51
|
Shirakawa T, Nakamura A, Kohama K, Hirakata M, Ogihara S. Class-Specific Binding of Two Aminoacyl-tRNA Synthetases to Annexin, a Ca2+- and Phospholipid-Binding Protein. Cell Struct Funct 2005; 29:159-64. [PMID: 15840947 DOI: 10.1247/csf.29.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Annexins are a family of Ca2+/phospholipid-binding proteins that have diverse functions. To understand the function of annexin in Physarum polycephalum, we searched for its binding proteins. Here we demonstrate the presence of two novel annexin-binding proteins. The homology search of partial amino acid sequences of these two proteins identified them as aminoacyl-tRNA synthetases (ARSs). Furthermore, antibody against aminoacyl-tRNA synthetases cross-reacted with one of two proteins. Our results imply the interaction between intracellular membrane dynamics and protein translation system, and may give a clue to understand the mechanism of some myositis diseases, which have been known to produce autoantibodies against ARSs.
Collapse
|
52
|
Coleman MA, Miller KA, Beernink PT, Yoshikawa DM, Albala JS. Identification of chromatin-related protein interactions using protein microarrays. Proteomics 2004; 3:2101-7. [PMID: 14595808 DOI: 10.1002/pmic.200300593] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Dynamic structural changes in chromatin are mediated by protein interactions that modulate multiple cellular processes including replication, transcription, recombination and DNA repair. Complexes that recognize chromatin are defined by several distinct groups of proteins that either directly modify histones or interact with histone-DNA complexes. A protein microarray format was used to analyze the interaction of various DNA repair proteins with chromatin components. We applied proteins, antibodies and DNA to functionalized glass slides and interrogated the slides with our proteins of interest to identify novel protein-protein interactions for proteins involved in DNA double-strand break repair. Here we demonstrate that the DNA repair protein RAD51B, and not its cognate partner RAD51C, interacts with histones and not nucleosomes. Nucleosome-specific interactions were demonstrated with the recently identified SWI/SNF protein, SMARCAL1. Unique RAD51B-histone interactions were corroborated using Far Western analysis. This is the first demonstration of an interaction between RAD51B and histone proteins that may be important for the successful repair of DNA double-strand breaks.
Collapse
|
53
|
Cui S, Arosio D, Doherty KM, Brosh RM, Falaschi A, Vindigni A. Analysis of the unwinding activity of the dimeric RECQ1 helicase in the presence of human replication protein A. Nucleic Acids Res 2004; 32:2158-70. [PMID: 15096578 PMCID: PMC407823 DOI: 10.1093/nar/gkh540] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RecQ helicases are required for the maintenance of genome stability. Characterization of the substrate specificity and identification of the binding partners of the five human RecQ helicases are essential for understanding their function. In the present study, we have developed an efficient baculovirus expression system that allows us to obtain milligram quantities of recombinant RECQ1. Our gel filtration and dynamic light scattering experiments show that RECQ1 has an apparent molecular mass of 158 kDa and a hydrodynamic radius of 5.4 +/- 0.6 nm, suggesting that RECQ1 forms dimers in solution. The oligomeric state of RECQ1 remains unchanged upon binding to a single-stranded (ss)DNA fragment of 50 nt. We show that RECQ1 alone is able to unwind short DNA duplexes (<110 bp), whereas considerably longer substrates (501 bp) can be unwound only in the presence of human replication protein A (hRPA). The same experiments with Escherichia coli SSB show that RECQ1 is specifically stimulated by hRPA. However, hRPA does not affect the ssDNA-dependent ATPase activity of RECQ1. In addition, our far western, ELISA and co-immunoprecipitation experiments demonstrate that RECQ1 physically interacts with the 70 kDa subunit of hRPA and that this interaction is not mediated by DNA.
Collapse
|
54
|
Llorens F, Roher N, Miró FA, Sarno S, Ruiz FX, Meggio F, Plana M, Pinna LA, Itarte E. Eukaryotic translation-initiation factor eIF2beta binds to protein kinase CK2: effects on CK2alpha activity. Biochem J 2003; 375:623-31. [PMID: 12901717 PMCID: PMC1223719 DOI: 10.1042/bj20030915] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Accepted: 08/05/2003] [Indexed: 11/17/2022]
Abstract
eIF2 (eukaryotic translation-initiation factor 2) is a substrate and an interacting partner for CK2 (protein kinase CK2). Co-immuno-precipitation of CK2 with eIF2beta has now been observed in HeLa cells, overexpressing haemagglutinin-tagged human recombinant eIF2beta. A direct association between His6-tagged human recombinant forms of eIF2beta subunit and both the catalytic (CK2alpha) and the regulatory (CK2beta) subunits of CK2 has also been shown by using different techniques. Surface plasmon resonance analysis indicated a high affinity in the interaction between eIF2beta and CK2alpha, whereas the affinity for the association with CK2beta is much lower. Free CK2alpha is unable to phosphorylate eIF2beta, whereas up to 1.2 mol of phosphate/mol of eIF2beta was incorporated by the reconstituted CK2 holoenzyme. The N-terminal third part of eIF2beta is dispensable for binding to either CK2alpha or CK2beta, although it contains the phosphorylation sites for CK2. The remaining central/C-terminal part of eIF2beta is not phosphorylated by CK2, but is sufficient for binding to both CK2 subunits. The presence of eIF2beta inhibited CK2alpha activity on calmodulin and beta-casein, but it had a minor effect on that of the reconstituted CK2 holoenzyme. The truncated forms corresponding to the N-terminal or central/C-terminal regions of eIF2beta were much less inhibitory than the intact subunit. The results demonstrate that the ability to associate with CK2 subunits and to serve as a CK2 substrate are confined to different regions in eIF2beta and that it may act as an inhibitor on CK2alpha.
Collapse
|
55
|
Hara K, Shiota M, Kido H, Watanabe K, Nagata K, Toyoda T. Inhibition of the protease activity of influenza virus RNA polymerase PA subunit by viral matrix protein. Microbiol Immunol 2003; 47:521-6. [PMID: 12953845 DOI: 10.1111/j.1348-0421.2003.tb03413.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza virus PA is a subunit of RNA-dependent RNA polymerase. We demonstrated that PA has a unique chymotrypsin-like serine protease activity with Ser624 as an active site. To obtain further insight into the role of the protease activity of PA in viral proliferation, we examined the interaction between PA and matrix protein (M1). Both M1 purified from virion and hexa-histidine-tagged M1 expressed in Escherichia coli bound to PA. Hexa-histidine-tagged M1 pulled down PA. The interaction of PA with M1 was sensitive to ionic strength, suggesting that the interaction is formed by electrostatic force. Using Suc-Leu-Leu-Val-Tyr-MCA, a specific substrate for PA protease, M1 was demonstrated to inhibit the amidolytic activity of PA, whereas M1 did not inhibit that of chymotrypsin or trypsin at all. These results suggest that M1 binds to and inhibits the amidolytic activity of PA.
Collapse
|
56
|
Bjørndal B, Trave G, Hageberg I, Lillehaug JR, Raae AJ. Expression and purification of receptor for activated C-kinase 1 (RACK1). Protein Expr Purif 2003; 31:47-55. [PMID: 12963340 DOI: 10.1016/s1046-5928(03)00135-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Receptor for activated C-kinase (RACK1) binds to protein kinase C and functions as an anchor for several other cellular components. Most in vitro studies of RACK1 have been carried out with RACK1 fused to a soluble fusion protein partner, such as GST or MBP. Here, we show that fusion complexes may exist as large soluble aggregates and thereby lead to false conclusions about the biological activity of RACK1. We developed a purification procedure that gave soluble monodisperse molecules of the protein. The RACK1 gene was cloned and expressed in a pMAL vector. After purification of the resulting MBP-RACK1 fusion protein, RACK1 was excised from MBP by thrombin, rendering RACK1 in a soluble monodisperse form as monitored by fluorimetric static light scattering, gel filtration, and ultracentrifugation. Circular dichroism analysis revealed that RACK1 was properly folded with a T(m) of approximately 62 degrees C and contained the predicted portions of secondary structures. The biological activity of the purified protein was verified by binding to activated protein kinase C. The production of soluble, high-purity RACK1 will allow structural studies and functional in vitro studies to identify interacting partners to this important scaffold protein.
Collapse
|
57
|
Zhao B, Zhao H, Zhao N, Zhu XG. Cholangiocarcinoma cells express somatostatin receptor subtype 2 and respond to octreotide treatment. JOURNAL OF HEPATO-BILIARY-PANCREATIC SURGERY 2003; 9:497-502. [PMID: 12483273 DOI: 10.1007/s005340200062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND/PURPOSE We investigated the in vitro and in vivo inhibitory effects of a somatostatin analogue (octreotide, OCT) on cholangiocarcinoma cell lines. METHODS The reverse transcriptase-polymerase chain reaction (RT-PCR) was employed to detect the gene expression of five somatostatin receptor (SSTR) subtypes in four cholangiocarcinoma cell lines (RBE, NEC, QBC939, and SSP-25). The antiproliferative effects of OCT on these cell lines were determined by means of an MTT assay in vitro, as well as in a nude mouse tumor heterograft model in vivo. Apoptosis and cell cycles in the cholangiocarcinoma cell lines after OCT administration were evaluated by flow cytometry; and the effects of OCT on the expression of cyclin E, cyclin-dependent kinase 2 (CDK2), and p27kipl were evaluated by Western blots. RESULTS Only SSTR2 mRNA was detected in these four cholangiocarcinoma cell lines. OCT significantly inhibited the proliferation of the four cholangiocarcinoma cell lines in vitro ( P < 0.05 vs control), and the weights of the QBC939 xenografts in the OCT-treated group were lower than those in the control group, but there was no significant difference between them. After 48-h exposure to 10(3) ng/ml OCT, flow cytometric analysis demonstrated an increased number of cells in G0/G1 phase associated with a decreased number of cells in G2/M and S phases ( P < 0.01 vs control). Apoptosis was not observed in any samples. The expression of p27kipl was promoted by OCT administration, while that of cyclin E and that of CDK2 were inhibited. CONCLUSIONS The results proved that OCT inhibits the proliferation of cholangiocarcinoma cells through G0/G1 cell cycle arrest rather than through the process of apoptosis. These effects are partially mediated by enhancing the expression of p27kipl, and decreasing the amounts of cyclin E-CDK2 complex.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/administration & dosage
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Apoptosis
- Bile Duct Neoplasms/drug therapy
- Bile Ducts, Intrahepatic
- Blotting, Far-Western
- CDC2-CDC28 Kinases
- Cell Cycle Proteins/metabolism
- Cholangiocarcinoma/drug therapy
- Cyclin E/metabolism
- Cyclin-Dependent Kinase 2
- Cyclin-Dependent Kinase Inhibitor p27
- Cyclin-Dependent Kinases/metabolism
- Dose-Response Relationship, Drug
- Female
- Flow Cytometry
- G1 Phase
- Genes, Tumor Suppressor/physiology
- Humans
- In Vitro Techniques
- Mice
- Mice, Nude
- Mitosis/drug effects
- Octreotide/administration & dosage
- Octreotide/pharmacology
- Octreotide/therapeutic use
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Somatostatin/drug effects
- Receptors, Somatostatin/metabolism
- Resting Phase, Cell Cycle/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- S Phase/drug effects
- Tumor Cells, Cultured
- Tumor Suppressor Proteins/metabolism
Collapse
|
58
|
Cullen PA, Coutts SAJ, Cordwell SJ, Bulach DM, Adler B. Characterization of a locus encoding four paralogous outer membrane lipoproteins of Brachyspira hyodysenteriae. Microbes Infect 2003; 5:275-83. [PMID: 12706440 DOI: 10.1016/s1286-4579(03)00027-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of Brachyspira hyodysenteriae outer membrane proteins (OMPs) that may stimulate immunity to swine dysentery is important for vaccine development. We report here the analysis of a novel locus, blpGFEA, encoding four tandem paralogous proteins of approximately 30 kDa from B. hyodysenteriae. The four proteins share 31-39% sequence identity with lipoproteins from several species of bacterial pathogens, but the locus possesses a unique genetic organization. Using antisera raised to recombinant versions of each of these proteins, only BlpA and BlpE were found to be immunologically cross-reactive with the other proteins encoded by the locus. Northern hybridization indicated that only blpA was expressed under in vitro growth conditions. In addition, convalescent swine serum recognized recombinant BlpA in immunoblotting experiments, demonstrating that it is also expressed during infection. Analysis of the translated sequences of each of the genes revealed atypical spirochetal signal peptidase II recognition sites, and BlpA was shown to be a lipoprotein by incorporation of tritiated palmitic acid. Native BlpA was completely extracted by Triton X-114 (TX-114) and partitioned exclusively into the detergent phase during extraction of whole B. hyodysenteriae cells, implicating it as a component of the brachyspiral outer membrane. Consistent with the transcriptional and immunological data, analysis of the brachyspiral outer membrane proteome also revealed expression of only BlpA. Notably, inactivation of blpA homologs in Haemophilus influenzae and Salmonella enteritidis resulted in attenuation of virulence.
Collapse
|
59
|
Abstract
Protein tyrosine kinases and protein tyrosine phosphatases play a key role in cell signaling, and the recent success of specific tyrosine kinase inhibitors in cancer treatment strongly validates the clinical relevance of basic research on tyrosine phosphorylation. Functional profiling of the tyrosine phosphoproteome is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel molecular diagnostic approaches. The ultimate aim of current mass spectrometry-based phosphoproteomic approaches is the comprehensive characterization of the phosphoproteome. However, current methods are not yet sensitive enough for routine detection of a large percentage of tyrosine-phosphorylated proteins, which are generally of low abundance. In this article, we discuss alternative methods that exploit Src homology 2 (SH2) domains for profiling the tyrosine phosphoproteome. SH2 domains are small protein modules that bind specifically to tyrosine-phosphorylated peptides; there are more than 100 SH2 domains in the human genome, and different SH2 domains bind to different classes of tyrosine-phosphorylated ligands. These domains play a critical role in the propagation of signals in the cell, mediating the relocalization and complex formation of proteins in response to changes in tyrosine phosphorylation. We have developed an SH2 profiling method based on far-Western blotting, in which a battery of SH2 domains is used to probe the global state of tyrosine phosphorylation. Application to the classification of human malignancies suggests that this approach has potential as a molecular diagnostic tool. We also describe ongoing efforts to modify and improve SH2 profiling, including the development of a multiplexed assay system that will allow high-throughput functional profiling of the tyrosine phosphoproteome.
Collapse
|
60
|
Nakatomi A, Yazawa M. Identification and characterization of a novel calcineurin-binding protein in scallop testis. J Biochem 2003; 133:159-64. [PMID: 12761177 DOI: 10.1093/jb/mvg032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Calcineurin has been inferred to function in meiosis and spermiogenesis in testis. Here, we identified a calcineurin-binding protein in scallop testis by Far-Western blot analysis using purified calcineurin as a probe. The molecular mass of the binding protein estimated on the blot was 75 kDa. The isolated cDNA clone encoded a novel 474-residue protein, named CaNBP75. The region between T6 and A210 of CaNBP75 was responsible for the interaction with calcineurin. CaNBP75 was predominantly expressed in testis and ovary of scallop. Thus, CaNBP75 may modulate the physiological function of calcineurin in the testis and ovary of scallop, such as in spermiogenesis or meiosis.
Collapse
|
61
|
Kim WS, Tanaka T, Kumura H, Shimazaki KI. Lactoferrin-binding proteins in Bifidobacterium bifidum. Biochem Cell Biol 2002; 80:91-4. [PMID: 11908648 DOI: 10.1139/o01-226] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lactoferrin is an iron-binding glycoprotein and its bacteriostatic and bactericidal effects on gram-positive and gram-negative bacteria are well known. On the other hand, it is known that certain kinds of lactic acid bacteria are resistant to its antibacterial effects. Moreover, it is reported that lactoferrin promotes the growth of bifidobacteria in in vitro and in vivo experiments. In our experiments, lactoferrin-binding protein was found both in the membrane and cytosolic fractions of Bifidobacterium bifidum Bb-11. The bifidobacteria were grown in anaerobic conditions with lactobacilli MRS broth containing cysteine, harvested by centrifugation, and processed by sonication. The lactoferrin-binding proteins on the PVDF-membrane transferred after SDS-PAGE were detected by far-Western (western-Western) method using biotinylated lactoferrin and streptavidin-labelled horse radish peroxidase. The molecular weights of the lactoferrin binding protein detected in the membrane fraction were estimated to be 69 kDa and those in cytosolic fractions were 20, 35, 50, and 66 kDa.
Collapse
|
62
|
Van de Casteele M, Omasta A, Janssens S, Roskams T, Desmet V, Nevens F, Fevery J. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut 2002; 51:440-5. [PMID: 12171971 PMCID: PMC1773350 DOI: 10.1136/gut.51.3.440] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl(4)) cirrhotic rat liver. AIMS To study whether an increase in hepatic NOS 3 could be obtained in the CCl(4) cirrhotic rat liver by in vivo cDNA transfer and to investigate a possible effect on portal pressure. METHODS Hepatic NOS 3 immunohistochemistry and western blotting were used to measure the amount of NOS 3 protein. Recombinant adenovirus, carrying cDNA encoding human NOS 3, was injected into the portal vein of CCl(4) cirrhotic rats. Cirrhotic controls received carrier buffer, naked adenovirus, or adenovirus carrying the lac Z gene. RESULTS NOS 3 immunoreactivity and amount of protein (western blotting) were significantly decreased in CCl(4) cirrhotic livers. Following cDNA transfer, NOS 3 expression and the amount of protein were partially restored. Portal pressure was 11.4 (1.6) mm Hg in untreated cirrhotic (n=9) and 11.8 (0.6) in lac Z transfected (n=4) cirrhotic rats but was reduced to 7.8 (1.0) mm Hg (n=9) five days after NOS 3 cDNA transfer. No changes were observed in systemic haemodynamics, in liver tests or urinary nitrates, or in NOS 3 expression in lung or kidney, indicating a highly selective transfer. CONCLUSIONS NOS 3 cDNA transfer to cirrhotic rat liver is feasible and the increase in hepatic NOS 3 leads to a marked decrease in portal hypertension without systemic effects. These data indicate a major haemodynamic role of intrahepatic NOS 3 in the pathogenesis of portal hypertension in CCl(4) cirrhosis.
Collapse
|
63
|
Castillo J, Zúñiga A, Franco L, Rodrigo MI. A chromatin-associated protein from pea seeds preferentially binds histones H3 and H4. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4641-8. [PMID: 12230577 DOI: 10.1046/j.1432-1033.2002.03164.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pisum sativum p16 is a protein present in the chromatin of ungerminated embryonic axes. The purification of p16 and the isolation of a cDNA clone of psp54, the gene encoding its precursor have been recently reported [Castillo, J., Rodrigo, M. I., Márquez, J. A., Zúñiga, A and Franco, L. (2000) Eur. J. Biochem.267, 2156-2165]. In the present paper, we present data showing that p16 is a nuclear protein. First, after subcellular fractionation, p16 was clearly found in nuclei, although the protein is also present in other organelles. Immunocytochemical methods also confirm the above results. p16 seems to be firmly anchored to chromatin, as only extensive DNase I digestion of nuclei allows its release. Far Western and pull-down experiments demonstrate a strong in vitro interaction between p16 and histones, especially H3 and H4, suggesting that p16 is tethered to chromatin through histones. Because the psp54 gene is specifically expressed during the late development of seed, the role of p16 might be related to the changes that occur in chromatin during the processes of seed maturation and germination.
Collapse
|
64
|
Fan MM, Tamburic L, Shippam-Brett C, Zagrodney DB, Astell CR. The small 11-kDa protein from B19 parvovirus binds growth factor receptor-binding protein 2 in vitro in a Src homology 3 domain/ligand-dependent manner. Virology 2001; 291:285-91. [PMID: 11878897 DOI: 10.1006/viro.2001.1217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small 11-kDa proteins of B19 parvovirus contain three proline-rich regions which conform to consensus Src homology 3 (SH3) ligand sequences present in signaling molecules within the cell. We have shown that the B19 11-kDa proteins specifically interact with the growth factor receptor-binding protein 2 (Grb2) in vitro. Mutation of prolines within one of the three SH3 ligand-like sequences decreases the binding of B19 11-kDa proteins to Grb2, suggesting that the proline-rich region is involved in the B19 11-kDa/Grb2 interaction. Therefore, the B19 11-kDa proteins may function to alter Grb2-mediated signaling by disrupting SH3 domain/ligand interactions. These results implicate the 11-kDa proteins in B19 pathogenesis through perturbation of normal cellular signaling pathways.
Collapse
|
65
|
Brasher BB, Roumiantsev S, Van Etten RA. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Oncogene 2001; 20:7744-52. [PMID: 11753652 DOI: 10.1038/sj.onc.1204978] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2000] [Revised: 08/22/2001] [Accepted: 09/18/2001] [Indexed: 11/09/2022]
Abstract
The catalytic activity of the c-Abl tyrosine kinase is tightly regulated by its Src homology 3 (SH3) domain through a complex mechanism that may involve intramolecular binding to Pro242 in the linker region between the SH2 and catalytic domains as well as interactions with a trans-inhibitor. We analysed the effect of mutation or replacement of SH3 on c-Abl tyrosine kinase activity and transformation. Random mutagenesis of SH3 identified several novel point mutations that dysregulated c-Abl kinase activity in vivo, but the RT loop was insensitive to mutational activation. Activating SH3 mutations abolished binding of proline-rich SH3 ligands in vitro, while mutations at Ser140 in the connector between the SH3 and SH2 domains activated Abl kinase activity in vivo and in vitro but did not impair SH3 ligand-binding. Abl was regulated efficiently when its SH3 domain was replaced with a heterologous SH3 from c-Src that binds a different spectrum of proline-rich ligands, but not by substitution of a modular WW domain with similar ligand-binding specificity. These results suggest that the SH3 domain regulates Abl principally by binding to the atypical intramolecular ligand Pro242 rather than a canonical PxxP ligand. Coordination between the SH3 and SH2 domains mediated by the connector region may be required for regulation of Abl even in the absence of SH2 ligand binding.
Collapse
|
66
|
Pedrazzi G, Perrera C, Blaser H, Kuster P, Marra G, Davies SL, Ryu GH, Freire R, Hickson ID, Jiricny J, Stagljar I. Direct association of Bloom's syndrome gene product with the human mismatch repair protein MLH1. Nucleic Acids Res 2001; 29:4378-86. [PMID: 11691925 PMCID: PMC60193 DOI: 10.1093/nar/29.21.4378] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bloom's syndrome (BS) is a rare genetic disorder characterised by genomic instability and cancer susceptibility. BLM, the gene mutated in BS, encodes a member of the RecQ family of DNA helicases. Here, we identify hMLH1, which is involved in mismatch repair (MMR) and recombination, as a protein that directly interacts with BLM both in vivo and in vitro, and that the two proteins co-localise to discrete nuclear foci. The interaction between BLM and hMLH1 appears to have been evolutionarily conserved, as Sgs1p, the Saccharomyces cerevisiae homologue of BLM, interacts with yeast Mlh1p. However, cell extracts derived from BS patients show no obvious defects in MMR compared to wild-type- and BLM-complemented BS cell extracts. We conclude that the hMLH1-BLM interaction is not essential for post-replicative MMR, but, more likely, is required for some aspect of genetic recombination.
Collapse
|
67
|
Li S, Yu B, An P, Liang Z, Yuan S. [Expression of thymidylate synthase gene and recurrence of colorectal carcinoma: their relation and clinical significance]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2000; 38:781-3. [PMID: 11832164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
OBJECTIVE To study the relationship between expression of thymidylate synthase (TS) gene and recurrence of colorectal carcinoma and its effect on clinical treatment. METHODS RT-PCR was used to detect the expression of TS gene in primary foci, para-tumoral intestine mucosa, local recurrence, abdominal-pelvic dissemination and hepatic metastasis in 68 cases of colorectal carcinoma, and TS protein was examined with western blot. RESULTS In 68 cases of colorectal carcinoma, the expression of TS gene in primary foci was 22.1% (15/68); and the positive rates of TS gene expression in local recurrence, abdominal-pelvic dissemination and hepatic metastasis were 88.5% (23/26), 85.0% (17/20), 40.9% (9/20) respectively. The rates of TS protein expression in primary foci, local recurrence, abdominal-pelvic dissemination and hepatic metastasis were 22.1% (15/68), 84.6% (22/26), 80.0% (16/20), 36.4% (8/22) respectively. The negative expression of TS gene and TS protein was detected in paratumoral intestinal mucosa. The results of TS gene and TS protein expression were identical with those the two methods. The positive rates of TS gene and TS protein expression in diversified recurrence foci and metastasis were higher than those in primary foci (P < 0.01). The differences of TS gene and TS protein expression rates between recurrence and hepatic metastasis were significant (P < 0.01). The expression rates of TS gene and TS protein in local recurrence and abdominal-pelvic dissemination tissues were higher than those in hepatic metastasis. CONCLUSION Overexpression of TS gene plays an important role in the process of local recurrence and abdominal-pelvic dissemination of colorectal carcinoma.
Collapse
|