51
|
Sayono S, Anwar R, Sumanto D. Evaluation of Toxicity in Four Extract Types of Tuba Root against Dengue Vector, Aedes aegypti (Diptera: Culicidae) Larvae. Pak J Biol Sci 2020; 23:1530-1538. [PMID: 33274885 DOI: 10.3923/pjbs.2020.1530.1538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Since the Dengue virus spreads rapidly and the vector becomes resistant to insecticides and larvicides, exploration of new compounds that overcome resistance problems, are easily degraded and do not lead to bioaccumulation, is needed. This study evaluated four extract types of Derris elliptica represented the polar, semi-polar and nonpolar extract against the 3rd-instar larvae of Ae. aegypti and determined the effective concentration among the extracts. MATERIALS AND METHODS The crude extract was obtained from the maceration of root powder of the plant with methanol and subsequently evaporated. The crude extract was diluted in distilled water and partitioned sequentially with ethyl-acetate, n-hexane and water to obtain their fractions. All the fractions were evaporated to obtain their extract types. Initial bioassay test of the extracts with concentration ranges of 50, 100, 500 and 1,000 mg L-1 against Ae. aegypti larvae and resulted in 86-100% larval mortality rates at concentrations of 50 and 100 mg L-1, except for water extract. The lower concentration range of 3, 5, 10, 25, 50 and 100 mg L-1 of three extract types were tested. RESULTS Larval mortality rates of 18.4-100, 1.6-99.2 and 0.8-98.4% with LC50 of 4.088, 14.066 and 21.063 mg L-1, respectively for n-hexane, methanol and ethyl-acetate. FTIR analysis indicated nine lead compounds in which rotenone and ceramides were observed in all extract types. CONCLUSION The n-hexane extract showed the highest larvicidal toxicity and its specific compounds are necessarily isolated to obtain pure bioactive ingredients.
Collapse
|
52
|
Mao Z, Wang W, Su R, Gu G, Liu ZL, Lai D, Zhou L. Hyalodendrins A and B, New Decalin-Type Tetramic Acid Larvicides from the Endophytic Fungus Hyalodendriella sp. Ponipodef12. Molecules 2019; 25:molecules25010114. [PMID: 31892246 PMCID: PMC6982915 DOI: 10.3390/molecules25010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023] Open
Abstract
Two new decalin/tetramic acid hybrid metabolites, hyalodendrins A (1) and B (2) were isolated from plant endophytic fungus Hyalodendriella sp. Ponipodef12. The structures of the new compounds were elucidated by analysis of the spectroscopic data, including NMR, HRMS and ECD, and by chemical conversion. Compounds 1 and 2 were phomasetin analogues, and both showed potent larvicidal activity against the fourth-instar larvae of Aedes aegypti with the median lethal dose (LC50) values of 10.31 and 5.93 μg/mL, respectively.
Collapse
|
53
|
Cui C, Yang Y, Zhao T, Zou K, Peng C, Cai H, Wan X, Hou R. Insecticidal Activity and Insecticidal Mechanism of Total Saponins from Camellia oleifera. Molecules 2019; 24:molecules24244518. [PMID: 31835551 PMCID: PMC6943515 DOI: 10.3390/molecules24244518] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 11/16/2022] Open
Abstract
Chemical pesticides are commonly used during the cultivation of agricultural products to control pests and diseases. Excessive use of traditional pesticides can cause environmental and human health risks. There are ongoing searches for new plant-derived pesticides to reduce the use of chemical pesticides. In this study, tea saponin extracts of different purities were extracted from Camellia oleifera seeds using AB-8 macroporous resin and gradient elution with ethanol. The insecticidal effects of the tea saponin extracts were evaluated by contact toxicity tests and stomach toxicity tests using the lepidopteran pest of tea plantation, Ectropis obliqua. The total saponins extracted using 70% ethanol showed strong contact toxicity (LC50 = 8.459 mg/L) and stomach toxicity (LC50 = 22.395 mg/L). In-depth mechanistic studies demonstrated that tea saponins can disrupt the waxy layer of the epidermis, causing serious loss of water, and can penetrate the inside of the intestine of E. obliqua. After consumption of the tea saponins, the intestinal villi were shortened and the cavities of the intestinal wall were disrupted, which resulted in larval death. This study highlights the potential of tea saponins as a natural, plant-derived pesticide for the management of plant pests.
Collapse
|
54
|
de Oliveira CFR, de Oliveira Flores TM, Henrique Cardoso M, Garcia Nogueira Oshiro K, Russi R, de França AFJ, dos Santos EA, Luiz Franco O, de Oliveira AS, Migliolo L. Dual Insecticidal Effects of Adenanthera pavonina Kunitz-Type Inhibitor on Plodia interpunctella is Mediated by Digestive Enzymes Inhibition and Chitin-Binding Properties. Molecules 2019; 24:E4344. [PMID: 31795088 PMCID: PMC6930628 DOI: 10.3390/molecules24234344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
The Indianmeal moth, Plodia interpunctella, is one of the most damaging pests of stored products. We investigated the insecticidal properties of ApKTI, a Kunitz trypsin inhibitor from Adenanthera pavonina seeds, against P. interpunctella larvae through bioassays with artificial diet. ApKTI-fed larvae showed reduction of up to 88% on larval weight and 75% in survival. Trypsin enzymes extracted from P. interpunctella larvae were inhibited by ApKTI, which also demonstrated capacity to bind to chitin. Kinetic studies revealed a non-competitive inhibition mechanism of ApKTI for trypsin, which were further corroborated by molecular docking studies. Furthermore, we have demonstrated that ApKTI exhibits a hydrophobic pocket near the reactive site loop probably involved in chitin interactions. Taken together, these data suggested that the insecticidal activity of ApKTI for P. interpunctella larvae involves a dual and promiscuous mechanisms biding to two completely different targets. Both processes might impair the P. interpunctella larval digestive process, leading to larvae death before reaching the pupal stage. Further studies are encouraged using ApKTI as a biotechnological tool to control insect pests in field conditions.
Collapse
|
55
|
Rodríguez-Castillo G, Molina-Rodríguez M, Cambronero-Heinrichs JC, Quirós-Fournier JP, Lizano-Fallas V, Jiménez-Rojas C, Masís-Mora M, Castro-Gutiérrez V, Mata-Araya I, Rodríguez-Rodríguez CE. Simultaneous removal of neonicotinoid insecticides by a microbial degrading consortium: Detoxification at reactor scale. CHEMOSPHERE 2019; 235:1097-1106. [PMID: 31561300 DOI: 10.1016/j.chemosphere.2019.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 05/24/2023]
Abstract
Neonicotinoid insecticides show high persistence in the environment, and standard biological approaches such as biopurification systems have shown mostly inefficient removal of such compounds. In this work, soil pre-exposed to imidacloprid was used to obtain presumptive imidacloprid-degrading consortia. Cometabolic enrichment yielded a microbial consortium composed of eight bacterial and one yeast strains, capable of degrading not only this compound, but also thiamethoxam and acetamiprid, as demonstrated in cross-degradation assays. The biological removal process was scaled-up to batch stirred tank bioreactors (STBR); this configuration was able to simultaneously remove mixtures of imidacloprid + thiamethoxam or imidacloprid + thiamethoxam + acetamiprid, reaching elimination of 95.8% and 94.4% of total neonicotinoids, respectively. Removal rates in the bioreactors followed the pattern imidacloprid > acetamiprid > thiamethoxam, including >99% elimination of imidacloprid in 6 d and 17 d (binary and ternary mixtures, respectively). A comprehensive evaluation of the detoxification in the STBR was performed using different biomarkers: seed germination (Lactuca sativa), bioluminescence inhibition (Vibrio fischeri), and acute oral tests in honeybees. Overall, ecotoxicological tests revealed partial detoxification of the matrix, with clearer detoxification patterns in the binary mixture. This biological approach represents a promising option for the removal of neonicotinoids from agricultural wastewater; however, optimization of the process should be performed before application in farms.
Collapse
|
56
|
Binh QA, Tungtakanpoung D, Kajitvichyanukul P. Similarities and differences in adsorption mechanism of dichlorvos and pymetrozine insecticides with coconut fiber biowaste sorbent. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:103-114. [PMID: 31607259 DOI: 10.1080/03601234.2019.1674593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the similarities and differences of the adsorption mechanisms between dichlorvos and pymetrozine and coconut fiber biowaste sorbent (CF-BWS) were investigated. CF-BWS was produced using the slow pyrolysis process at 600 °C for 4 h. HCl acid modification was used to improve the specific surface area. The properties of CF-BWS were analyzed by SEM, FT-IR, BET, and pHpzc. The adsorption kinetics of dichlorvos and pymetrozine on the CF-BWS were well explained by the pseudo-second-order model. The adsorption isotherms for both insecticides were followed the Langmuir isotherm. The difference in molecular structures and surface chemistry caused the difference in adsorption mechanisms of both insecticides. The pore-filling and the hydrophobic interactions were the key mechanisms for both insecticide adsorptions. However, the π-π electron donor-acceptor interaction played the major role in the pymetrozine adsorption but hardly impacted on the adsorption of dichlorvos. The hydrogen bonding mechanism was pronounced in the pymetrozine adsorption, but it had little influence on the dichlorvos adsorption. The CF-BWS is exhibited as an excellent material for the removal of both pollutants and has high potential to be used further as the adsorbent in water treatment process.
Collapse
|
57
|
Holken Lorensi G, Soares Oliveira R, Leal AP, Zanatta AP, Moreira de Almeida CG, Barreto YC, Eduarda Rosa M, de Brum Vieira P, Brito Ramos CJ, de Carvalho Victoria F, Batista Pereira A, LaneuvilleTeixeira V, Dal Belo CA. Entomotoxic Activity of Prasiola crispa (Antarctic Algae) in Nauphoeta cinerea Cockroaches: Identification of Main Steroidal Compounds. Mar Drugs 2019; 17:md17100573. [PMID: 31658661 PMCID: PMC6835979 DOI: 10.3390/md17100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 11/16/2022] Open
Abstract
Prasiola crispa is a macroscopic green algae found in abundance in Antarctica ice free areas. Prasiola crispan-hexaneextract (HPC) induced insecticidal activity in Nauphoeta cinerea cockroaches after 24 h of exposure. The chemical analysis of HPC revealed the presence of the followingphytosterols: β-sitosterol, campesterol and stigmasterol. The incubation of cockroach semi-isolated heart preparations with HPC caused a significant negative chronotropic activity in the heartbeats. HPC affected the insect neuromuscular function by inducing a complete inhibition of the cockroach leg-muscle twitch tension. When the isolated phytosterols were injected at in vivo cockroach neuromuscular preparations, there was a progressive inhibition of muscle twitches on the following order of potency: β-sitosterol > campesterol > stigmasterol. HPC also provoked significant behavioral alterations, characterized by the increase or decrease of cockroach grooming activity, depending on the dose assayed. Altogether, the results presented here corroborate the insecticide potential of Prasiola crispa Antarctic algae. They also revealed the presence of phytosterols and the involvement of these steroidal compounds in the entomotoxic activity of the algae, potentially by modulating octopaminergic-cholinergic pathways. Further phytochemical-combined bioguided analysis of the HPC will unveil novel bioactive compounds that might be an accessory to the insecticide activity of the algae.
Collapse
|
58
|
Lu Z, Zhang Z, Fang N, Hou Z, Li Y, Lu Z. Simultaneous Determination of Five Diamide Insecticides in Food Matrices Using Carbon Nanotube Multiplug Filtration Cleanup and Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10977-10983. [PMID: 31490679 DOI: 10.1021/acs.jafc.9b02806] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, an analytical method was developed and validated for simultaneous determination of five diamide insecticides (chlorantraniliprole, cyantraniliprole, flubendiamide, cyclaniliprole, and tetrachlorantraniliprole) in food matrices. Determination of the latter two diamide compounds is first reported. Samples were cleaned up by multiplug filters containing carbon nanotubes (CNT) or hydrophilic-lipophilic balanced copolymers (HLB) and classic dispersive solid phase extraction (d-SPE) procedures, respectively. The CNT multiplug filter performed the best in terms of process rapidity and cleanup efficiency; thus, it was finally chosen for sample cleanup. Instrumental analysis was completed in 5 min using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Mean recoveries of the five diamides ranged from 84.3 to 110.0%, with intraday and interday relative standard deviations (RSD) of less than 13.5%. Limits of quantitation (LOQ) of all analytes ranged from 0.005 to 0.01 mg kg-1 in different matrices. The results indicate this method is reliable for monitoring the five diamide insecticides in various foods.
Collapse
|
59
|
Zheng Y, Wu S, Dang J, Wang S, Liu Z, Fang J, Han P, Zhang J. Reduction of phoxim pesticide residues from grapes by atmospheric pressure non-thermal air plasma activated water. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:98-105. [PMID: 31153118 DOI: 10.1016/j.jhazmat.2019.05.058] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
In this study, we propose a novel strategy, plasma activated water (PAW) to reduce pesticide residues on agricultural products. To validate its feasibility and effectiveness, we employee high-performance liquid chromatography (HPLC) to detect phoxim on grapes. HPLC results suggest that the reduction of phoxim on grapes achieve 73.60% after treated 10 min by PAW prepared 30 min, and the concentration of phoxim decreased significantly (p < 0.05) with the preparation time of PAW. Furthermore, HPLC-MS analysis shows that the reduction effect of phoxim by PAW is dominated by the degradation of phoxim. Combined with analyzing the physicochemical properties of PAW, one possible degradation pathway is proposed under the present experimental conditions, mediated by reactive oxygen and nitrogen species. The acidic environment (pH < 3) and high oxidation capacity (ORP > 500 mV) are suggested to be a benefit to the reduction of phoxim. Besides, the experimental results regarding color, firmness, sugar, vitamin C, and superoxide dismutase of grapes demonstrate that the PAW treatment will not significantly affect the quality of grapes. In conclusion, phoxim pesticide residues on grapes could be effectively reduced by the PAW strategy and without a significant (p < 0.05) effect on grapes quality.
Collapse
|
60
|
Zhao P, Dong X, Chen X, Guo X, Zhao L. Stereoselective Analysis of Chiral Pyrethroid Insecticides Tetramethrin and α-Cypermethrin in Fruits, Vegetables, and Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9362-9370. [PMID: 31368700 DOI: 10.1021/acs.jafc.9b01850] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This manuscript presents an effective and robust method for simultaneous stereoselective determination of two pyrethroid insecticides, tetramethrin and α-cypermethrin in different food products by high-performance liquid chromatography. Enantioseparation was carried out using reversed-phase chromatography, and the influences of four polysaccharide-based chiral columns, mobile phase composition, and column temperature on retention were fully investigated. Satisfactory separation was obtained on Chiralpak IG column using acetonitrile-water (75:25, v/v) under isocratic conditions. To extract and purify the target analytes from food matrices, matrix solid-phase dispersion was employed with C18 as dispersant and primary secondary amine as well as graphitized carbon black as cleanup sorbents. Response surface method based on Box-Behnken design was implemented to assist optimization of the extraction variables. Then, method validation was done in real samples including specificity, linearity, sensitivity, trueness, precision, as well as stability, and its analytical performance fulfills the criteria recommended by the European Union SANTE/11945/2015, demonstrating its applicability in studying the stereochemistry of chiral tetramethrin and α-cypermethrin in food products.
Collapse
|
61
|
Mukasa Y, Kyamanywa S, Sserumaga JP, Otim M, Tumuhaise V, Erbaugh M, Egonyu JP. An atoxigenic L-strain of Aspergillus flavus (Eurotiales: Trichocomaceae) is pathogenic to the coffee twig borer, Xylosandrus compactus (Coleoptera: Curculionidea: Scolytinae). ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:508-517. [PMID: 30307121 DOI: 10.1111/1758-2229.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
This study isolated and evaluated virulence of fungal entomopathogens of Xylosandrus compactus - an important pest of Robusta coffee in Sub-Saharan Africa. A survey was conducted in five farming systems in Uganda to isolate entomopathogens associated with X. compactus. Four fungal isolates were screened for virulence against X. compactus in the laboratory at 1 × 107 conidia ml-1 where an atoxigenic L-strain of A. flavus killed 70%-100% of all stages of X. compactus compared with other unidentified isolates which caused 20%-70% mortalities. The time taken by A. flavus to kill 50% of X. compactus eggs, larvae, pupae and adults in the laboratory was 2-3 days; whereas the other unidentified fungal isolates took 4-7 days. The concentrations of A. flavus that killed 50% of different stages of X. compactus were 5 × 105 , 12 × 105 , 17 × 105 and 30 × 105 conidia ml-1 for larvae, eggs, pupae and adults respectively. A formulation of A. flavus in oil caused higher mortalities of X. compactus larvae, pupae and adults in the field (71%-79%) than its formulation in water (33%-47%). The atoxigenic strain of A. flavus could therefore be developed into a safe biopesticide against X. compactus.
Collapse
|
62
|
Chen W, Wu S, Zhang J, Yu F, Hou J, Miao X, Tu X. Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules 2019; 24:molecules24152761. [PMID: 31366025 PMCID: PMC6695813 DOI: 10.3390/molecules24152761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
In the present work, we developed a simple and rapid sample preparation method for the determination of neonicotinoid pesticides in honey based on the matrix-induced sugaring-out. Since there is a high concentration of sugars in the honey matrix, the honey samples were mixed directly with acetonitrile (ACN)-water mixture to trigger the phase separation. Analytes were extracted into the upper ACN phase without additional phase separation agents and injected into the HPLC system for the analysis. Parameters of this matrix-induced sugaring-out method were systematically investigated. The optimal protocol involves 2 g honey mixed with 4 mL ACN-water mixture (v/v, 60:40). In addition, this simple sample preparation method was compared with two other ACN-water-based homogenous liquid-liquid extraction methods, including salting-out assisted liquid-liquid extraction and subzero-temperature assisted liquid-liquid extraction. The present method was fully validated, the obtained limits of detection (LODs) and limits of quantification (LOQs) were from 21 to 27 and 70 to 90 μg/kg, respectively. Average recoveries at three spiked levels were in the range of 91.49% to 97.73%. Precision expressed as relative standard deviations (RSDs) in the inter-day and intra-day analysis were all lower than 5%. Finally, the developed method was applied for the analysis of eight honey samples, results showed that none of the target neonicotinoid residues were detected.
Collapse
|
63
|
Huang HT, Lin CC, Kuo TC, Chen SJ, Huang RN. Phytochemical composition and larvicidal activity of essential oils from herbal plants. PLANTA 2019; 250:59-68. [PMID: 30904944 DOI: 10.1007/s00425-019-03147-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The essential oils (EOs) of Plectranthus amboinicus showed the highest larvicidal activity among four herbal plants studied and β-caryophyllene might be the major component responsible for its differential toxicity to the larvae of Culex quinquefasciatus and Aedes Aegypti. Mosquitoes act as vectors for many life-threatening diseases, including malaria, dengue fever, and Zika virus infection. Management of mosquitoes mainly relies on synthetic insecticides, which usually result in the rapid development of resistance; therefore, alternative mosquito control strategies are urgently needed. This study characterized the major component of essential oils (EOs) derived from the vegetative parts of four herbal plants and their larvicidal activity toward important mosquito vectors. The EOs were extracted by hydro-distillation and subjected to gas chromatography-mass spectrometry (GC-MS) analysis and a larvicidal activity assay toward Aedes aegypti, Ae. albopictus and Culex quinquefasciatus. In total, 14, 11, 11 and 9 compounds were identified from the EOs of Plectranthus amboinicus, Mentha requienii, Vitex rotundifolia and Crossostephium chinense, respectively. The EOs derived from four herbal plants exhibited remarkable larvicidal activity against the three mosquito species. In particular, the EOs of P. amboinicus showed the highest larvicidal activity, and the larvae of Cx. quinquefasciatus were more sensitive to the P. amboinicus EOs than that of Ae. Aegypti. Although carvacrol (61.53%) was the predominant constituent of the P. amboinicus EOs, its precursors, γ-terpinene (8.51%) and p-cymene (9.42%), exhibited the most larvicidal activity toward Ae. aegypti and Cx. quinquefasciatus. However, β-caryophyllene (12.79%) might be the major component responsible for the differential toxicity of the P. amboinicus EOs, as indicated by the significant differences in its LC50 values toward both mosquitoes. Information from these studies will benefit the incorporation of EOs into integrated vector management.
Collapse
|
64
|
Li Y, Wei J, Fang J, Lv W, Ji Y, Aioub AAA, Zhang J, Hu Z. Insecticidal Activity of Four Lignans Isolated from Phryma leptostachya. Molecules 2019; 24:molecules24101976. [PMID: 31121976 PMCID: PMC6572576 DOI: 10.3390/molecules24101976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 11/16/2022] Open
Abstract
A new lignan (T4) and three known lignans (T1, T2, and T3) were isolated from the methanol extract of the roots of Phryma leptostachya using bioassay-guided method, and their structures were identified as phrymarolin I (T1), II (T2), haedoxan A (T3), and methyl 4-((6a-acetoxy-4-(6-methoxybenzo[d][1,3]dioxol-5-yl)tetrahydro-1H,3H-furo[3,4-c]furan-1-yl)oxy)-1-hydroxy-2,2-dimethoxy-5-oxocyclopent-3-ene-1-carboxylate (T4) byNMR and ESI-MS spectral data. Bioassay results revealed that haedoxan A exhibited remarkably high insecticidal activity against Mythimna separata with a stomach toxicity LC50 value of 17.06 mg/L and a topical toxicity LC50 value of 1123.14 mg/L at 24 h, respectively. Phrymarolin I and compound T4 also showed some stomach toxicity against M. separata with KD50 values of 3450.21 mg/L at 4 h and 2807.10 mg/L at 8 h, respectively. In addition, phrymarolin I and haedoxan A exhibited some stomach toxicity against Plutella xylostella with an LC50 value of 1432.05 and 857.28 mg/L at 48 h, respectively. In conclusion, this study demonstrated that lignans from P. leptostachya are promising as a novel class of insecticides or insecticide lead compounds for developing botanical pesticides.
Collapse
|
65
|
Rotundo G, Paventi G, Barberio A, De Cristofaro A, Notardonato I, Russo MV, Germinara GS. Biological activity of Dittrichia viscosa (L.) Greuter extracts against adult Sitophilus granarius (L.) (Coleoptera, Curculionidae) and identification of active compounds. Sci Rep 2019; 9:6429. [PMID: 31015563 PMCID: PMC6478880 DOI: 10.1038/s41598-019-42886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023] Open
Abstract
Dittrichia viscosa (L.) Greuter, a perennial weed of the Mediterranean area, was reported to be source of active substances. Here, by means of both ingestion and contact assays, the biological activity of three different extracts (n-hexane, methanol, and distilled water) of D. viscosa aerial part has been evaluated against Sitophilus granarius (L.) adults, an important pest of stored grains. Ingestion assays showed negligible mortality and food deterrence for all the extracts, whereas only a slight reduction of some nutritional parameters (relative growth rate, relative consumption rate, food efficiency conversion) was recorded for water extract. High contact toxicity was found only for the n-hexane extract (24 h median lethal dose LD50 = 53.20 μg/adult). This extract was further subfractioned by silica gel column chromatography and then by thin layer chromatography. Further contact toxicity bioassays highlighted two active subfractions which were analyzed by GC-MS. This revealed the occurrence, in both subfractions, of two major peaks that were identified as α- and γ- costic acid isomers. Moreover, D. viscosa active subfractions, did not cause acetylcholinesterase (AChE) inhibition; therefore, in the light of progressive limitation of compounds acting by this mechanism of action, D. viscosa represents a promising eco-sustainable source of natural products for pest control.
Collapse
|
66
|
Mao G, Tian Y, Sun Z, Ou J, Xu H. Bruceine D Isolated from Brucea Javanica (L.) Merr. as a Systemic Feeding Deterrent for Three Major Lepidopteran Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4232-4239. [PMID: 30901209 DOI: 10.1021/acs.jafc.8b06511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Systemicity is a desirable property for insecticides. Many phytochemicals show good systemic properties and thus are natural sources of novel systemic insecticidal ingredients. Bruceine D, a quassinoid, was identified in Brucea javanica (L.) Merr. and displayed outstanding systemic properties and excellent antifeedant activity against the diamondback moth (DBM, Plutella xylostella L.), beet armyworm ( Spodoptera exigua Hübner), and cotton leafworm ( Spodoptera litura Fabricius). Its antifeedant effect on third instar larvae of DBM was approximately 6.2-fold stronger than that of azadirachtin. When bruceine D was applied to roots at a concentration of 100 μg/mL for 24 and 48 h, its concentration in flowering Chinese cabbage ( Brassica campestris L. ssp. chinensis var. utiliz Tsen et Lee) leaves was 38.69 μg/g (fresh weight, FW) and 108.45 μg/g (FW), respectively. These concentrations could achieve 93.80% and 96.83% antifeedant effects, which were significantly greater than those of azadirachtin. Similar to azadirachtin, bruceine D also posed a potent growth inhibition effect on insect larvae. After feeding with 20 μg/g bruceine D, no pupae were observed. The results demonstrated that bruceine D is an effective botanical insect antifeedant with outstanding systemic properties, causing potent pest growth inhibitory activity.
Collapse
|
67
|
Govindasamy B, Dhayalan A, Chinnaperumal K, Paramasivam D, Dilipkumar A, Kannupaiyan J, Perumal S, Pachiappan P. Comparative extraction of Salmonella bongori derived metabolites and their toxicity on bacterial pathogens, mosquito-larvae, zebrafish-embryo and brine-shrimp: A modified approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:192-206. [PMID: 30448702 DOI: 10.1016/j.ecoenv.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The present study pertains to two different (standard and adapted) extraction-procedures to extract bacterial extracellular metabolites from the cell-free supernatant (CFS) of S. bongori. Metabolites were extracted with the different polarity solvents using lyophilized-CFS mediated procedure, which revealed more number of compounds than standard procedure. The crude-extracts (CEs) were characterized using FTIR, HPLC and GC-MS analyses. The commonly presented compounds in standard (ME, EA & HE) and lyophilization-mediated extracts (LME, LEA & LHE) were identified through Heat-map analysis. Antibacterial assay: all CEs showed considerable activity on tested MTCC-strains, in which, LME and LEA were found preponderant. Larvicidal bioassay: LME resulted maximum mortality than other CEs on Culex-larvae. Zebrafish embryo-toxicity assay: except HE, all CEs exhibited toxicity at 100 ppm after 96 hpf. Brine shrimp-toxicity assay: ME, LME, EA and LEA have shown significant mortality after 24 h. With these observations, the adapted-extraction-procedure could form significance in the drug development process.
Collapse
|
68
|
Guo SS, Wang Y, Pang X, Geng ZF, Cao JQ, Du SS. Seven herbs against the stored product insect: Toxicity evidence and the active sesquiterpenes from Atractylodes lancea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:807-813. [PMID: 30597779 DOI: 10.1016/j.ecoenv.2018.11.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 05/27/2023]
Abstract
In this work, the essential oils (EO) were extracted from seven typical Chinese herbs, and their repellent and contact toxicities against Tribolium castaneum adults (red flour beetles) were evaluated. The experimental results showed that the above EOs presented the various levels of repellent and contact toxicities. The EOs extracted from A. lancea and A argyi of the Compositae (Asteraceae) family presented obvious repellent effects (Repellency Percentage > 90% at 3.15 nL/cm2 after 4 h exposure) and strong contact toxicity with LD50 values of 5.78 and 3.09 μg/adult respectively. Based on literature researches and screening results, the EO from A. lancea was analyzed by GC-MS and chosen for further identification of bioactive components. Altogether 59 chemical components were identified and 17 of them were recognized as sesquiterpene compounds, accounting for 57.8% of the total weight of the EO. From the identified sesquiterpenes, three individual compounds (β-eudesmol, hinesol, valencene) were selected for the laboratory bioassays of the toxicity against red flour beetles. It was found that all the three compounds expressed some repellent effects. Although β-eudesmol (31.2%) and hinesol (5.1%) were identified as main constituents and had been considered to be symbolic characteristics of high medicinal value, valencene (0.3%) showed strong repellent property which could be comparable to that of DEET (N, N‑diethyl‑3‑methylbenzamide), a powerful commercial pesticides, and it had best toxicity with LD50 values of 3.25 (μg/adult) in the contact test. This work may provide toxicity evidence of seven common herbs against red flour beetles, add the information for the development and comprehensive utilization of A. lancea, and will contribute to the application of grain preservation.
Collapse
|
69
|
Huang J, Wong KH, Tay SV, Serra A, Sze SK, Tam JP. Astratides: Insulin-Modulating, Insecticidal, and Antifungal Cysteine-Rich Peptides from Astragalus membranaceus. JOURNAL OF NATURAL PRODUCTS 2019; 82:194-204. [PMID: 30758201 DOI: 10.1021/acs.jnatprod.8b00521] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Astragalus membranaceus root, Huang Qi in Chinese, is a popular medicinal herb traditionally used to regulate blood glucose. Herein, the identification and characterization of two families of cysteine-rich peptides (CRPs), designated α- and β-astratides, from A. membranaceus roots are reported. Proteomic analysis showed that α-astratide aM1 and β-astratide bM1 belong to two distinct CRP families. The six-cysteine-containing and proline-rich α-astratide aM1 displayed high sequence identity to Pea Albumin 1 Subunit b (PA1b), while the eight-cysteine-containing β-astratide bM1 showed sequence similarity to plant defensins. An antifungal assay revealed that bM1 possessed potent antifungal activity. In contrast, aM1 showed a cytotoxic effect against insect Sf9 cells. More importantly, aM1 decreased insulin secretion in mouse pancreatic β cells, suggesting it could interfere in glucose homeostasis, which accounts for the adaptogenic property of A. membranaceus. Phylogenetic clustering analysis suggested that the proline-rich aM1 is a putative prolyl oligopeptidase inhibitor and belongs to a novel subfamily of PA1b-like peptides, while bM1 belongs to a new subfamily of plant defensins. Together, the study reveals that astratides are multifunctional CRPs in plants, which expand the existing library of PA1b-like peptides and plant defensins and further our understanding of their roles in host-defense system and leads as peptidyl therapeutics.
Collapse
|
70
|
Tang XY, Yang Y, McBride MB, Tao R, Dai YN, Zhang XM. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species. CHEMOSPHERE 2019; 216:195-202. [PMID: 30368084 DOI: 10.1016/j.chemosphere.2018.10.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/30/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The removal efficiency of the pesticide chlorpyrifos (50 and 500 μg L-1) by five wetland plant species (Cyperus alternifolius, Canna indica, Iris pseudacorus, Juncus effusus and Typha orientalis) was studied in recirculating vertical flow constructed wetland systems (RVFCWs). Results reveal that for chlorpyrifos at different concentrations, good removal efficiencies (94-98%) were observed using the same plant systems, while no significant differences in removal efficiencies were seen between the different plant systems. In addition, the chlorpyrifos removal efficiency of the planted systems increased significantly compared with the unplanted controls. The chlorpyrifos removal efficiency for wetland systems over time fit to the first-order kinetic model, with the first-order kinetic constant (k) ranging from 0.045 to 0.065 h-1. The half-life of chlorpyrifos in the systems ranged from 10.66-15.43 h. The shortest chlorpyrifos half-life was detected in the wetland system containing C. indica, followed by that with C. alternifolius and I. pseudacorus. The main pathways to remove chlorpyrifos in these wetland systems were sorption (accounting for 64.6-86.4% of the total removal efficiency) and biodegradation (8.1-33.7%). Plants can enhance chlorpyrifos removal through enhanced biodegradation in the system. Plants with high biomass and transpiration were able to accelerate the removal of chlorpyrifos and conventional pollutants. Hence, C. indica, C. alternifolius and I. pseudacorus could be used as optimal plants for pesticide removal in wetland systems.
Collapse
|
71
|
Pradeep Kumar R, Dinesh Babu KV, Evans DA. Isolation, characterization and mode of action of a larvicidal compound, 22-hydroxyhopane from Adiantum latifolium Lam. against Oryctes rhinoceros Linn. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:161-170. [PMID: 30744890 DOI: 10.1016/j.pestbp.2018.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Oryctes rhinoceros Linn. is one of the most serious pests of coconuts and other palms. Following bioassay guided method, a larvicidal compound, 22-hydroxyhopane has been isolated for the first time from methanol extract of leaves of Adiantum latifolium Lam. against the pest (LC50 value 20.81 μg/g). It is a hopanoid triterpene with molecular mass of 442.42 g/mol. The compound exhibited antibacterial activity against symbiotic gut bacteria, caused histolysis of midgut tissues and inhibited secretion of digestive enzymes such as protease, amylase and trehalase resulting in weight loss of larvae. Enzyme immunoassay showed an elevation of 20-hydroxyecdysone level in haemolymph causing disruption of metamorphosis of larvae.
Collapse
|
72
|
Sultana K, Zahoor MK, Sagheer M, Farhat . Efficacy of Chrozophora plicata and Trianthema portuclacastrum weed plant extracts against Trogoderma granarium Everts under laboratory conditions. PAKISTAN JOURNAL OF PHARMACEUTICAL SCIENCES 2019; 32:143-152. [PMID: 30772803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficacy of Chrozophora plicata and Trianthema portuclacastrum extracts was investigated against Trogoderma granarium at 10%, 20% and 30% concentrations and 2, 4 and 6 days of exposure periods. It was found that T. portuclacastrum extract caused significantly higher larval mortality (37.47%) than C. plicata (27.03%). Maximum number of T. granarium larvae (91.11% and 82.22%) was repelled when exposed to 30% concentration. A significant reduction in percentage larval emergence was also found in F1 generation. A decrease in the activity of Acetylcholine Esterase (AChE), Acid Phosphatase (ACP), Alkaline Phosphatase (AKP), α-Carboxyl and β-Carboxyl was also found. The FTIR analysis showed the presence of polyphenolic compounds in T. portuclacastrum extract. The overall results revealed that T. portuclacastrum extract was very effective against T. granarium than C. plicata.
Collapse
|
73
|
Hu Z, Wang Z, Liu Y, Wang Q. Leveraging botanical resources for crop protection: the isolation, bioactivity and structure-activity relationships of lycoris alkaloids. PEST MANAGEMENT SCIENCE 2018; 74:2783-2792. [PMID: 29737624 DOI: 10.1002/ps.5065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/09/2018] [Accepted: 04/30/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Lycoris aurea (L' Herit.) Herb (Amaryllidaceae) is a native pesticide in China. The ethanolic extract of Lycoris aureate bulbs, the total alkaloids of L. aurea bulbs and the main alkaloids of L. aurea bulbs were systematically investigated as part of a novel project to study their antiviral, fungicidal (phytopathogenic) and insecticidal activities. We also prepared 18 lycorine derivatives and evaluated their bioactivities. RESULTS Lycorine had excellent larvicidal activity against Plutella xylostella (LC50 = 10.6 mg L-1 ) and was also effective during a field trial. It also showed good inhibitory activity against tobacco mosaic virus (TMV) and good fungicidal activity against Phytophthora capsici (EC50 = 7.76 mg L-1 ). Compounds 13 and 15 exhibited good anti-TMV activity, excellent fungicidal activity against Rhizoctonia cerealis (EC50 = 6.78 mg L-1 ) and excellent larvicidal activity against Culex pipiens pallens (LC50 at 0.1-0.25 mg L-1 ). CONCLUSION Lycorine was identified as the main active component of L. aurea bulbs and showed potential for field application against P. xylostella. The activities of compounds 13 and 15 make them excellent candidates for new lead compounds in novel pesticide research. This study provides the basis for developing these alkaloids into potential agrochemicals. © 2018 Society of Chemical Industry.
Collapse
|
74
|
Ndifreke WE, Pasaoglulari Aydinlik N. KOH modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 54:1-13. [PMID: 30285582 DOI: 10.1080/03601234.2018.1501143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Modified Thevetia peruviana shell activated carbon for sorption of dimethoate from aqueous solution derived with potassium hydroxide (KOH) was studied at different concentrations for its potential application in water treatment. The batch sorption was investigated using dimethoate solution of 10-100 mg/L concentrations. Proximate analysis was determined and changes on the surfaces and structure of the TPS were characterized after chemical activation with KOH using XRD, FTIR, SEM-EDAX, pHpzc, BET. The quantum chemical calculation for dimethoate yielded molecule associated energies of -9.8421 (HOMO) and -2.3879 (LUMO) and a total energy of -53,376.2. The kinetic of the sorption was modeled which indicated the sorption equilibrium time as 90 min and pseudo-first order kinetics model showing R2 = 0.994 provided a better description of the process. Analysis of sorption equilibrium revealed that the data fitted well to Freundlich sorption isotherm model (R2 = 0.966), indicating multi-layer sorption of dimethoate on the surface of sorbent. The sorption of dimethoate onto KOHTPS shows 92.60% removal efficiency.
Collapse
|
75
|
Nardelli V, Casamassima F, Gesualdo G, Li D, Marchesiello WMV, Nardiello D, Quinto M. Sensitive Screening Method for Determination of Pyrethroids in Chicken Eggs and Various Meat Samples by Gas Chromatography and Electron Capture Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10267-10273. [PMID: 30205683 DOI: 10.1021/acs.jafc.8b04851] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A sensitive and reproducible screening analytical method is described for the determination of six pyrethroids (phenothrin, permethrin, cyfluthrin, cypermethrin, deltamethrin, fenvalerate) in egg and meat samples by gas chromatography and electron capture detection (GC-ECD). A fast cleanup procedure, based on solid-phase extraction has been used, ensuring reduced solvent consumption and time and allowing the simultaneous preparation of multiple sample extracts. Under the optimal chromatographic conditions, an efficient separation was obtained with a total analysis time of less than 60 min, including the extraction-purification steps. Good responses for the six pyrethroids were obtained in a range of 50-500 μg L-1, with linear coefficients higher than 0.9992. Instrumental limits of detection were between 0.22 and 0.63 μg L-1, corresponding to 0.04 and 0.13 μg kg-1 in the matrix. Detection limits in chicken eggs and various meat samples, calculated on spiked samples, were in the range 0.05-0.25 μg kg-1 and 0.07-0.23 μg kg-1, respectively. The validation results confirmed that the proposed GC-ECD method can be used as a reliable screening tool for the determination of pyrethroids in official check analyses. The method was extensively validated following the European directives, demonstrating its conformity in terms of selectivity, sensitivity, recovery, precision, and measurement uncertainty.
Collapse
|