51
|
Scott WJ, Schreiner CM, Goetz JA, Robbins D, Bell SM. Cadmium-induced postaxial forelimb ectrodactyly: association with altered sonic hedgehog signaling. Reprod Toxicol 2005; 19:479-85. [PMID: 15749261 DOI: 10.1016/j.reprotox.2004.11.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/28/2004] [Accepted: 11/06/2004] [Indexed: 10/25/2022]
Abstract
Administration of CdSO(4) to C57BL/6 mice at day 9.5 of gestation induces a high incidence of postaxial forelimb ectrodactyly in the offspring. We propose that Cd(2+) exposure impairs the process of anterior/posterior formation in the limb bud, a process that is directed by Sonic hedgehog (Shh) signaling. We show that exposure of the mouse embryo to Cd(2+) disrupts Shh signaling as measured by polarizing activity of mouse limb bud ZPA grafted to a host chick wing, and activity of a Gli:luciferase reporter exposed to limb bud lysates. Yet the expression of Shh and its translation are not affected by Cd(2+) exposure. We propose that teratogen exposure affects the processing of Shh in the cells in which it is made.
Collapse
|
52
|
Sánchez-Villagra MR, Menke PR. The mole's thumb — evolution of the hand skeleton in talpids (Mammalia). ZOOLOGY 2005; 108:3-12. [PMID: 16351950 DOI: 10.1016/j.zool.2004.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 07/11/2004] [Indexed: 11/28/2022]
Abstract
Osteological specimens representing 15 out of the 16 currently recognized talpid genera were examined and scored for seven discrete morphological characters of the hand. The phylogenetic distribution of these characters was studied in the context of alternative hypotheses of talpid relationships, using three species of shrews and a hedgehog as outgroups. All talpids show a similar number and arrangement of carpal bones. The most obvious differences concern the presence of additional sesamoid bones, the relative size of the os falciforme when present, and the degree of fusion of the scaphoid and lunate in the proximal carpal row. Marked differences in the relative length and proportions of the metacarpals also exist. The development of the carpals in Talpa europaea was studied through examination of histological sections of the hand of an embryo and a neonate. Whereas carpal anatomy in the neonate mirrors the arrangement and proportions of the adult, in the embryo the scaphoid and lunate are still separate, there are no signs of the os falciforme, and the size proportions of metacarpals to carpals are obviously different to those of the adult. A prehallux or tibial sesamoid, serial homologue to the os falciforme or prepollex (a radial sesamoid), does not have an obvious functional role, and its presence might be the result of a common epigenetic control in the hand and the foot resulting in a non-adaptive structure in the latter.
Collapse
|
53
|
Chen CH, Cretekos CJ, Rasweiler JJ, Behringer RR. Hoxd13 expression in the developing limbs of the short-tailed fruit bat, Carollia perspicillata. Evol Dev 2005; 7:130-41. [PMID: 15733311 DOI: 10.1111/j.1525-142x.2005.05015.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bat forelimbs are highly specialized for sustained flight, providing a unique model to explore the genetic programs that regulate vertebrate limb diversity. Hoxd9-13 genes are important regulators of stylopodium, zeugopodium, and autopodium development and thus evolutionary changes in their expression profiles and biochemical activities may contribute to divergent limb morphologies in vertebrates. We have isolated the genomic region that includes Hoxd12 and Hoxd13 from Carollia perspicillata, the short-tailed fruit bat. The bat Hoxd13 gene encodes a protein that shares 95% identity with human and mouse HOXD13. The expression pattern of bat Hoxd13 mRNA during limb development was compared with that of mouse. In bat and mouse hindlimbs, the expression patterns of Hoxd13 are relatively similar. However, although the forelimb Hoxd13 expression patterns in both organisms during early limb bud stages are similar, at later stages they diverge; the anterior expression boundary of bat Hoxd13 is posterior-shifted relative to the mouse. These findings, compared with the Hoxd13 expression profiles of other vertebrates, suggest that divergent Hoxd13 expression patterns may contribute to limb morphological variation.
Collapse
|
54
|
Kimura S, Schaumann BA, Shiota K. Ectopic dermal ridge configurations on the interdigital webbings ofHammertoe mutant mice (Hm): Another possible role of programmed cell death in limb development. ACTA ACUST UNITED AC 2005; 73:92-102. [PMID: 15678493 DOI: 10.1002/bdra.20108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The mechanism underlying the development of aberrant phalangeal pads and dermal ridge configurations in malformed limbs is not well understood. The forelimbs of Hammertoe (Hm) mutant mouse fetuses were examined sequentially to clarify the relationship between the occurrence of abnormal programmed cell death (PCD) and the formation of phalangeal pads and dermal ridge patterns. METHODS Relevant morphological features, with special emphasis on pads and dermal ridge configurations, were inspected on the exposed dermal surface of the forelimbs of adult Hm mutant mice. The forelimbs of Hm mutant mouse fetuses (GD13-18) and newborns were examined histologically. The forelimbs of GD13 fetuses were subjected to Nile blue (NB) vital staining for in situ labeling of PCD. RESULTS In the forelimbs of +/+ mice, the formation of dermal ridges was confined to pads, while in Hm/+ and Hm/Hm animals, which have interdigital webbing involving digits II-V, dermal ridges were formed also on the ventral side of the webbing, specifically on its lateral margins between the neighboring digits and on the medial margin of the webbing extending toward the palmar pad. PCD was decreased in the interdigital zones II-IV in GD13 Hm/+ and Hm/Hm fetuses. CONCLUSIONS Reduced PCD interdigital tissue of Hm/+ and Hm/Hm fetuses may result in the failure of physiological elimination of interdigital cells and in the persistence of soft tissue webbing between digits. The failure of PCD to occur may also interrupt the interdigital surviving cells to reach the neighboring digits and the distal area of the palm, thereby producing ectopic dermal ridges. It seems that interdigital PCD contributes not only to digit separation but also to the development of digital and palmar pads.
Collapse
|
55
|
Pröls F, Ehehalt F, Rodriguez-Niedenführ M, He L, Huang R, Christ B. The role of Emx2 during scapula formation. Dev Biol 2005; 275:315-24. [PMID: 15501221 DOI: 10.1016/j.ydbio.2004.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 08/03/2004] [Accepted: 08/03/2004] [Indexed: 11/16/2022]
Abstract
The scapula is subdivided into head, collum, and blade. Due to the expression pattern of Emx2 and the absence of the scapula blade in Emx2 knockout mice, it has been suggested that Emx2 is involved in the formation of the scapula. Micromanipulation experiments revealed that ectoderm ablation over the somites does not affect Emx2 expression but inhibits the formation of the scapula blade indicating that Emx2 is not sufficient to induce scapula blade formation. Furthermore, we show that the formation of the scapula head is dependent, scapula blade formation independent of FGFR-1-mediated signaling. Overexpression of Emx2 does not influence scapula blade formation but leads to the development of an additional posterior digit in the anterior border of the limb. Taken together, the data presented implicate that Emx2 expression is necessary but not sufficient for the development of the scapula blade. It is not a marker for scapula development but rather provides positional information along the proximodistal and anterior-posterior limb axes, whereas the specificity of the developing skeletal elements is determined by the concerted interaction of Emx2 with other factors.
Collapse
|
56
|
Shou S, Scott V, Reed C, Hitzemann R, Stadler HS. Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev Dyn 2005; 234:74-89. [PMID: 16059910 DOI: 10.1002/dvdy.20514] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To gain insight into the coordination of gene expression profiles during forelimb and hindlimb differentiation, a transcriptome analysis of mouse embryonic autopod tissues was performed using Affymetrix Murine Gene Chips (MOE-430). Forty-four transcripts with expression differences higher than 2-fold (T test, P < or = 0.05) were detected between forelimb and hindlimb tissues including 38 new transcripts such as Rdh10, Frzb, Tbx18, and Hip that exhibit differential limb expression. A comparison of gene expression profiles in the forelimb, hindlimb, and brain revealed 24 limb-signature genes whose expression was significantly enriched in limb autopod versus brain tissue (fold change >2, P < or = 0.05). Interestingly, the genes exhibiting enrichment in the developing autopod also segregated into significant fore- and hindlimb-specific clusters (P < or = 0.05) suggesting that by E 12.5, unique gene combinations are being used during the differentiation of each autopod type.
Collapse
|
57
|
Boulet AM, Moon AM, Arenkiel BR, Capecchi MR. The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth. Dev Biol 2004; 273:361-72. [PMID: 15328019 DOI: 10.1016/j.ydbio.2004.06.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/16/2004] [Accepted: 06/21/2004] [Indexed: 11/23/2022]
Abstract
Although numerous molecules required for limb bud formation have recently been identified, the molecular pathways that initiate this process and ensure that limb formation occurs at specific axial positions have yet to be fully elucidated. Based on experiments in the chick, Fgf8 expression in the intermediate mesoderm (IM) has been proposed to play a critical role in the initiation of limb bud outgrowth via restriction of Fgf10 expression to the appropriate region of the lateral plate mesoderm. Contrary to the outcome predicted by this model, ablation of Fgf8 expression in the intermediate mesoderm before limb bud initiation had no effect on initial limb bud outgrowth or on the formation of normal limbs. When their expression patterns were first elucidated, both Fgf4 and Fgf8 were proposed to mediate critical functions of the apical ectodermal ridge (AER), which is required for proper limb bud outgrowth. Although mice lacking Fgf4 in the AER have normal limbs, limb development is severely affected in Fgf8 mutants and certain skeletal elements are not produced. By creating mice lacking both Fgf4 and Fgf8 function in the forelimb AER, we show that limb bud mesenchyme fails to survive in the absence of both FGF family members. Thus, Fgf4 is responsible for the partial compensation of distal limb development in the absence of Fgf8. A prolonged period of increased apoptosis, beginning at 10 days of gestation in a proximal-dorsal region of the limb bud, leads to the elimination of enough mesenchymal cells to preclude formation of distal limb structures. Expression of Shh and Fgf10 is nearly abolished in double mutant limb buds. By using a CRE driver expressed in both forelimb and hindlimb ectoderm to inactivate Fgf4 and Fgf8, we have produced mice lacking all limbs, allowing a direct comparison of FGF requirements in the two locations.
Collapse
|
58
|
Stoilov I, Rezaie T, Jansson I, Schenkman JB, Sarfarazi M. Expression of cytochrome P4501b1 (Cyp1b1) during early murine development. Mol Vis 2004; 10:629-36. [PMID: 15359218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
PURPOSE To examine the embryonic expression of cytochrome P4501b1 (Cyp1b1) gene by whole mount in situ hybridization. METHODS FVB/NcrlBR mouse embryos staged at 9.5, 10.5, and 11.5 dpc were obtained by timed breeding experiments. Antisense and sense RNA probes labeled with digoxigenin UTP were generated by in vitro transcription of an 848 bp Cyp1b1 cDNA fragment that was subcloned into transcription vector pCRII-TOPO. The digoxigenin labeled RNA was localized using an alkaline phosphatase conjugated anti-digoxigenin Fab fragment. Colorimetric detection of the digoxigenin labeled probe was performed with substrate solution containing 4-nitro-blue tetrazolium chloride (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP). RESULTS During early stages of murine development Cyp1b1 mRNA was detected in the developing eye, hindbrain, branchial arches, forelimb bud, ligaments supporting the liver primordium and developing kidney. In the eye and forelimb bud Cyp1b1 displayed restricted expression along the axes of development. In the developing eye Cyp1b1 exhibited dorsal expression with respect to the dorso-distal/proximo-ventral axis and anterior expression with respect to the anterior-nasal/posterior-temporal axis. In the forelimb bud Cyp1b1 expression was localized posteriorly. The polarity of Cyp1b1 expression was lost at 11.5 dpc, at which time expression was additionally seen in ventral (eye) and anterior (forelimb bud) areas. CONCLUSIONS The spatio-temporal expression patterns observed in this study suggest that during early stages of murine development, Cyp1b1 participates in establishment and/or maintenance of polarity along the axes of embryonic development. Expression of Cyp1b1 in the dorso-distal end of the optic cup, from which the ciliary body and iris are derived, correlates with the expression patterns seen in adult tissues and the abnormal development of these structures as part of the glaucoma phenotypes resulting from Cyp1b1 mutations.
Collapse
|
59
|
Prochel J, Vogel P, Sánchez-Villagra MR. Hand development and sequence of ossification in the forelimb of the European shrew Crocidura russula (Soricidae) and comparisons across therian mammals. J Anat 2004; 205:99-111. [PMID: 15291793 PMCID: PMC1571333 DOI: 10.1111/j.0021-8782.2004.00321.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hand development in the European shrew Crocidura russula is described, based on the examination of a cleared and double-stained ontogenetic series and histological sections of a c. 20-day-old embryo and a neonate. In the embryo all carpal elements are still mesenchymal condensations, and there are three more elements than in the adult stage: the 'lunatum', which fuses with the scaphoid around birth; a centrale, which either fuses with another carpal element or just disappears later in ontogeny; and the anlage of an element that later fuses with the radius. Carpal arrangement in the neonate and the adult is the same. In order to compare the relative timing of the onset of ossification in forelimb bones in C. russula with that of other therians, we built up two matrices of events based on two sets of data and used the event-pair method. In the first analysis, ossification of forelimb elements in general was examined, including that of the humerus, radius, ulna, the first carpal and metacarpal to ossify, and the phalanges of the third digit. The second analysis included each carpal, humerus, radius, ulna, the first metacarpal and the first phalanx to ossify. Some characters (= event-pairs) provide synapomorphies for some clades examined. There have been some shifts in the timing of ossification apparently not caused by ecological and/or environmental influences. In two species (Oryctolagus and Myotis), there is a tendency to start the ossification of the carpals relatively earlier than in all other species examined, the sauropsid outgroups included.
Collapse
|
60
|
Kobayashi K, Takahashi M, Matsushita N, Miyazaki JI, Koike M, Yaginuma H, Osumi N, Kaibuchi K, Kobayashi K. Survival of developing motor neurons mediated by Rho GTPase signaling pathway through Rho-kinase. J Neurosci 2004; 24:3480-8. [PMID: 15071095 PMCID: PMC6729735 DOI: 10.1523/jneurosci.0295-04.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A variety of neurons generated during embryonic development survive or undergo programmed cell death (PCD) at later developmental stages. Survival or death of developing neurons is generally considered to depend on trophic support from various target tissues. The small GTPase Rho regulates diverse cellular processes such as cell morphology, cell adhesion, cell motility, and apoptosis. Rho-dependent serine-threonine protein kinase (Rho-kinase-ROK-ROCK), one of the effector proteins, transmits signals for some Rho-mediated processes. Here, we report the in vivo role of the Rho signaling pathway through Rho-kinase during development of motor neurons (MNs) in the spinal cord. We performed conditional expression of a dominant-negative form for RhoA (RhoA DN) or for Rho-kinase (Rho-K DN) in transgenic mice by using the Cre-loxP system to suppress the activity of these signaling molecules in developing MNs. Expression of RhoA DN reduced the number of MNs in the spinal cord because of increased apoptosis while preserving the gross patterning of motor axons. Expression of Rho-K DN produced developmental defects similar to those observed in RhoA DN expression. In addition, analysis of transgenic mice expressing Rho-K DN showed that the increased apoptosis of MNs was induced at the early embryonic stages before the initiation of PCD, and that MN death at the late embryonic stages corresponding to the period of PCD was moderately enhanced in the transgenic mice. These findings indicate that the Rho signaling pathway, primarily through Rho-kinase, plays a crucial role in survival of spinal MNs during embryogenesis, particularly at the early developmental stages.
Collapse
|
61
|
Abstract
Anterior-to-posterior patterning, the process whereby our digits are differently shaped, is a key aspect of limb development. It depends on the localized expression in posterior limb bud of Sonic hedgehog (Shh) and the morphogenetic potential of its diffusing product. By using an inversion of and a large deficiency in the mouse HoxD cluster, we found that a perturbation in the early collinear expression of Hoxd11, Hoxd12, and Hoxd13 in limb buds led to a loss of asymmetry. Ectopic Hox gene expression triggered abnormal Shh transcription, which in turn induced symmetrical expression of Hox genes in digits, thereby generating double posterior limbs. We conclude that early posterior restriction of Hox gene products sets up an anterior-posterior prepattern, which determines the localized activation of Shh. This signal is subsequently translated into digit morphological asymmetry by promoting the late expression of Hoxd genes, two collinear processes relying on opposite genomic topographies, upstream and downstream Shh signaling.
Collapse
|
62
|
Abstract
Hyperphalangy is a digit morphology in which increased numbers of phalanges are arranged linearly within a digit beyond the plesiomorphic condition. We analyse patterns and processes of hyperphalangy by considering previous definitions and occurrences of hyperphalangy among terrestrial and secondarily aquatic extant and fossil taxa (cetaceans, ichthyosaurs, plesiosaurs and mosasaurs), and recent studies that elucidate the factors involved in terrestrial autopod joint induction. Extreme hyperphalangy, defined as exceeding a threshold condition of 4/6/6/6/6, is shown only to be found among secondarily aquatic vertebrates with a flipper limb morphology. Based on this definition, hyperphalangy occurs exclusively in digits II and III among extant cetaceans. Previous reports of cetacean embryos having more phalanges than adults is clarified and shown to be based on cartilaginous elements not ossified phalanges. Developmental prerequisites for hyperphalangy include lack of cell death in interdigital mesoderm (producing a flipper limb) and maintenance of a secondary apical ectodermal ridge (AER), which initiates digit elongation and extra joint patterning. Factors of the limb-patterning pathways located in the interdigital mesoderm, including bone morphogenetic proteins (BMPs), BMP antagonists, fibroblast growth factors (FGFs), growth/differentiation factor-5 (GDF-5), Wnt-14 and ck-erg, are implicated in maintenance of the flipper limb, secondary AER formation, digit elongation and additional joint induction leading to hyperphalangy.
Collapse
|
63
|
Izaguirre JA, Chaturvedi R, Huang C, Cickovski T, Coffland J, Thomas G, Forgacs G, Alber M, Hentschel G, Newman SA, Glazier JA. COMPUCELL, a multi-model framework for simulation of morphogenesis. Bioinformatics 2004; 20:1129-37. [PMID: 14764549 DOI: 10.1093/bioinformatics/bth050] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION CompuCell is a multi-model software framework for simulation of the development of multicellular organisms known as morphogenesis. It models the interaction of the gene regulatory network with generic cellular mechanisms, such as cell adhesion, division, haptotaxis and chemotaxis. A combination of a state automaton with stochastic local rules and a set of differential equations, including subcellular ordinary differential equations and extracellular reaction-diffusion partial differential equations, model gene regulation. This automaton in turn controls the differentiation of the cells, and cell-cell and cell-extracellular matrix interactions that give rise to cell rearrangements and pattern formation, e.g. mesenchymal condensation. The cellular Potts model, a stochastic model that accurately reproduces cell movement and rearrangement, models cell dynamics. All these models couple in a controllable way, resulting in a powerful and flexible computational environment for morphogenesis, which allows for simultaneous incorporation of growth and spatial patterning. RESULTS We use CompuCell to simulate the formation of the skeletal architecture in the avian limb bud. AVAILABILITY Binaries and source code for Microsoft Windows, Linux and Solaris are available for download from http://sourceforge.net/projects/compucell/
Collapse
|
64
|
Mic FA, Duester G. Patterning of forelimb bud myogenic precursor cells requires retinoic acid signaling initiated by Raldh2. Dev Biol 2004; 264:191-201. [PMID: 14623241 DOI: 10.1016/s0012-1606(03)00403-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Limb skeletal muscle is derived from cells of the dermomyotome that detach and migrate into the limb buds to form separate dorsal and ventral myogenic precursor domains. Myogenic precursor cell migration is dependent on limb bud mesenchymal expression of hepatocyte growth factor/scatter factor (Hgf), which encodes a secreted ligand that signals to dermomyotome through the membrane receptor tyrosine kinase Met. Here, we find that correct patterning of Hgf expression in forelimb buds is dependent on retinoic acid (RA) synthesized by retinaldehyde dehydrogenase 2 (Raldh2) expressed proximally. Raldh2(-/-) forelimb buds lack RA and display an anteroproximal shift in expression of Hgf such that its normally separate dorsal and ventral expression domains are joined into a single anterior-proximal domain. Met and MyoD are expressed in this abnormal domain, indicating that myogenic cell migration and differentiation are occurring in the absence of RA, but in an abnormal location. An RA-reporter transgene revealed that RA signaling in the forelimb bud normally exists in a gradient across the proximodistal axis, but uniformly across the anteroposterior axis, with all proximal limb bud cells exhibiting activity. Expression of Bmp4, an inhibitor of Hgf expression, is increased and shifted anteroproximally in Raldh2(-/-) limb buds, thus encroaching into the normal expression domain of Hgf. Our studies suggest that RA signaling provides proximodistal information for limb buds that counterbalances Bmp signaling, which in turn helps mediate proximodistal and anteroposterior patterning of Hgf expression to correctly direct migration of Met-expressing myogenic precursor cells.
Collapse
|
65
|
Krebs O, Schreiner CM, Scott WJ, Bell SM, Robbins DJ, Goetz JA, Alt H, Hawes N, Wolf E, Favor J. Replicated anterior zeugopod (raz): a polydactylous mouse mutant with lowered Shh signaling in the limb bud. Development 2003; 130:6037-47. [PMID: 14597572 DOI: 10.1242/dev.00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A unique limb phenotype is described in a radiation-induced mutant mouse resulting from an inversion of a proximal segment of chromosome 5. The limb phenotype in the homozygous mutant presents with two anterior skeletal elements in the zeugopod but no posterior bone, hence the name replicated anterior zeugopod, raz. The zeugopod phenotype is accompanied by symmetrical central polydactyly of hand and foot. The chromosomal inversion includes the Shh gene and the regulatory locus, located ∼1 Mb away, within the Lmbr1 gene. In homozygous mutants, the expression of Shh mRNA and Shh protein is severely downregulated to about 20% of wild-type limb buds, but Shh expression appears normal throughout the remainder of the embryo. Correspondingly, Gli3 expression is upregulated and posteriorly expanded in the raz/raz limb bud. We propose that the double anterior zeugopod and symmetrical central polydactyly are due to an increased and uniform concentration of the Gli3 repressor form because of lowered Shh signaling.
Collapse
|
66
|
Boulet AM, Capecchi MR. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 2003; 131:299-309. [PMID: 14668414 DOI: 10.1242/dev.00936] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutations in the 5' or posterior murine Hox genes (paralogous groups 9-13) markedly affect the formation of the stylopod, zeugopod and autopod of both forelimbs and hindlimbs. Targeted disruption of Hoxa11 and Hoxd11 or Hoxa10, Hoxc10 and Hoxd10 result in gross mispatterning of the radius and ulna or the femur, respectively. Similarly, in mice with disruptions of both Hoxa13 and Hoxd13, development of the forelimb and hindlimb autopod is severely curtailed. Although these examples clearly illustrate the major roles played by the posterior Hox genes, little is known regarding the stage or stages at which Hox transcription factors intersect with the limb development program to ensure proper patterning of the principle elements of the limb. Moreover, the cellular and/or molecular bases for the developmental defects observed in these mutant mice have not been described. In this study, we show that malformation of the forelimb zeugopod in Hoxa11/Hoxd11 double mutants is a consequence of interruption at multiple steps during the formation of the radius and ulna. In particular, reductions in the levels of Fgf8 and Fgf10 expression may be related to the observed delay in forelimb bud outgrowth that, in turn, leads to the formation of smaller mesenchymal condensations. However, the most significant defect appears to be the failure to form normal growth plates at the proximal and distal ends of the zeugopod bones. As a consequence, growth and maturation of these bones is highly disorganized, resulting in the creation of amorphous bony elements, rather than a normal radius and ulna.
Collapse
|
67
|
Pluto CP, Lane RD, Chiaia NL, Stojic AS, Rhoades RW. Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats. J Neurophysiol 2003; 90:1842-51. [PMID: 12773492 DOI: 10.1152/jn.00065.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals respond to hindlimb stimulation, very few respond to stimulation of the face (vibrissae or lower jaw), which is represented in SI just lateral to the forelimb. The lateral to medial development of SI may influence the capacity of hindlimb (but not face) inputs to "invade" the forelimb-stump region in neonatal amputees. The SI forelimb-stump was mapped in adult (>60 days) rats that had sustained amputation on embryonic day (E) 16, on P0, or during adulthood. GABA receptors were blocked and subsequent mapping revealed increases in nonstump inputs in E16 and P0 amputees: fetal amputees exhibited forelimb-stump sites responsive to face (34%), hindlimb (10%), and both (22%); neonatal amputees exhibited 10% face, 39% hindlimb, and 5% both; adult amputees exhibited 10% face, 5% hindlimb, and 0% both, with approximately 80% stump-only sites. These results indicate age-dependent differences in receptive-field reorganization of the forelimb-stump representation, which may reflect the spatiotemporal development of SI. Results from cobalt chloride inactivation of the SI vibrissae region and electrolesioning of the dysgranular cortex suggest that normally suppressed vibrissae inputs to the SI forelimb-stump area originate in the SI vibrissae region and synapse in the dysgranular cortex.
Collapse
|
68
|
Ruyani A, Sudarwati S, Sutasurya LA, Sumarsono SH, Gloe T. The laminin binding protein p40 is involved in inducing limb abnormality of mouse fetuses as the effects of methoxyacetic acid treatment. Toxicol Sci 2003; 75:148-53. [PMID: 12805644 DOI: 10.1093/toxsci/kfg159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study is intended to characterize a protein that is linked with mouse limb teratogenicity as the effects of methoxyacetic acid (MAA) treatment. A single dose of MAA (10 mmol/kg body weight) was given by gavage on gestation day (GD) 11, whereas the control group were administered vehicle only. The pregnant mice were killed at 4 h after MAA treatment, and forelimb buds were isolated from both the control and treated group embryos. Proteins from forelimb buds GD 11 + 4 h, which were precipitated out using 40-60% ammonium sulfate, then were analyzed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2-D SDS-PAGE) technique. The 2-D gels reveal one protein with 41.6 kDa and pI 6.4, which expression was downregulated after MAA treatment. Tentative protein identification via peptide mass database search and definitive protein identification via a primary sequence database search indicate that the protein matches exactly to 34/67 kDa laminin binding protein (LBP; P14206, SwissProt), which is encoded by p40 gene (MGI:105381). The identity was further verified by Western blotting with an antibody against the 67 kDa LBP. The results suggest that MAA treatment to pregnant mice downregulates the LBP-p40 in the forelimb buds.
Collapse
|
69
|
Fischer S, Draper BW, Neumann CJ. The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development 2003; 130:3515-24. [PMID: 12810598 DOI: 10.1242/dev.00537] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The development of vertebrate limb buds is triggered in the lateral plate mesoderm by a cascade of genes, including members of the Fgf and Wnt families, as well as the transcription factor tbx5. Fgf8, which is expressed in the intermediate mesoderm, is thought to initiate forelimb formation by activating wnt2b, which then induces the expression of tbx5 in the adjacent lateral plate mesoderm. Tbx5, in turn, is required for the activation of fgf10, which relays the limb inducing signal to the overlying ectoderm. We show that the zebrafish fgf24 gene, which belongs to the Fgf8/17/18 subfamily of Fgf ligands, acts downstream of tbx5 to activate fgf10 expression in the lateral plate mesoderm. We also show that fgf24 activity is necessary for the migration of tbx5-expressing cells to the fin bud, and for the activation of shh, but not hand2, expression in the posterior fin bud.
Collapse
|
70
|
Abstract
Mice in which all members of the Hox10 or Hox11 paralogous group are disrupted provide evidence that these Hox genes are involved in global patterning of the axial and appendicular skeleton. In the absence of Hox10 function, no lumbar vertebrae are formed. Instead, ribs project from all posterior vertebrae, extending caudally from the last thoracic vertebrae to beyond the sacral region. In the absence of Hox11 function, sacral vertebrae are not formed and instead these vertebrae assume a lumbar identity. The redundancy among these paralogous family members is so great that this global aspect of Hox patterning is not apparent in mice that are mutant for five of the six paralogous alleles.
Collapse
|
71
|
Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM. Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 2003; 34:303-7. [PMID: 12808456 DOI: 10.1038/ng1178] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 05/15/2003] [Indexed: 11/09/2022]
Abstract
During limb outgrowth, signaling by bone morphogenetic proteins (BMPs) must be moderated to maintain the signaling loop between the zone of polarizing activity (ZPA) and the apical ectodermal ridge (AER). Gremlin, an extracellular Bmp antagonist, has been proposed to fulfill this function and therefore be important in limb patterning. We tested this model directly by mutating the mouse gene encoding gremlin (Cktsf1b1, herein called gremlin). In the mutant limb, the feedback loop between the ZPA and the AER is interrupted, resulting in abnormal skeletal pattern. We also show that the gremlin mutation is allelic to the limb deformity mutation (ld). Although Bmps and their antagonists have multiple roles in limb development, these experiments show that gremlin is the principal BMP antagonist required for early limb outgrowth and patterning.
Collapse
|
72
|
Kablar B, Krastel K, Tajbakhsh S, Rudnicki MA. Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Dev Biol 2003; 258:307-18. [PMID: 12798290 DOI: 10.1016/s0012-1606(03)00139-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gene targeting has indicated that Myf5 and MyoD are required for myogenic determination because skeletal myoblasts and myofibers are missing in mouse embryos lacking both Myf5 and MyoD. To investigate the fate of Myf5:MyoD-deficient myogenic precursor cells during embryogenesis, we examined the sites of epaxial, hypaxial, and cephalic myogenesis at different developmental stages. In newborn mice, excessive amounts of adipose tissue were found in the place of muscles whose progenitor cells have undergone long-range migrations as mesenchymal cells. Analysis of the expression pattern of Myogenin-lacZ transgene and muscle proteins revealed that myogenic precursor cells were not able to acquire a myogenic fate in the trunk (myotome) nor at sites of MyoD induction in the limb buds. Importantly, the Myf5-dependent precursors, as defined by Myf5(nlacZ)-expression, deficient for both Myf5 and MyoD, were observed early in development to assume nonmuscle fates (e.g., cartilage) and, later in development, to extensively proliferate without cell death. Their fate appeared to significantly differ from the fate of MyoD-dependent precursors, as defined by 258/-2.5lacZ-expression (-20 kb enhancer of MyoD), of which a significant proportion failed to proliferate and underwent apoptosis. Taken together, these data strongly suggest that Myf5 and MyoD regulatory elements respond differentially in different compartments.
Collapse
|
73
|
Tassava RA, Olsen-Winner CL. Responses to amputation of denervated ambystoma limbs containing aneurogenic limb grafts. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 297:64-79. [PMID: 12911114 DOI: 10.1002/jez.a.10263] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The developing neural tubes and associated neural crest cells were removed from stage 30 Ambystoma maculatum embryos to obtain larvae with aneurogenic forelimbs. Forelimbs were allowed to develop to late 3 digit or early 4 digit stages. Limbs amputated through the mid radius-ulna regenerated typically in the aneurogenic condition. Experiments were designed to test whether grafts of aneurogenic limb tissues would rescue denervated host limb stumps into a regeneration response. In Experiment 1, aneurogenic limbs were removed at the body wall and grafted under the dorsal skin of the distal end of amputated forelimbs of control, normally innervated limbs of locally collected Ambystoma maculatum or axolotl (Ambystoma mexicanum) larvae. In Experiment 1, at the time of grafting or 1, 2, 3, 4, 5, 7, or 8 days after grafting, aneurogenic limbs were amputated level with the original host stump. At 7 and 8 days, this amputation included removing the host blastema adjacent to the graft. The host limb was denervated either one day after grafting or on the day of graft amputation. These chimeric limbs only infrequently exhibited delayed blastema formation. Thus, not only did the graft not rescue the host, denervated limb, but the aneurogenic limb tissues themselves could not mount a regeneration response. In Experiment 2, the grafted aneurogenic limb was amputated through its mid-stylopodium at 3, 4, 5, 7, or 8 days after grafting. By 7 and 8 days after grafting, the host limb stump exhibited blastema formation even with the graft extending out from under the dorsal skin. The host limb was denervated at the time of graft amputation. When graft limbs of Experiment 2 were amputated and host limbs were denervated on days 3, 4, or 5, host regeneration did not progress and graft regeneration did not occur. But, when graft limbs were amputated on days 7 or 8 with concomitant denervation of the host limb, regeneration of the host continued and graft regeneration occurred. Thus, regeneration of the graft was correlated with acquisition of nerve-independence by the host limb blastema. In Experiment 3, aneurogenic limbs were grafted with minimal injury to the dorsal skin of neurogenic hosts. When neurogenic host limbs were denervated and the aneurogenic limbs were amputated through the radius/ulna, regeneration of the aneurogenic limb occurred if the neurogenic limb host was not amputated, but did not occur if the neurogenic limb host was amputated. Results of Experiment 3 indicate that the inhibition of aneurogenic graft limb regeneration on a denervated host limb is correlated with substantial injury to the host limb. In Experiment 4, aneurogenic forelimbs were amputated through the mid-radius ulna and pieces of either peripheral nerve, muscle, blood vessel, or cartilage were grafted into the distal limb stump or under the body skin immediately adjacent to the limb at the body wall. In most cases, peripheral nerve inhibited regeneration, blood vessel tissue sometimes inhibited, but other tissues had no effect on regeneration. Taken together, the results suggest: (1) Aneurogenic limb tissues do not produce the neurotrophic factor and do not need it for regeneration, and (2) there is a regeneration-inhibiting factor produced by the nerve-dependent limb stump/blastema after denervation that prevents regeneration of aneurogenic limbs.
Collapse
|
74
|
Hallgrímsson B, Miyake T, Wilmore K, Hall BK. Embryological origins of developmental stability: size, shape and fluctuating asymmetry in prenatal random bred mice. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 296:40-57. [PMID: 12658710 DOI: 10.1002/jez.b.15] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ontogenetic patterns of fluctuating asymmetry (FA) can be used to test models for the mechanisms underlying stability during embryonic development (developmental stability). In this study, we ask whether developmental processes initially show high levels of instability that are subsequently dampened through active compensatory mechanisms or passive properties of developmental systems or whether the effects of instability accumulate during embryonic development causing random drift away from an earlier stable state. Previous work on this question has dealt with postnatal skeletal growth and thus been unable to effectively distinguish developmental instability from the effects of mechanically mediated variation in bone modeling and remodeling. Here, we report that FA variances of limb skeletal elements in CD1 mice decrease with gestational age from day 14 to birth (day 20.5). Thus, in mouse limbs, skeletal development is characterized by a high level of developmental instability initially that is reduced during subsequent prenatal development. These results are consistent with the existence of active mechanisms that compensate for the effects of minor perturbations or deviations during development. However, they are also consistent with Soule's model of allomeric variation in which the variance of structures is reduced as the number of independent developmental events that produce them increases. This study illustrates that predictions based on morphometric analyses can yield insights into general properties of developmental systems in cases where specific developmental mechanisms are not yet known.
Collapse
|
75
|
Adamska M, MacDonald BT, Meisler MH. Doubleridge, a mouse mutant with defective compaction of the apical ectodermal ridge and normal dorsal-ventral patterning of the limb. Dev Biol 2003; 255:350-62. [PMID: 12648495 DOI: 10.1016/s0012-1606(02)00114-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
doubleridge is a transgene-induced mutation characterized by polydactyly and syndactyly of the forelimbs. The transgene insertion maps to the proximal region of chromosome 19. During embryonic development of the mutant forelimb, delayed elevation and compaction of the apical ectodermal ridge (AER) produces a ridge that is abnormally broad and flat. Fgf8 expression persists in the ventral forelimb ectoderm of the mutant until E10.5. Strong expression of Fgf8 and other markers at the borders of the AER at E11.5 gives the appearance of a double ridge. At E11.5, apoptotic cells are distributed across the broadened ridge, but at E13.5, there is reduced apoptosis in the interdigital regions. The Shh expression domain is widely spaced at the posterior margin of the AER. The doubleridge AER is morphologically similar to that of En1 null mice, but the expression of En1 and Wnt7a is properly restricted in doubleridge, and the dorsal and ventral structures are correctly determined. doubleridge thus exhibits an unusual limb phenotype combining abnormal compaction of the AER with normal dorsal/ventral patterning.
Collapse
|