51
|
Wu CX, Xiong CY, Bai L, Chen SM, Yan YX, Wang L, Zhang XT. Achilles tendon thickening does not affect elasticity and functional outcome after surgical repair of Achilles rupture: A retrospective study. Chin J Traumatol 2023; 26:323-328. [PMID: 37940448 PMCID: PMC10755773 DOI: 10.1016/j.cjtee.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE Previous studies have confirmed that Achilles tendon occurs Achilles thickening after repair surgery of the rupture. Although this mechanism has been elucidated in the laboratory, there are few reports on its impact on clinical function. We designed a retrospective study to investigate the Achilles thickening after Achilles tendon rupture repair and its correlation between the elasticity and postoperative function. METHODS In this retrospective analysis, patients who underwent surgical treatment for acute Achilles tendon rupture from April 2016 to April 2020 were included. All the patients were regularly followed up at 3 months, 1 year, and 2 years after surgery. American Orthopaedic Foot Ankle Surgeon (AOFAS) scale and Leppilahti score were used to evaluate functional outcomes. Achilles elasticity was measured by ultrasound shear wave of elasticity. Achilles thickening was calculated as maximal transverse and longitudinal diameter in cross-sectional plane of magnetic resonance scan. Sample t-tests was used for different follow-up periods. Correlation between Achilles thickening and other factors were analyzed using Pearson's method. p < 0.05 indicates a statistically significant difference. RESULTS AOFAS scale and Leppilahti score at 1 year were significantly higher than at 3 months postoperatively (both p < 0.001). These functional scales were also improved at 2-year follow-up significantly (both p < 0.001). The dorsiflexion difference showed gradually recovery in each follow-up period (t = -17.907, p < 0.001). The elasticity of the Achilles appeared to continuously decreases during the postoperative follow-up period in all position sets (p < 0.001). In thickening evaluation, the cross-sectional area of the thickest plane of Achilles was significantly higher at 1 year postoperatively (310.5 ± 25.2) mm2 than that at 3 months postoperatively ((278.0 ± 26.2) mm2, t = -8.219, p < 0.001) and became thinner in 2-year magnetic resonance scan ((256.1 ± 15.1) mm2, t = 16.769, p < 0.001). The correlations between Achilles thickening, elasticity, and functional outcome did not show statistical significance (p > 0.05) in every follow-up period. CONCLUSION Achilles tendon thickens after surgery in the 1st year, but begins to gradually return to thinning about 2 years after surgery. There was no significant correlation between the increase and decrease of thickening and the patients' clinical function scores, Achilles elasticity, and bilateral ankle dorsiflexion difference.
Collapse
|
52
|
Konishi Y, Minoshima M, Fujihara K, Uchihashi T, Kikuchi K. Elastic Polymer Coated Nanoparticles with Fast Clearance for 19 F MR Imaging. Angew Chem Int Ed Engl 2023; 62:e202308565. [PMID: 37592736 DOI: 10.1002/anie.202308565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/26/2023] [Accepted: 08/16/2023] [Indexed: 08/19/2023]
Abstract
19 F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19 F MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100 nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19 F MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19 F MRI imaging. Importantly, our 19 F MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.
Collapse
|
53
|
Almotairi FS, Basalamah AA, Amir A, Al-Habib AF. Intraoperative demonstration of reduced distal spinal cord stiffness following untethering of the spinal cord using ultrasound shear wave elastography (SWE). World Neurosurg X 2023; 20:100225. [PMID: 37456688 PMCID: PMC10344799 DOI: 10.1016/j.wnsx.2023.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
|
54
|
Khademi S, Kordi Yoosefinejad A, Motealleh A, Rezaei I, Abbasi L, Jalli R. The sono-elastography evaluation of the immediate effects of neurodynamic mobilization technique on median nerve stiffness in patients with carpal tunnel syndrome. J Bodyw Mov Ther 2023; 36:62-68. [PMID: 37949601 DOI: 10.1016/j.jbmt.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVES The stiffness of median nerve increases in carpal tunnel syndrome (CTS) even at mild stage of syndrome which could be regarded as a diagnostic criterion. The aim of this study was to evaluate the immediate effects of neurodynamic technique on median nerve stiffness and cross-sectional area (CSA) at wrist and elbow in individuals with CTS. MATERIAL AND METHODS It was a quasi-experimental study. Twenty patients were recruited for this study. They were included if aged 18-65 years and diagnosed with CTS based on electrodiagnostic and clinical findings. The exclusion criteria were previous surgeries at wrist or elbow. Patients were assessed by shear wave sono-elastography before and immediately after one session of neurodynamic mobilization technique (NDM). The primary outcome measure was the stiffness of the median nerve at wrist and the secondary outcomes were nerve stiffness at elbow and CSA of nerve at wrist and elbow. RESULTS Median nerve stiffness and CSA decreased significantly at wrist immediately after a session of NDM. These parameters also decreased at elbow but were not statistically significant. CONCLUSION One session of NDM reduced the stiffness and CSA of median nerve at wrist in patients with CTS as detected by sono-elastography verifying that sono-elastography is able to quickly detect the immediate biomechanical changes of the median nerve.
Collapse
|
55
|
Lopes P, Joaquinito ASM, Ribeiro A, Moura NMM, Gomes ATP, Guerreiro SG, Faustino MAF, Almeida A, Ferreira P, Coimbra MA, Neves MGPMS, Gonçalves I. Starch-based films doped with porphyrinoid photosensitizers for active skin wound healing. Carbohydr Polym 2023; 313:120894. [PMID: 37182978 DOI: 10.1016/j.carbpol.2023.120894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Starch is a biodegradable and biocompatible carbohydrate that, when combined with bioactive molecules, can be processed as biomimetic platforms with enhanced performance, allowing its use as active wound dressing materials. Porphyrinoid photosensitizers can tune the physicochemical/functional profile of biomacromolecules, allowing their use in anti-infective strategies. In this work, the feasibility of using the cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide (TMPyP) to enhance the physicochemical, mechanical, antimicrobial performance, and wound healing ability of casted starch-based films was studied. TMPyP conferred a reddish coloration to the films, maintaining their pristine transparency. It increased by 87 % the films hydrophobicity and, depending on the TMPyP used, conferred mobility to the starch polymeric chains. Starch/TMPyP-based films effectively photoinactivated Escherichia coli (>99.99 %) and favored the wound healing process, even in the absence of light. Therefore, the incorporation of TMPyP into starch-based formulations revealed to be a promising strategy to tune the films compaction degree while giving rise to water tolerant and photosensitive biomaterials that can act as multitarget antimicrobial medical dressings and glycocarriers of active compounds relevant for effective skin wound healing.
Collapse
|
56
|
Thomas BF, Nanteza J. Global assessment of the sensitivity of water storage to hydroclimatic variations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162958. [PMID: 36963685 DOI: 10.1016/j.scitotenv.2023.162958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/17/2023]
Abstract
Observing basin water storage response due to hydroclimatic fluxes and human water use provides valuable insight to the sensitivity of water storage to climate change. Quantifying basin water storage changes due to climate and human water use is critical for water management yet remains a challenge globally. Observations from the Gravity Recovery and Climate Experiment (GRACE) mission are used to extract monthly available water (AW), representing the combined storage changes from groundwater and surface water stores. AW is combined with hydroclimatic fluxes, including precipitation (P) and evapotranspiration (ET) to quantify the hydroclimatic elasticity of AW for global basins. Our results detect consequential global water sensitivity to changes in hydroclimatic fluxes, where 25 % of land areas exhibit hydroclimatic elasticity of AW >10, implying that a 1 % change in monthly P-ET would result in a 10 % change in AW. Corroboration using a Budyko-derived metric substantiates our findings, demonstrating that basin water storage resilience to short-term water deficits is linked to basin partitioning predictability, and uniform seasonality of hydroclimatic fluxes. Our study demonstrates how small shifts in hydroclimate flux may affect available water storage potentially impacting billions globally.
Collapse
|
57
|
Akman A, Bukusoglu E. Understanding directed assembly of concentrated nanoparticles at energetically heterogeneous interfaces of cholesteric liquid crystal droplets. J Colloid Interface Sci 2023; 649:772-784. [PMID: 37385042 DOI: 10.1016/j.jcis.2023.06.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/13/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Colloidal self-assembly has gained significant interest in scientific and technological advances. We investigated the self-assembly of the colloids at fluidic interfaces that mediate elastic interactions. Whereas past studies have reported the assembly of micrometer- or molecular-sized species at aqueous interfaces of liquid crystals (LCs), herein we study the assembly of intermediate-sized nanoparticles. Specifically, surface-modified silica nanoparticles (50 to 500 nm) were adsorbed at the liquid crystal-water interfaces and their positioning was investigated using electron microscopy after polymerization. The study revealed that the electric double layer forces and the elastic forces caused by LC strain are dominant in the assembly of nanoparticles and their contributions can be tuned to direct the self-assembly guided by the sub-interface symmetry of confined cholesteric LCs. At high ionic strengths, we observed a strong localization of nanoparticles at the defects, whereas intermediate strengths resulted in their partial enrichment into cholesteric fingerprint patterns with an interaction energy of ≈3 kBT. This result is comparable with the calculations based on the strength of the binary interactions of the nanoparticles. The findings also support the role of ion partitioning at the LC-aqueous interfaces on the formation of the assemblies. The results can be utilized for applications in sensors, microelectronics, and photonics.
Collapse
|
58
|
Zhou M, Ma H, Wu J, Zhou J. Metro travel and perceived COVID-19 infection risks: A case study of Hong Kong. CITIES (LONDON, ENGLAND) 2023; 137:104307. [PMID: 37008809 PMCID: PMC10040367 DOI: 10.1016/j.cities.2023.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 05/14/2023]
Abstract
The COVID-19 pandemic has exerted unprecedented impacts on travel behaviors because of people's increased health precautions and the presence of various COVID-19 containment measures. However, little research has explored whether and how people changed their travel with respect to their perceived local infection risks across space and time. In this article, we relate elasticity and resilience thinking to the changes in metro travel and perceived infection risks at the station or community level over time. Using empirical data from Hong Kong, we measure a metro station's elasticity as the ratio of changes in its average trip length to the COVID-19 cases' footprints around that station. We regard those footprints as a proxy for people's perceived infection risks when making trips to that station. To explore influencing factors on travel in the ups and downs of perceived infection risks, we classify stations based on their elasticity values and examine the association between stations' elasticities and characteristics of stations and their served communities. The findings show that stations varied in elasticity values across space and different surges of the local pandemic. The elasticity of stations can be predicted by socio-demographics and physical attributes of station areas. Stations serving a larger percentage of population with higher education degrees and certain occupations observed more pronounced trip length decrease for the same level of perceived infection risks. The number of parking spaces and retail facilities significantly explained variations in stations' elasticity. The results provide references on crisis management and resilience improvement amid and post COVID-19.
Collapse
|
59
|
Fan B, Wu L, Ming A, Liu Y, Yu Y, Cui L, Zhou M, Wang Q, Wang P. Highly compressible and hydrophobic nanofibrillated cellulose aerogels for cyclic oil/water separation. Int J Biol Macromol 2023:125066. [PMID: 37268071 DOI: 10.1016/j.ijbiomac.2023.125066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Nanofibrillated cellulose (NFC)-based aerogels are ideal oil-sorbent materials, but the poor structural stability and hydrophilicity restrain their practical applications in the fields of oil/water separation. In the present work, we report a facile strategy for constructing a hydrophobic nanofibrillated cellulose aerogel for cyclic oil/water separation. Briefly, an aerogel matrix of C-g-PEI with multiple cross-linked network structures was constructed via the combined use of oxidized-NFC (ONC), polyethyleneimine (PEI), and ethylene glycol diglycidyl ether (EGDE), followed by rapid in situ deposition of poly(methyl trichlorosilane) (PMTS) through a low-temperature gas-solid reaction. The resulting ONC-based aerogel (C-g-PEI-PMTS) exhibits the advantages of ultralight (53.80 mg/cm3), high porosity (95.73 %), hydrophobicity (contact angle of 130.0°) and remarkable elasticity (95.86 %). Meanwhile, the composite aerogel of C-g-PEI-PMTS is extremely suitable for oil sorption-desorption by a simple mechanical squeezing method. After 10 cycles of sorption-desorption, the sorption capacity of the aerogel towards various oils reached almost the same level as in the first cycle. The filtration separation efficiency for the trichloromethane-water mixtures remained at 99 % after 50 cycles, demonstrating encouraging reusability. In summary, an efficient strategy to prepare NFC-based aerogel with highly compressible and hydrophobic properties is developed, which expands the applications of NFC in the fields of oil/water separation.
Collapse
|
60
|
Torres-Torres D, Hurtado-Macias A, Basurto RH, Conteras E, Sánchez S, Mercader-Trejo F, González-Hernández J, Auciello O. Anisotropic behavior of mechanical properties for the a- and c-domains in a (001) BaTiO3 single crystal. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023. [PMID: 37253372 DOI: 10.1088/1361-648x/acda08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Barium titanate (BaTiO3) single crystal with a tetragonal phase was characterized by nanoindentation. Elastic and elastic-plastic deformation regimes were obtained. The main objective was the evaluation of the anisotropic behavior related to mechanical properties associated with the cross-section of the ferroelectric a- and c-domains (In-plane and out-of-plane) in (001) configuration domains. This behavior was evaluated along a line perpendicular to the between domains, which demonstrated that the mechanical properties of the BaTiO3 single crystal depend on the distance from due to the effect of the influence of the neighbor domain. A three-dimensional (3D) finite element (FE) model was developed to simulate mechanical effects revealed by the nanoindentations test. The FE simulation demonstrated that there is no simple isotropic mechanical behavior associated with the domain type. Numerical simulations and experiments performed to study ferroelastic switching domains in BaTiO3 crystals revealed the interaction of the 90°-ca domain with the indentation position.
Collapse
|
61
|
Lu Y, Tan W, Liu Z, Mu S, Zhu G. Degeneration of flow pattern in acousto-elastic flow through sharp-edge microchannels. ULTRASONICS SONOCHEMISTRY 2023; 95:106390. [PMID: 37003213 PMCID: PMC10457586 DOI: 10.1016/j.ultsonch.2023.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Acoustic streaming (AS) is the steady time-averaged flow generated by acoustic field, which has been widely used in enhancing mixing and particle manipulation. Current researches on acoustic streaming mainly focus on Newtonian fluids, while many biological and chemical solutions exhibit non-Newtonian properties. The acoustic streaming in viscoelastic fluids has been studied experimentally for the first time in this paper. We found that the addition of polyethylene oxide (PEO) polymer to the Newtonian fluid significantly altered the flow characteristics in the microchannel. The resulting acousto-elastic flow showed two modes: positive mode and negative mode. Specifically, the viscoelastic fluids under acousto-elastic flow exhibit mixing hysteresis features at low flow rates, and degeneration of flow pattern at high flow rates. Through quantitative analysis, the degeneration of flow pattern is further summarized as time fluctuation and spatial disturbance range reduction. The positive mode in acousto-elastic flow can be used for the mixing enhancement of viscoelastic fluids in the micromixer, while the negative mode provides a potential method for particle/cell manipulation in viscoelastic body fluids such as saliva by suppressing unstable flow.
Collapse
|
62
|
Holt NC, Mayfield DL. Muscle-tendon unit design and tuning for power enhancement, power attenuation, and reduction of metabolic cost. J Biomech 2023; 153:111585. [PMID: 37126884 PMCID: PMC10949972 DOI: 10.1016/j.jbiomech.2023.111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
The contractile elements in skeletal muscle fibers operate in series with elastic elements, tendons and potentially aponeuroses, in muscle-tendon units (MTUs). Elastic strain energy (ESE), arising from either work done by muscle fibers or the energy of the body, can be stored in these series elastic elements (SEEs). MTUs vary considerably in their design in terms of the relative lengths and stiffnesses of the muscle fibers and SEEs, and the force and work generating capacities of the muscle fibers. However, within an MTU it is thought that contractile and series elastic elements can be matched or tuned to maximize ESE storage. The use of ESE is thought to improve locomotor performance by enhancing contractile element power during activities such as jumping, attenuating contractile element power during activities such as landing, and reducing the metabolic cost of movement during steady-state activities such as walking and running. The effectiveness of MTUs in these potential roles is contingent on factors such as the source of mechanical energy, the control of the flow of energy, and characteristics of SEE recoil. Hence, we suggest that MTUs specialized for ESE storage may vary considerably in the structural, mechanical, and physiological properties of their components depending on their functional role and required versatility.
Collapse
|
63
|
Sun J, Hu Y, Li Y, Weng L, Bai H, Meng F, Wang T, Du H, Xu D, Lu S. A temporospatial assessment of environmental quality in urbanizing Ethiopia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117431. [PMID: 36739778 DOI: 10.1016/j.jenvman.2023.117431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Global environmental quality has been negatively affected by urbanization, particularly vulnerable in the Sub-Saharan Africa. Therefore, understanding the underlying mechanism and driving forces for the change of environmental quality with urbanization process is essential to improve the environmental sustainability. In this study, the compounded night light index (CNLI) and remote sensing ecological index (RSEI) were used respectively to evaluate the urbanization level and environmental quality in Ethiopia from 2010 to 2020. On this basis, a temporospatial assessment framework was proposed, followed by methods of coupling coordination degree, spatial autocorrelation, elasticity, and decomposition. The results showed that 63 out of 690 woredas experienced environmental deterioration. Socioeconomic effect, carbon intensity, and climate change were decomposed as drivers to environmental quality, with socioeconomic effects contributing >68% of environmental improvement, while carbon intensity and climate change were responsible for >51% and >58% of environmental deterioration from 2010 values. Continuous increase in impervious surfaces resulted in a six-fold increase in surface runoff, which raised the flooding risk in sub areas and rural landscapes. This demands reforms of climate strategies and proper livestock management.
Collapse
|
64
|
Balser S, Zhao Z, Zharnikov M, Terfort A. Effect of the crosslinking agent on the biorepulsive and mechanical properties of polyglycerol membranes. Colloids Surf B Biointerfaces 2023; 225:113271. [PMID: 36996629 DOI: 10.1016/j.colsurfb.2023.113271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Polyglycerol (PG) based surfaces materials and surfaces are well-established bio-compatible materials. Crosslinking of the dendrimeric molecules via their OH groups improves their mechanical stability up to the point that free-standing materials can be attained. Here, we investigate the effect of different crosslinkers on PG films regarding their biorepulsivity and mechanical properties. For this purpose, PG films with different thicknesses (15, 50 and 100 nm) were prepared by polymerizing glycidol in a ring-opening polymerization onto hydroxyl-terminated Si substrates. These films were then crosslinked using ethylene glycol diglycidyl ether (EGDGE), divinyl sulfone (DVS), glutaraldehyde (GA), 1,11-di(mesyloxy)-3,6,9-trioxaundecane (TEG-Ms2) or 1,11-dibromo-3,6,9-trioxaundecane (TEG-Br2), respectively. While DVS, TEG-Ms2, and TEG-Br2 resulted in slightly thinned films, presumably due to loss of unbound material, increase of film thickness was observed with GA and, in particular, EDGDE, what can be explained by the different crosslinking mechanisms. The biorepulsive properties of the crosslinked PG films were characterized by water contact angle (WCA) goniometry and various adsorption assays involving proteins (serum albumine, fibrinogen, γ-globulin) and bacteria (E. coli), showing that some crosslinkers (EGDGE, DVS) improved the biorepulsive properties, while others deteriorated them (TEG-Ms2, TEG-Br2, GA). As the crosslinking stabilized the films, it was possible to use a lift-off procedure to obtain free-standing membranes if the thickness of the films was 50 nm or larger. Their mechanical properties were examined with a bulge test showing high elasticities, with the Young's moduli increasing in the order GA ≈ EDGDE < TEG-Br2 ≈ TEG-Ms2 < DVS.
Collapse
|
65
|
Shimizu K, Watanabe N, Yoneda M, Nishimura S, Kobayashi T. Determination of the reference range for semi-quantified elasticity of healthy supraspinatus muscles using real-time tissue elastography and its clinical use in patients after rotator cuff repair. Clin Biomech (Bristol, Avon) 2023; 104:105945. [PMID: 36963202 DOI: 10.1016/j.clinbiomech.2023.105945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND The quantitative assessment of healthy supraspinatus muscle elasticity may provide clinically useful preliminary information after rotator cuff repairs. We aimed to determine the reference range for supraspinatus muscle semi-quantified elasticity and describe how it can be used clinically after rotator cuff repair. METHODS The elasticity of healthy bilateral supraspinatus muscles in 43 participants aged between 24 and 75 years (categorized into two subgroups: <50 and ≥ 50 years) was measured as a strain ratio at 0° and 60° of shoulder abduction using real-time tissue elastography. The reference and modified reference ranges calculated by excluding outliers for elasticity were determined using normal distribution methods for logarithmically transformed data. The modified reference range was applied to eight cases of rotator cuff repair. FINDINGS Strain ratios under and over 50 years of age were 1.63 vs. 2.21 at 0° of shoulder abduction (P = 0.028) and 0.92 vs. 1.29 at 60° of shoulder abduction (P = 0.002), respectively. Modified reference ranges for under and over 50 years of age were 0.72-4.17 and 0.98-4.50 at 0° of shoulder abduction and 0.38-1.95 and 0.56-2.76 at 60° of shoulder abduction, respectively. Among eight cases, two showed strain ratios above the reference range at 1 month postoperatively, and rehabilitation protocols were adjusted. INTERPRETATION A strain ratio above the reference range, especially above the upper limit at 0° of shoulder abduction, may indicate increased passive stiffness of the musculotendinous unit. Clinically, the reference range has the potential to be used as a baseline after rotator cuff repairs.
Collapse
|
66
|
Zhu X. Demand elasticity of import nuts in Korea. Heliyon 2023; 9:e13379. [PMID: 36873524 PMCID: PMC9976206 DOI: 10.1016/j.heliyon.2023.e13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
This paper empirically analyzes import demand for nuts in Korea using Almost Ideal Demand System (AIDS). Six budget shares and prices demand equations for nuts group: almond, pistachio, walnut, cashew, hazelnut and macadamia are analyzed during the period 2009 to 2019. Empirical results show that all uncompensated own-price elasticities are negative, walnut and pistachio are own-price elastic while almond, cashew, hazelnut and macadamia are own-price inelastic. Uncompensated cross-price elasticities indicate that nuts have both complementary and substitutable relationships. Expenditure elasticities reveal that all import nuts are expenditure inelastic and they can be considered as necessary goods in Korea. Our research can help related to policy decision for the demand of Korea import nuts.
Collapse
|
67
|
Boote C, Ma Q, Goh KL. Age-dependent mechanical properties of tail tendons in wild-type and mimecan gene-knockout mice - A preliminary study. J Mech Behav Biomed Mater 2023; 139:105672. [PMID: 36657194 DOI: 10.1016/j.jmbbm.2023.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Mimecan, or osteoglycin, belongs to the family of small leucine-rich proteoglycans. In connective tissues mimecan is implicated in the development and maintenance of normal collagen fibrillar organization. Since collagen fibrils are responsible for tissue reinforcement, the absence of mimecan could lead to abnormal tissue mechanical properties. Here, we carried out a preliminary investigation of possible changes in the mechanical properties of tendons in mice lacking a functional mimecan gene, as a function of age. Tail tendons were dissected from mimecan gene knockout (KO) and wild type (WT) mice at ages 1, 4 and 8 months and mechanical properties evaluated using a microtensile testing equipment. Mimecan gene knockout resulted in changes in tendon elasticity- and fracture-related properties. While tendons of WT mice exhibited enhanced mechanical properties with increasing age, this trend was notably attenuated in mimecan KO tendons, with the exception of fracture strain. When genotype and age were considered as cross factors, the diminution in the mechanical properties of mimecan KO tendons was significant for yield strength, modulus and fracture strength. This effect appeared to affect the mice at 4 month old. These preliminary results suggest that mimecan may have a role in regulating age-dependent mechanical function in mouse tail tendon.
Collapse
|
68
|
Paley CT, Knight AE, Jin FQ, Moavenzadeh SR, Pietrosimone LS, Hobson-Webb LD, Rouze NC, Palmeri ML, Nightingale KR. Repeatability of Rotational 3-D Shear Wave Elasticity Imaging Measurements in Skeletal Muscle. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:750-760. [PMID: 36543617 PMCID: PMC10065087 DOI: 10.1016/j.ultrasmedbio.2022.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Shear wave elasticity imaging (SWEI) usually assumes an isotropic material; however, skeletal muscle is typically modeled as a transversely isotropic material with independent shear wave speeds in the directions along and across the muscle fibers. To capture these direction-dependent properties, we implemented a rotational 3-D SWEI system that measures the shear wave speed both along and across the fibers in a single 3-D acquisition, with automatic detection of the muscle fiber orientation. We tested and examined the repeatability of this system's measurements in the vastus lateralis of 10 healthy volunteers. The average coefficient of variation of the measurements from this 3-D SWEI system was 5.3% along the fibers and 8.1% across the fibers. When compared with estimated respective 2-D SWEI values of 16.0% and 83.4%, these results suggest using 3-D SWEI has the potential to improve the precision of SWEI measurements in muscle. Additionally, we observed no significant difference in shear wave speed between the dominant and non-dominant legs along (p = 0.26) or across (p = 0.65) the muscle fibers.
Collapse
|
69
|
Yamamoto K, Hara K, Kobayashi E, Akagi Y, Sakuma I. Tissue damage force estimation in porcine small intestine from its elasticity. Int J Comput Assist Radiol Surg 2023; 18:587-594. [PMID: 36454425 DOI: 10.1007/s11548-022-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
PURPOSE Post-surgical complications are correlated to the surgeon's technical skill level. Thus, efforts are being put in finding ways to improve the surgeon's technical skills, such as not causing unwanted damage to tissues during surgery. In this study, we aim to investigate the possibility of estimating biological tissue damage, in view of preventing unwanted damage during surgery. METHODS A series of tensile tests were performed on porcine small intestinal tissue to determine the elasticity and the tearing force. The tissue was then microscopically observed to investigate the influence of fibrous protein configuration in the tissue's mechanical properties. RESULTS The results from the tensile test showed that the fracture energy had a positive and linear correlation with the elasticity to the negative 0.5th power (R2 = 0.897), which was also suggested by an existing damage model for polymeric materials (Lake-Thomas model). The results from the microscopic observations also showed a resembling influence of fiber configuration on the elasticity as suggested in polymer mechanics (affine network model). CONCLUSION We showed that the fracture energy had a correlation with the elasticity in porcine small intestinal tissues, which was also suggested in polymer mechanics, thus being a promising avenue toward the ability to estimate the maximum applicable force onto a biological tissue without causing damage during surgery. Attention should also be pointed, however, towards investigating the extent at which polymer mechanics and biomechanics overlap.
Collapse
|
70
|
Annunziata C, Fattahpour H, Fong D, Hadjiargyrou M, Sanaei P. Effects of Elasticity on Cell Proliferation in a Tissue-Engineering Scaffold Pore. Bull Math Biol 2023; 85:25. [PMID: 36826607 DOI: 10.1007/s11538-023-01134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Scaffolds engineered for in vitro tissue engineering consist of multiple pores where cells can migrate along with nutrient-rich culture medium. The presence of the nutrient medium throughout the scaffold pores promotes cell proliferation, and this process depends on several factors such as scaffold geometry, nutrient medium flow rate, shear stress, cell-scaffold focal adhesions and elastic properties of the scaffold material. While numerous studies have addressed the first four factors, the mathematical approach described herein focuses on cell proliferation rate in elastic scaffolds, under constant flux of nutrients. As cells proliferate, the scaffold pores radius shrinks and thus, in order to sustain the nutrient flux, the inlet applied pressure on the upstream side of the scaffold pore must be increased. This results in expansion of the elastic scaffold pore, which in turn further increases the rate of cell proliferation. Considering the elasticity of the scaffold, the pore deformation allows further cellular growth beyond that of inelastic conditions. In this paper, our objectives are as follows: (i) Develop a mathematical model for describing fluid dynamics, scaffold elasticity and cell proliferation for scaffolds consist of identical nearly cylindrical pores; (ii) Solve the models and then simulate cellular proliferation within an elastic pore. The simulation can emulate real life tissue growth in a scaffold and offer a solution which reduces the numerical burdens. Lastly, our results demonstrated are in qualitative agreement with experimental observations reported in the literature.
Collapse
|
71
|
Mechanical properties of extensive calcified costal cartilage: An experimental study. Heliyon 2023; 9:e13656. [PMID: 36865463 PMCID: PMC9970894 DOI: 10.1016/j.heliyon.2023.e13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Background Autologous costal cartilage is widely used as nasal augmentation or nasal reconstruction material. However, no study has focused on the mechanical difference between no calcified costal cartilage and extensive calcified costal cartilage at present. Our study aims to study the loading behavior of calcified costal cartilage under tensile and compressive stress. Method Human costal cartilage specimen was obtained from five extensive calcified costal cartilage patients and classified into four groups (group A: no calcified costal cartilage; group B: calcified costal cartilage; group C: no calcified costal cartilage after transplantation in BALB/c nude mice for half a year; group D: calcified costal cartilage after transplantation in BALB/c nude mice for half a year). Young's modulus, stress relaxation slope, and relaxation amount were analyzed through tensile and compressive tests using a material testing machine. Results We included five female patients with extensive calcified costal cartilage. Group B exhibited significantly higher Young's modulus in both the tensile and compressive tests (p < 0.05 in tensile test, p < 0.01 in compressive test), higher relaxation slope (P < 0.01) and higher relaxation amount (p < 0.05 in compression test). After transplantation, the Young's modulus of calcified and non-calcified costal cartilage decreased, except that the calcified costal cartilage increased slightly in the tensile test. The final relaxation slope and relaxation amount had increased at different degrees, but the changes did not change significantly before and after transplantation (P > 0.05). Conclusion Our results showed that the stiffness of calcified cartilage would increase 30.06% under tension and 126.31% under compression. This study may provide new insights to researchers focusing on extensive calcified costal cartilage can be used for autologous graft material.
Collapse
|
72
|
Huang W, Liu Q, Abu Hatab A. Is the technical efficiency green? The environmental efficiency of agricultural production in the MENA region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116820. [PMID: 36460554 DOI: 10.1016/j.jenvman.2022.116820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
There is widespread recognition of the global environmental impact of agricultural production on greenhouse gas emissions, but evidence is sparse regarding the impact in the Middle East and North Africa (MENA) region. In this study, we treat agricultural emissions as an undesirable output from agricultural production and apply the directional distance function to measure environmentally-adjusted technical efficiency, defined as environmental efficiency in agricultural production, in six countries in the MENA region (Algeria, Egypt, Israel, Jordan, Morocco, Tunisia) during the period 1980-2016. The results show that all six countries have clear scope to improve their environmental efficiency. Agricultural production is greener in Jordan and Israel, while environmental efficiency is currently lowest in Egypt and Morocco. Estimated relative shadow price of agricultural emissions is -1.002, implying that the 'cost' of removing agricultural emissions is almost equal to the value of producing one unit of good output. These findings suggest there is a trade-off between agriculture emissions and production, which should be considered in efforts to enhance the sustainability of agricultural production in the MENA region.
Collapse
|
73
|
Königsberger M, Lukacevic M, Füssl J. Multiscale micromechanics modeling of plant fibers: upscaling of stiffness and elastic limits from cellulose nanofibrils to technical fibers. MATERIALS AND STRUCTURES 2023; 56:13. [PMID: 36647368 PMCID: PMC9837021 DOI: 10.1617/s11527-022-02097-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The mechanical properties of natural fibers, as used to produce sustainable biocomposites, vary significantly-both among different plant species and also within a single species. All plants, however, share a common microstructural fingerprint. They are built up by only a handful of constituents, most importantly cellulose. Through continuum micromechanics multiscale modeling, the mechanical behavior of cellulose nanofibrils is herein upscaled to the technical fiber level, considering 26 different commonly used plants. Model-predicted stiffness and elastic limit bounds, respectively, frame published experimental ones. This validates the model and corroborates that plant-specific physicochemical properties, such as microfibril angle and cellulose content, govern the mechanical fiber performance.
Collapse
|
74
|
In Situ Measurement of Intra-tumoral Tissue Rigidity. Methods Mol Biol 2023; 2614:237-246. [PMID: 36587128 DOI: 10.1007/978-1-0716-2914-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Local tissue scale mechanical properties are essential for understanding cell fate and function; however, few methods to measure stiffness at this length scale exist, and applications in 3D tissues can present further challenges. To address this need, microgel-based sensors fabricated out of the thermally responsive hydrogel poly(N-isopropylacrylamide) were developed allowing internal architectures of tissues to be mapped by optically measuring microgel response when actuated in a matrix. These robust probes are widely applicable for in vitro and in vivo studies of tissue mechanics providing tissues can be fluorescently imaged. Here we describe the fabrication of these thermally responsive hydrogel sensors, calibration of the microgels using phantom tissues, and image processing techniques used to make the measurements.
Collapse
|
75
|
Crawford SK, Thelen D, Yakey JM, Heiderscheit BC, Wilson JJ, Lee KS. Regional shear wave elastography of Achilles tendinopathy in symptomatic versus contralateral Achilles tendons. Eur Radiol 2023; 33:720-729. [PMID: 35760909 PMCID: PMC9771859 DOI: 10.1007/s00330-022-08957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Ultrasound often corroborates clinical diagnosis of Achilles tendinopathy (AT). Traditional measures assess macromorphological features or use qualitative grading scales, primarily focused within the free tendon. Shear wave imaging can non-invasively quantify tendon elasticity, yet it is unknown if proximal structures are affected by tendon pathology. The purpose of the study was to determine the characteristics of both traditional sonographic measures and regional shear wave speed (SWS) between limbs in patients with AT. METHODS Twenty patients with chronic AT were recruited. Traditional sonographic measures of tendon structure were measured. Regional SWS was collected in a resting ankle position along the entire length of the tendon bilaterally. SWS measures were extracted and interpolated across evenly distributed points corresponding to the free tendon (FT), soleus aponeurosis (SA), and gastrocnemius aponeurosis (GA). Comparisons were made between limbs in both traditional sonographic measures and regional SWS. RESULTS Symptomatic tendons were thicker (10.2 (1.9) vs. 6.8 (1.8) mm; p < 0.001) and had more hyperemia (p = 0.001) and hypoechogenicity (p = 0.002) than the contralateral tendon. Regional SWS in the FT was lower in the symptomatic limb compared to the contralateral limb (11.53 [10.99, 12.07] vs. 10.97 [10.43, 11.51]; p = 0.03). No differences between limbs were found for the SA (p = 0.13) or GA (p = 0.99). CONCLUSIONS Lower SWS was only observed in the FT in AT patients, indicating that alterations in tendon elasticity associated with AT were localized to the FT and did not involve the proximal passive tendon structures. KEY POINTS • Baseline characteristics of a pilot sample of 20 subjects suffering from chronic Achilles tendinopathy showed differences in conventional sonographic measures of tendon thickness, qualitatively assessed hypoechogenicity, hyperemia, and quantitative measures of shear wave speed. • Regional shear wave speeds were lower in the free tendon but not in the proximal regions of the soleus or gastrocnemius aponeuroses in Achilles tendinopathy patients. • Using shear wave imaging to estimate tendon stiffness may prove beneficial for clinical validation studies to address important topics such as return to activity and the effectiveness of rehabilitation protocols.
Collapse
|