCC specimens. CONCLUSIONS Cortactin upregulation in TBSCC supports the conviction that inhibiting cortactin functions could have selective effects on this malignancy. Multi-institutional studies should further investigate the role of cortactin and phosphorylated cortactin in TBSCC, and their potential clinical application in integrated treatment modalities.
Collapse
|
59
|
Chen DY, Husain M. Caspase-mediated degradation of host cortactin that promotes influenza A virus infection in epithelial cells. Virology 2016; 497:146-156. [PMID: 27471953 DOI: 10.1016/j.virol.2016.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
Influenza A virus (IAV) is well-known to exploit host factors to its advantage. Here, we report that IAV exploits host cortactin, an actin filament-stabilising protein for infection in epithelial cells. By using RNA interference-mediated knockdown and overexpression approach, we demonstrate that cortactin promotes IAV infection. However, cortactin polypeptide undergoes the degradation during late IAV infection. By perturbing the lysosome and proteasome, two main compartments governing the degradation of mammalian proteins, we demonstrate that a lysosome-associated apoptotic pathway mediates the degradation of cortactin in IAV-infected cells. However, we could not detect cleaved cortactin fragments by western blotting using the antibodies recognising either N-terminal/Central or C-terminal cortactin regions, which suggested the presence of multiple caspase cleavage sites. Indeed, CaspDB, a recently-described database predicted up to 35 caspase cleavage motifs present across cortactin polypeptide. The data presented indicate that host cortactin potentially has a dual but contrasting role during IAV infection.
Collapse
|
60
|
Sroka R, Van Lint J, Katz SF, Schneider MR, Kleger A, Paschke S, Seufferlein T, Eiseler T. Cortactin is a scaffolding platform for the E-cadherin adhesion complex and is regulated by protein kinase D1 phosphorylation. J Cell Sci 2016; 129:2416-29. [PMID: 27179075 DOI: 10.1242/jcs.184721] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/28/2016] [Indexed: 12/12/2022] Open
Abstract
Dynamic regulation of cell-cell adhesion by the coordinated formation and dissolution of E-cadherin-based adherens junctions is crucial for tissue homeostasis. The actin-binding protein cortactin interacts with E-cadherin and enables F-actin accumulation at adherens junctions. Here, we were interested to study the broader functional interactions of cortactin in adhesion complexes. In line with literature, we demonstrate that cortactin binds to E-cadherin, and that a posttranslational modification of cortactin, RhoA-induced phosphorylation by protein kinase D1 (PKD1; also known as PRKD1) at S298, impairs adherens junction assembly and supports their dissolution. Two new S298-phosphorylation-dependent interactions were also identified, namely, that phosphorylation of cortactin decreases its interaction with β-catenin and the actin-binding protein vinculin. In addition, binding of vinculin to β-catenin, as well as linkage of vinculin to F-actin, are also significantly compromised upon phosphorylation of cortactin. Accordingly, we found that regulation of cell-cell adhesion by phosphorylation of cortactin downstream of RhoA and PKD1 is vitally dependent on vinculin-mediated protein interactions. Thus, cortactin, unexpectedly, is an important integration node for the dynamic regulation of protein complexes during breakdown and formation of adherens junctions.
Collapse
|
61
|
Cortactin and Exo70 mediated invasion of hepatoma carcinoma cells by MMP-9 secretion. Mol Biol Rep 2016; 43:407-14. [PMID: 27025610 DOI: 10.1007/s11033-016-3972-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/14/2016] [Indexed: 01/11/2023]
Abstract
This study was aimed to evaluate the regulation mechanism of cortactin (CTTN) on matrix metalloproteinases 9 (MMP-9) and its relations with Exo70 in invasion of hepatoma carcinoma (HCC) cells. The expression levels of CTTN, Exo70 and MMP-9 were detected in normal hepatocytes and various HCC cells by real-time PCR. Then the migration and invasion ability of these cells was revealed by scratch and invasion assay. The effects of CTTN on MMP-9 and the ability of migration and invasion were evaluated by silence and overexpress CTTN. During this process, the expression of CTTN was detected by Western blot, the activity and concentration of MMP-9 in supernatant of culture medium was detected by zymography and ELISA assay. Besides, Exo70 was also inhibited to reveal its effects on MMP-9 and the migration and invasion ability of LM3. Increased expression of CTTN, MMP-9, Exo70, reduced scratch area and increased puncture cell numbers were found in HCC cells (p < 0.05). The expression of CTTN was significantly correlated with Exo70 and the migration and invasion ability of HCC (p < 0.05). In addition, the activity and concentration of MMP-9 were significantly affected by the expression level of CTTN, while the expression of MMP-9 was not influenced. Besides, Exo70-si also exhibited significantly inhibition effects on the activity and concentration of MMP-9 and puncture cell numbers (p < 0.05). A synergistic reaction may exhibited on CTTN and Exo70, which could mediate the secretion of MMPs thereby regulate tumor invasion.
Collapse
|
62
|
Cortactin Mediates Apoptosis of Gastric Epithelial Cells Induced by VacA Protein of Helicobacter pylori. Dig Dis Sci 2016; 61:80-90. [PMID: 26289258 DOI: 10.1007/s10620-015-3836-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/30/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vacuolating cytotoxin antigen (VacA) is one of the major virulence factors in Helicobacter pylori (H. pylori), which is responsible for cell vacuolar degeneration and apoptotic cell death. A candidate host factor which mediates this process is cortactin, a protein associated with the processes of colonization and adhesion of H. pylori in gastric epithelium. AIM To investigate the role of cortactin in VacA-induced apoptosis of gastric epithelial cells. METHODS Cortactin expression and shRNA lentiviral constructs were developed and transduced into the human gastric cancer cell line, AGS. VacA protein was purified from H. pylori cultures, acid-activated, and co-incubated with the transduced cell populations. Apoptosis was detected by flow cytometry, and the levels of the pro- and anti-apoptotic proteins Bax and Bcl-2 were determined by Western blot. RESULTS Acid-activated purified VacA induced apoptosis in the parental AGS cells. Increased expression of cortactin (AGS/cortactin) led to a greater percentage of cells undergoing apoptosis. In contrast, knockdown of cortactin with shRNA (AGS/cortactin-shRNA) decreased the percentage of apoptotic cells. The protein levels of pro- and anti-apoptotic proteins Bax and Bcl-2 were increased and decreased in AGS/cortactin cells relative to the parental AGS cells. In the AGS/cortactin-shRNA cells, Bax protein levels were decreased, while Bcl-2 protein was increased. CONCLUSIONS The results indicate that cortactin is involved in the regulation of apoptosis induced by VacA in gastric cells.
Collapse
|
63
|
Stamatovic SM, Sladojevic N, Keep RF, Andjelkovic AV. PDCD10 (CCM3) regulates brain endothelial barrier integrity in cerebral cavernous malformation type 3: role of CCM3-ERK1/2- cortactin cross-talk. Acta Neuropathol 2015; 130:731-50. [PMID: 26385474 DOI: 10.1007/s00401-015-1479-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 10/25/2022]
Abstract
Impairment of brain endothelial barrier integrity is critical for cerebral cavernous malformation (CCM) lesion development. The current study investigates changes in tight junction (TJ) complex organization when PDCD10 (CCM3) is mutated/depleted in human brain endothelial cells. Analysis of lesions with CCM3 mutation and brain endothelial cells transfected with CCM3 siRNA (CCM3-knockdown) showed little or no increase in TJ transmembrane and scaffolding proteins mRNA expression, but proteins levels were generally decreased. CCM3-knockdown cells had a redistribution of claudin-5 and occludin from the membrane to the cytosol with no alterations in protein turnover but with diminished protein-protein interactions with ZO-1 and ZO-1 interaction with the actin cytoskeleton. The most profound effect of CCM3 mutation/depletion was on an actin-binding protein, cortactin. CCM3 depletion caused cortactin Ser-phosphorylation, dissociation from ZO-1 and actin, redistribution to the cytosol and degradation. This affected cortical actin ring organization, TJ complex stability and consequently barrier integrity, with constant hyperpermeability to inulin. A potential link between CCM3 depletion and altered cortactin was tonic activation of MAP kinase ERK1/2. ERK1/2 inhibition increased cortactin expression and incorporation into the TJ complex and improved barrier integrity. This study highlights the potential role of CCM3 in regulating TJ complex organization and brain endothelial barrier permeability.
Collapse
|
64
|
Hammer A, Laghate S, Diakonova M. Src tyrosyl phosphorylates cortactin in response to prolactin. Biochem Biophys Res Commun 2015; 463:644-9. [PMID: 26043691 DOI: 10.1016/j.bbrc.2015.05.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 05/30/2015] [Indexed: 12/18/2022]
Abstract
The hormone/cytokine prolactin (PRL) is implicated in breast cancer cell invasion and metastasis. PRL-induced pathways are mediated by two non-receptor tyrosine kinases, JAK2 and Src. We previously demonstrated that prolactin stimulates invasion of breast cancer cells TMX2-28 through JAK2 and its target serine/threonine kinase PAK1. We hypothesize herein that the actin-binding protein cortactin, a protein involved in invadopodia formation and cell invasion, is activated by PRL. We demonstrate that TMX2-28 cells are more invasive than T47D breast cancer cells in response to PRL. We determine that cortactin is tyrosyl phosphorylated in response to PRL in a time and dose-dependent manner in TMX2-28 cells, but not in T47D cells. Furthermore, we show that PRL mediates cortactin tyrosyl phosphorylation via Src, but not JAK2. Finally, we demonstrate that maximal PRL-mediated TMX2-28 cell invasion requires both Src and JAK2 kinase activity, while T47D cell invasion is JAK2- but not Src-dependent. Thus PRL may induce cell invasion via two pathways: through a JAK2/PAK1 mediated pathway that we have previously demonstrated, and Src-dependent activation and tyrosyl phosphorylation of cortactin.
Collapse
|
65
|
Ho N, Gendron RL, Grozinger K, Whelan MA, Hicks EA, Tennakoon B, Gardiner D, Good WV, Paradis H. Tubedown regulation of retinal endothelial permeability signaling pathways. Biol Open 2015; 4:970-9. [PMID: 26142315 PMCID: PMC4542279 DOI: 10.1242/bio.010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tubedown (Tbdn; Naa15), a subunit of the N-terminal acetyltransferase NatA, complexes with the c-Src substrate Cortactin and supports adult retinal homeostasis through regulation of vascular permeability. Here we investigate the role of Tbdn expression on signaling components of retinal endothelial permeability to understand how Tbdn regulates the vasculature and supports retinal homeostasis. Tbdn knockdown-induced hyperpermeability to Albumin in retinal endothelial cells was associated with an increase in the levels of activation of the Src family kinases (SFK) c-Src, Fyn and Lyn and phospho-Cortactin (Tyr421). The knockdown of Cortactin expression reduced Tbdn knockdown-induced permeability to Albumin and the levels of activated SFK. Inhibition of SFK in retinal endothelial cells decreased Tbdn knockdown-induced permeability to Albumin and phospho-Cortactin (Tyr421) levels. Retinal lesions of endothelial-specific Tbdn knockdown mice, with tissue thickening, fibrovascular growth, and hyperpermeable vessels displayed an increase in the levels of activated c-Src. Moreover, the retinal lesions of patients with proliferative diabetic retinopathy (PDR) associated with a loss of Tbdn expression and hyperpermeability to Albumin displayed increased levels of activated SFK in retinal blood vessels. Taken together, these results implicate Tbdn as an important regulator of retinal endothelial permeability and homeostasis by modulating a signaling pathway involving c-Src and Cortactin.
Collapse
|
66
|
Yamada H, Kikuchi T, Masumoto T, Wei FY, Abe T, Takeda T, Nishiki T, Tomizawa K, Watanabe M, Matsui H, Takei K. Possible role of cortactin phosphorylation by protein kinase Cα in actin-bundle formation at growth cone. Biol Cell 2015; 107:319-30. [PMID: 26033110 DOI: 10.1111/boc.201500032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND INFORMATION Cortactin contributes to growth cone morphogenesis by forming with dynamin, ring-shaped complexes that mechanically bundle and stabilise F-actin. However, the regulatory mechanism of cortactin action is poorly understood. RESULTS Immunofluorescence microscopy revealed that protein kinase C (PKC) α colocalises with cortactin at growth cone filopodia in SH-SY5Y neuroblastoma cells. PKC activation by phorbol 12-myristate 13-acetate causes cortactin phosphorylation, filopodial retraction and F-actin-bundle loss. Moreover, PKCα directly phosphorylates cortactin in vitro at S135/T145/S172, mitigating both cortactin's actin-binding and actin-crosslinking activity, whereas cellular expression of a phosphorylation-mimetic cortactin mutant hinders filopodial formation with a significant decrease of actin bundles. CONCLUSIONS Our results indicate that PKC-mediated cortactin phosphorylation might be implicated in the maintenance of growth cone.
Collapse
|
67
|
Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:940-52. [PMID: 25601713 DOI: 10.1016/j.bbamcr.2015.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
Podosomes are dynamic degrading devices present in myeloid cells among other cell types. They consist of an actin core with associated regulators, surrounded by an adhesive ring. Both fascin and cortactin are known constituents but the role of fascin actin bundling is still unclear and cortactin research rather focuses on its homologue hematopoietic lineage cell-specific protein-1 (HS1). A fascin nanobody (FASNb5) that inhibits actin bundling and a cortactin nanobody (CORNb2) specifically targeting its Src-homology 3 (SH3) domain were used as unique tools to study the function of these regulators in podosome dynamics in both THP-1 macrophages and dendritic cells (DC). Upon intracellular FASNb5 expression, the few podosomes present were aberrantly stable, long-living and large, suggesting a role for fascin actin bundling in podosome turnover and disassembly. Fascin modulates this by balancing the equilibrium between branched and bundled actin networks. In the presence of CORNb2, the few podosomes formed show disrupted structures but their dynamics were unaffected. This suggests a role of the cortactin SH3 domain in podosome assembly. Remarkably, both nanobody-induced podosome-losses were compensated for by focal adhesion structures. Furthermore, matrix degradation capacities were altered and migratory phenotypes were lost. In conclusion, the cortactin SH3 domain contributes to podosome assembly while fascin actin bundling is a master regulator of podosome disassembly in THP-1 macrophages and DC.
Collapse
|
68
|
Courtemanche N, Gifford SM, Simpson MA, Pollard TD, Koleske AJ. Abl2/Abl-related gene stabilizes actin filaments, stimulates actin branching by actin-related protein 2/3 complex, and promotes actin filament severing by cofilin. J Biol Chem 2014; 290:4038-46. [PMID: 25540195 DOI: 10.1074/jbc.m114.608117] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.
Collapse
|
69
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness, fatigability, and autoantibodies against protein antigens of the muscle endplate. Antibodies against acetylcholine receptor (AChR), and less frequently against muscle-Specific Kinase (MuSK) or lipoprotein related protein 4 (LRP4) occur in patients with seropositive MG (SPMG). However, about 10% of patients do not have detectable autoantibodies despite evidence suggesting that the disorder is immune mediated; this disorder is known as seronegative MG (SNMG). Using a protein array approach we identified cortactin (a protein that acts downstream from agrin/MuSK promoting AChR clustering) as potential new target antigen in SNMG. We set up an ELISA assay and screened sera from patients with SPMG, SNMG, other autoimmune diseases and controls. Results were validated by immunoblot. We found that 19.7% of patients with SNMG had antibodies against cortactin whereas only 4.8% of patients with SPMG were positive. Cortactin antibodies were also found in 12.5% of patients with other autoimmune disorders but only in 5.2% of healthy controls. We conclude that the finding of cortactin antibodies in patients with SNMG, suggests an underlying autoimmune mechanism, supporting the use of immune therapy.
Collapse
|
70
|
Helgeson LA, Prendergast JG, Wagner AR, Rodnick-Smith M, Nolen BJ. Interactions with actin monomers, actin filaments, and Arp2/3 complex define the roles of WASP family proteins and cortactin in coordinately regulating branched actin networks. J Biol Chem 2014; 289:28856-69. [PMID: 25160634 DOI: 10.1074/jbc.m114.587527] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.
Collapse
|
71
|
Mota SI, Ferreira IL, Valero J, Ferreiro E, Carvalho AL, Oliveira CR, Rego AC. Impaired Src signaling and post-synaptic actin polymerization in Alzheimer's disease mice hippocampus--linking NMDA receptors and the reelin pathway. Exp Neurol 2014; 261:698-709. [PMID: 25128699 DOI: 10.1016/j.expneurol.2014.07.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/12/2014] [Accepted: 07/27/2014] [Indexed: 11/16/2022]
Abstract
Early cognitive deficits in Alzheimer's disease (AD) have been related to deregulation of N-methyl-d-aspartate receptors (NMDARs) and synaptic dysfunction in response to amyloid-beta peptide. NMDAR anchorage to post-synaptic membrane depends in part on Src kinase, which is also implicated in NMDAR activation and actin cytoskeleton stabilization, two processes relevant for normal synaptic function. In this study we analyzed the changes in GluN2B subunit phosphorylation and the levels of proteins involved in Src related signaling pathways linking the Tyr kinase to actin cytoskeleton polymerization, namely reelin, disabled-1 (Dab1) and cortactin, in hippocampal and cortical homogenates obtained from the triple transgenic mouse model of AD (3xTg-AD) that shows progression of pathology as a function of age versus age-matched wild-type mice. Moreover, we evaluated regional post-synaptic actin polymerization using phalloidin labeling in hippocampal slices. Young (3month-old) 3xTg-AD male mice hippocampus exhibited decreased GluN2B Tyr1472 phosphorylation and reduced Src activity. In the cortex, decreased Src activity correlated with reduced levels of reelin and Dab1, implicating changes in the reelin pathway. We also observed diminished phosphorylated Dab1 and cortactin protein levels in the hippocampus and cortex of young 3xTg-AD male mice. Concordantly with the recognized role of these proteins in actin stabilization, we detected a significant decrease in post-synaptic F-actin in 3month-old 3xTg-AD male CA1 and CA3 hippocampal regions. These data suggest deregulated Src-dependent signaling pathways involving GluN2B-composed NMDARs and post-synaptic actin cytoskeleton depolymerization in the hippocampus in early stages of AD.
Collapse
|
72
|
Belvitch P, Adyshev D, Elangovan VR, Brown ME, Naureckas C, Rizzo AN, Siegler JH, Garcia JGN, Dudek SM. Proline-rich region of non-muscle myosin light chain kinase modulates kinase activity and endothelial cytoskeletal dynamics. Microvasc Res 2014; 95:94-102. [PMID: 25072537 DOI: 10.1016/j.mvr.2014.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 01/11/2023]
Abstract
Disruption of the pulmonary endothelial barrier and subsequent vascular leak is a hallmark of acute lung injury. Dynamic rearrangements in the endothelial cell (EC) peripheral membrane and underlying cytoskeleton are critical determinants of barrier function. The cytoskeletal effector protein non-muscle myosin light chain kinase (nmMLCK) and the actin-binding regulatory protein cortactin are important regulators of the endothelial barrier. In the present study we functionally characterize a proline-rich region of nmMLCK previously identified as the possible site of interaction between nmMLCK and cortactin. A mutant nmMLCK construct deficient in proline residues at the putative sites of cortactin binding (amino acids 973, 976, 1019, 1022) was generated. Co-immunoprecipitation studies in human lung EC transfected with wild-type or mutant nmMLCK demonstrated similar levels of cortactin interaction at baseline and after stimulation with the barrier-enhancing agonist, sphingosine 1-phosphate (S1P). In contrast, binding studies utilizing recombinant nmMLCK fragments containing the wild-type or proline-deficient sequence demonstrated a two-fold increase in cortactin binding (p<0.01) to the mutant construct. Immunofluorescent microscopy revealed an increased stress fiber density in ECs expressing GFP-labeled mutant nmMLCK at baseline (p=0.02) and after thrombin (p=0.01) or S1P (p=0.02) when compared to wild-type. Mutant nmMLCK demonstrated an increase in kinase activity in response to thrombin (p<0.01). Kymographic analysis demonstrated an increased EC membrane retraction distance and velocity (p<0.01) in response to the barrier disrupting agent thrombin in cells expressing the mutant vs. the wild-type nmMLCK construct. These results provide evidence that critical prolines within nmMLCK (amino acids 973, 976, 1019, 1022) regulate cytoskeletal and membrane events associated with pulmonary endothelial barrier function.
Collapse
|
73
|
Lee MS, Kim S, Kim BG, Won C, Nam SH, Kang S, Kim HJ, Kang M, Ryu J, Song HE, Lee D, Ye SK, Jeon NL, Kim TY, Cho NH, Lee JW. Snail1 induced in breast cancer cells in 3D collagen I gel environment suppresses cortactin and impairs effective invadopodia formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2037-54. [PMID: 24861866 DOI: 10.1016/j.bbamcr.2014.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Although an in vitro 3D environment cannot completely mimic the in vivo tumor site, embedding tumor cells in a 3D extracellular matrix (ECM) allows for the study of cancer cell behaviors and the screening of anti-metastatic reagents with a more in vivo-like context. Here we explored the behaviors of MDA-MB-231 breast cancer cells embedded in 3D collagen I. Diverse tumor environmental conditions (including cell density, extracellular acidity, or hypoxia as mimics for a continuous tumor growth) reduced JNKs, enhanced TGFβ1/Smad signaling activity, induced Snail1, and reduced cortactin expression. The reduced JNKs activity blocked efficient formation of invadopodia labeled with actin, cortactin, or MT1-MMP. JNKs inactivation activated Smad2 and Smad4, which were required for Snail1 expression. Snail1 then repressed cortactin expression, causing reduced invadopodia formation and prominent localization of MT1-MMP at perinuclear regions. MDA-MB-231 cells thus exhibited less efficient collagen I degradation and invasion in 3D collagen I upon JNKs inhibition. These observations support a signaling network among JNKs, Smads, Snail1, and cortactin to regulate the invasion of MDA-MB-231 cells embedded in 3D collagen I, which may be targeted during screening of anti-invasion reagents.
Collapse
|
74
|
Wei J, Zhao ZX, Li Y, Zhou ZQ, You TG. Cortactin expression confers a more malignant phenotype to gastric cancer SGC-7901 cells. World J Gastroenterol 2014; 20:3287-3300. [PMID: 24696610 PMCID: PMC3964399 DOI: 10.3748/wjg.v20.i12.3287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of cortactin on the tumor biology of SGC-7901 cells and identify the mechanism involved in the process.
METHODS: Cell lines in which cortactin was stably overexpressed or knocked down as well as the respective control cell lines were established by standard molecular methods. The effects of cortactin on the proliferation, migration and invasion capacity of SGC-7901 cells were assessed by the MTT assay, colony formation, flow cytometry, transwell migration and matrigel invasion. Nude mouse models were also used to assess the role of cortactin in the growth and metastasis of SGC-7901 cells in vivo. Western blotting analysis was performed to detect the expression of epidermal growth factor receptor (EGFR) and downstream molecules.
RESULTS: Cell lines in which cortactin was stably overexpressed or knocked down as well as control cell lines were successfully established and designated as LV5-cortactin-SGC, LV5-SGC, LV3-shRNA-SGC and LV3-SGC. Cortactin overexpression promoted SGC-7901 cell migration (340.7 ±12.6 vs 229.1 ± 23.2, P < 0.01) and invasion (71.6 ± 5.2 vs 48.4 ± 3.6, P < 0.01). Cortactin downregulation impaired SGC-7901 cell migration (136.2 ± 19.8 vs 225 ± 17) and invasion (29.2 ± 5.2 vs 49.6 ± 3.8, P < 0.01). The results from the MTT and colony formation assays results indicated increased LV5-cortactin-SGC cell proliferation and decreased LV3-shRNA-SGC cell proliferation compared to the control cells. Flow cytometry analysis demonstrated that cortactin overexpression promoted the proliferation index of SGC-7901 cells, and the results were reversed when cortactin was downregulated. Mouse tumor models confirmed that cortactin expression increased SGC-7901 cell proliferation and metastasis in vivo. Western blotting analysis revealed that cortactin elevated EGFR expression and activated the downstream molecules.
CONCLUSION: Cortactin expression promoted the migration, invasion and proliferation of SGC-7901 cells both in vivo and in vitro. The EGFR signaling pathway is mechanistically involved.
Collapse
|
75
|
Truffi M, Dubreuil V, Liang X, Vacaresse N, Nigon F, Han SP, Yap AS, Gomez GA, Sap J. RPTPα controls epithelial adherens junctions, linking E-cadherin engagement to c-Src-mediated phosphorylation of cortactin. J Cell Sci 2014; 127:2420-32. [PMID: 24652832 DOI: 10.1242/jcs.134379] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Epithelial junctions are fundamental determinants of tissue organization, subject to regulation by tyrosine phosphorylation. Homophilic binding of E-cadherin activates tyrosine kinases, such as Src, that control junctional integrity. Protein tyrosine phosphatases (PTPs) also contribute to cadherin-based adhesion and signaling, but little is known about their specific identity or functions at epithelial junctions. Here, we report that the receptor PTP RPTPα (human gene name PTPRA) is recruited to epithelial adherens junctions at the time of cell-cell contact, where it is in molecular proximity to E-cadherin. RPTPα is required for appropriate cadherin-dependent adhesion and for cyst architecture in three-dimensional culture. Loss of RPTPα impairs adherens junction integrity, as manifested by defective E-cadherin accumulation and peri-junctional F-actin density. These effects correlate with a role for RPTPα in cellular (c)-Src activation at sites of E-cadherin engagement. Mechanistically, RPTPα is required for appropriate tyrosine phosphorylation of cortactin, a major Src substrate and a cytoskeletal actin organizer. Expression of a phosphomimetic cortactin mutant in RPTPα-depleted cells partially rescues F-actin and E-cadherin accumulation at intercellular contacts. These findings indicate that RPTPα controls cadherin-mediated signaling by linking homophilic E-cadherin engagement to cortactin tyrosine phosphorylation through c-Src.
Collapse
|