51
|
Schallreuter KU, Kothari S, Chavan B, Spencer JD. Regulation of melanogenesis--controversies and new concepts. Exp Dermatol 2008; 17:395-404. [PMID: 18177348 DOI: 10.1111/j.1600-0625.2007.00675.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Despite many efforts, regulation of skin and hair pigmentation is still not fully understood. This article focuses mainly on controversial aspects in pigment cell biology which have emerged over the last decade. The central role of tyrosinase as the key enzyme in initiation of melanogenesis has been closely associated with the 6BH4 dependent phenylalanine hydroxylase (PAH) and tyrosine hydroxylase isoform I (THI) providing evidence for an old concept of the three enzyme theory in the initiation of the pigmentation process. In this context, it is noteworthy that intracellular L-phenylalanine uptake and turnover to L-tyrosine via PAH is vital for substrate supply of THI and tyrosinase. While PAH acts in the cytosol of melanocytes, THI and tyrosinase are sitting side by side in the melanosomal membrane. THI at low pH provides L-3,4-hydroxyphenylalanine L-DOPA which in turn is required for activation of met-tyrosinase. After an intramelanosomal pH change, possibly by the p-protein, has taken place, tyrosinase is subject to control by 6/7BH4 and the proopiomelanocortin (POMC) peptides alpha-MSH melanocyte stimulating hormone and beta-MSH in a receptor independent manner. cAMP is required for the activation of microphthalmia-associated transcription factor to induce expression of tyrosinase, for transcription of THI and for activation of PAH. The redundancy of the cAMP signal is discussed. Finally, we propose a novel mechanism involving H2O2 in the regulation of tyrosinase via p53 through transcription of hepatocyte nuclear factor 1alpha which in turn can also affect the POMC response.
Collapse
|
52
|
Lopes SS, Yang X, Müller J, Carney TJ, McAdow AR, Rauch GJ, Jacoby AS, Hurst LD, Delfino-Machín M, Haffter P, Geisler R, Johnson SL, Ward A, Kelsh RN. Leukocyte tyrosine kinase functions in pigment cell development. PLoS Genet 2008; 4:e1000026. [PMID: 18369445 PMCID: PMC2265441 DOI: 10.1371/journal.pgen.1000026] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 02/07/2008] [Indexed: 11/18/2022] Open
Abstract
A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox10 and shady are required for iridophore specification from NCCs. We show using diverse approaches that shady encodes zebrafish leukocyte tyrosine kinase (Ltk). Cell transplantation studies show that Ltk acts cell-autonomously within the iridophore lineage. Consistent with this, ltk is expressed in a subset of NCCs, before becoming restricted to the iridophore lineage. Marker analysis reveals a primary defect in iridophore specification in ltk mutants. We saw no evidence for a fate-shift of neural crest cells into other pigment cell fates and some NCCs were subsequently lost by apoptosis. These features are also characteristic of the neural crest cell phenotype in sox10 mutants, leading us to examine iridophores in sox10 mutants. As expected, sox10 mutants largely lacked iridophore markers at late stages. In addition, sox10 mutants unexpectedly showed more ltk-expressing cells than wild-type siblings. These cells remained in a premigratory position and expressed sox10 but not the earliest neural crest markers and may represent multipotent, but partially-restricted, progenitors. In summary, we have discovered a novel signalling pathway in NCC development and demonstrate fate specification of iridophores as the first identified role for Ltk. Stem and other multipotent cells generate diverse cell-types, but our understanding of how they make these decisions, which is important for their therapeutic use, is incomplete. Neural crest cells are an important class of multipotent cells and generate multiple stem cell types. We have looked at how pigment cells are made from the neural crest in the zebrafish. The silver shine familiar in so many fish is due to specialised mirror-like pigment cells, called iridophores. We show that these cells are missing in zebrafish shady mutants. We identify the shady gene as encoding a cell signalling receptor, leukocyte tyrosine kinase (Ltk), that has recently been associated with human auto-immune disease. We show that in zebrafish this gene is most likely required to make iridophores from neural crest cells. Thus, we identify a novel pathway required for diversification of these multipotent cells. Our work defines the first role for Ltk in a vertebrate. It provides a mutant resource that will allow us to discover the full breadth of roles for this important gene. Furthermore, the loss of iridophores forms a simple visual screen for inhibition of LTK function and might well have implications in drug discovery.
Collapse
|
53
|
Silver DL, Hou L, Somerville R, Young ME, Apte SS, Pavan WJ. The secreted metalloprotease ADAMTS20 is required for melanoblast survival. PLoS Genet 2008; 4:e1000003. [PMID: 18454205 PMCID: PMC2265537 DOI: 10.1371/journal.pgen.1000003] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 01/22/2008] [Indexed: 01/08/2023] Open
Abstract
ADAMTS20 (Adisintegrin-like and metalloprotease domain with thrombospondin type-1 motifs) is a member of a family of secreted metalloproteases that can process a variety of extracellular matrix (ECM) components and secreted molecules. Adamts20 mutations in belted (bt) mice cause white spotting of the dorsal and ventral torso, indicative of defective neural crest (NC)-derived melanoblast development. The expression pattern of Adamts20 in dermal mesenchymal cells adjacent to migrating melanoblasts led us to initially propose that Adamts20 regulated melanoblast migration. However, using a Dct-LacZ transgene to track melanoblast development, we determined that melanoblasts were distributed normally in whole mount E12.5 bt/bt embryos, but were specifically reduced in the trunk of E13.5 bt/bt embryos due to a seven-fold higher rate of apoptosis. The melanoblast defect was exacerbated in newborn skin and embryos from bt/bt animals that were also haploinsufficient for Adamts9, a close homolog of Adamts20, indicating that these metalloproteases functionally overlap in melanoblast development. We identified two potential mechanisms by which Adamts20 may regulate melanoblast survival. First, skin explant cultures demonstrated that Adamts20 was required for melanoblasts to respond to soluble Kit ligand (sKitl). In support of this requirement, bt/bt;Kit(tm1Alf)/+ and bt/bt;Kitl(Sl)/+ mice exhibited synergistically increased spotting. Second, ADAMTS20 cleaved the aggregating proteoglycan versican in vitro and was necessary for versican processing in vivo, raising the possibility that versican can participate in melanoblast development. These findings reveal previously unrecognized roles for Adamts proteases in cell survival and in mediating Kit signaling during melanoblast colonization of the skin. Our results have implications not only for understanding mechanisms of NC-derived melanoblast development but also provide insights on novel biological functions of secreted metalloproteases.
Collapse
|
54
|
Huang YH, Lee TH, Chan KJ, Hsu FL, Wu YC, Lee MH. Anemonin is a natural bioactive compound that can regulate tyrosinase-related proteins and mRNA in human melanocytes. J Dermatol Sci 2008; 49:115-23. [PMID: 17766092 DOI: 10.1016/j.jdermsci.2007.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Revised: 07/07/2007] [Accepted: 07/21/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Melanin is the pigment responsible for skin color. Melanin synthesis occurs with the participation of the tyrosinase (TYR) family of proteins including TYR, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2(TRP2/DCT). OBJECTIVE The effect of a newly isolated natural compound that inhibits hyperpigmentation on the regulation of the TYR family of proteins was examined. METHODS The natural compound, anemonin, was isolated from Clematis crassifolia Benth and was used to inhibit cellular TYR activity; it was found to have a low cytotoxicity (cell viability > 80%) in human melanocytes. RESULTS In human melanocytes, anemonin showed both time- and dose-dependent inhibition (IC(50) 43.5 microM) of TYR. Western blot analysis and immunocytochemical staining revealed that expression of TYR, TRP1, and TRP2 was decreased in anemonin-treated melanocytes. Additionally, reverse transcription and quantitative real-time polymerase chain reaction analyses revealed that expression of mRNAs for MITF, TYR, TYRP1, and TYRP2 was also suppressed by anemonin. CONCLUSION The natural compound, anemonin, an active compound of C. crassifolia, inhibits pigmentation synthesis in human melanocytes. Anemonin inhibits melanin synthesis by inhibiting the transcription of the genes encoding MITF, TYR, TRP1, and TRP2. This natural compound may be a candidate for cosmetic use.
Collapse
|
55
|
Scott G, Fricke A, Fender A, McClelland L, Jacobs S. Prostaglandin E2 regulates melanocyte dendrite formation through activation of PKCzeta. Exp Cell Res 2007; 313:3840-50. [PMID: 17850789 PMCID: PMC2330264 DOI: 10.1016/j.yexcr.2007.07.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/05/2007] [Accepted: 07/30/2007] [Indexed: 12/11/2022]
Abstract
Prostaglandins are lipid signaling intermediates released by keratinocytes in response to ultraviolet irradiation (UVR) in the skin. The main prostaglandin released following UVR is PGE(2), a ligand for 4 related G-protein-coupled receptors (EP(1), EP(2), EP(3) and EP(4)). Our previous work established that PGE(2) stimulates melanocyte dendrite formation through activation of the EP(1) and EP(3) receptors. The purpose of the present report is to define the signaling intermediates involved in EP(1)- and EP(3)-dependent dendrite formation in human melanocytes. We recently showed that activation of the atypical PKCzeta isoform stimulates melanocyte dendricity in response to treatment with lysophosphatidylcholine. We therefore examined the potential contribution of PKCzeta activation on EP(1)- and EP(3)-dependent dendrite formation in melanocytes. Stimulation of the EP(1) and EP(3) receptors by selective agonists activated PKCzeta, and inhibition of PKCzeta activation abrogated EP(1)- and EP(3)-receptor-mediated melanocyte dendricity. Because of the importance of Rho-GTP binding proteins in the regulation of melanocyte dendricity, we also examined the effect of EP(1) and EP(3) receptor activation on Rac and Rho activity. Neither Rac nor Rho was activated upon treatment with EP(1,3)-receptor agonists. We show that melanocytes express only the EP(3A1) isoform, but not the EP(3B) receptor isoform, previously associated with Rho activation, consistent with a lack of Rho stimulation by EP(3) agonists. Our data suggest that PKCzeta activation plays a predominant role in regulation of PGE(2)-dependent melanocyte dendricity.
Collapse
|
56
|
Liu SH, Pan IH, Chu IM. Inhibitory effect of p-hydroxybenzyl alcohol on tyrosinase activity and melanogenesis. Biol Pharm Bull 2007; 30:1135-9. [PMID: 17541167 DOI: 10.1248/bpb.30.1135] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tyrosinase is a key enzyme catalyzing the rate-limiting step for the biosynthesis pathway of melanin pigment, which is the most important determinant of the color of skin. Inhibiting tyrosinase and repressing melanocyte metabolism can reduce melanin production. Among the possible melanin reducing compounds, tyrosinase inhibitors are most promising for treating pigmentation and are used as skin-whitening agents in the cosmetic industry. In our investigation, some new tyrosinase inhibitors from plants have been identified to have high tyrosinase inhibitory activity. Specifically, p-hydroxybenzyl alcohol (4HBA) was found to inhibit the monophenolase activity of mushroom tyrosinase. When 4HBA binds with the enzyme, conformation of the enzyme is altered and its activity decreases. The inhibitory effect of 4HBA on melanogenesis has been studied using cultured mouse melanoma cells. Melanin synthesis in cell culture with 4HBA at 1.0 mM was decreased to 45% of control and below 1.0 mM there was no effect on cell growth. The inhibitory effects of 4HBA on melanogenesis are due to the direct inhibition of melanosomal tyrosinase activity, rather than to the suppression of tyrosinase gene. These results showed that 4HBA is a promising and safe agent for skin whitening.
Collapse
|
57
|
Cheng KT, Hsu FL, Chen SH, Hsieh PK, Huang HS, Lee CK, Lee MH. New constituent from Podocarpus macrophyllus var. macrophyllus shows anti-tyrosinase effect and regulates tyrosinase-related proteins and mRNA in human epidermal melanocytes. Chem Pharm Bull (Tokyo) 2007; 55:757-61. [PMID: 17473463 DOI: 10.1248/cpb.55.757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new biflavonoid, 2,3-dihydro-4',4'''-di-O-methylamentoflavone (5), and five known compounds, (-)-catechin (1), quercetin (2), 2,3-dihydrosciadopitysin (3), sciadopitysin (4), and isoginkgetin (6), were isolated from Podocarpus macrophyllus var. macrophyllus (Podocarpaceae). These compounds were evaluated their ability to inhibit cellular tyrosinase activity and for their melanin inhibitory activity in human epidermal melanocytes (HEMn). In the melanin synthesis assay, 2,3-dihydro-4',4'''-di-O-methylamentoflavone (5) showed a potent anti-tyrosinase effect with IC(50)=0.098 mM in HEMn. It also significantly decreased both protein and mRNA levels of the tyrosinase-related protein-2 (TRP-2) by Western blot and quantitative real-time PCR (qRT-PCR) analysis. These findings suggest that the new compound, 2,3-dihydro-4',4'''-di-O-methylamentoflavone (5), is the most active component of P. macrophyllus var. macrophyllus in inhibiting pigmentation and that this inhibition is exerted through inhibition of transcription of the genes encoding TRP2.
Collapse
|
58
|
Abstract
This article focuses on recent advances in melanocyte biology and physiology. The major function of this neural crest-derived cell is the production of melanins. A "three enzyme theory" in the initiation of pigmentation is put forward and backed up by recent findings. A receptor-independent role for alpha-MSH and the cofactor (6R)-l-erythro-5,6,7,8-terahydrobiopterin (6BH(4)) in the control of tyrosinase is described. The importance of intramelanosomal pH for melanogenesis is covered. Finally, the redundancy of the cAMP and IP3/DAG/calcium signal in melanocytes together with the downstream events are highlighted. The main message of this article is that the intracellular H(2)O(2)- redox-equilibrium controls melanocyte function in a concentration-dependent manner.
Collapse
|
59
|
Chwirot BW, Kuźbicki Ł. Cyclooxygenase-2 (COX-2): first immunohistochemical marker distinguishing early cutaneous melanomas from benign melanocytic skin tumours. Melanoma Res 2007; 17:139-45. [PMID: 17505259 DOI: 10.1097/cmr.0b013e3280dec6ac] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have reported recently that changes in expression level of COX-2 are correlated with development and progression of human melanoma. In this study, we investigated whether the COX-2 expression level might be a useful immunohistochemical marker for distinguishing cutaneous melanomas from benign melanocytic lesions. Up to now, immunohistochemical markers have not ensured satisfactory sensitivity and specificity of differential pathologic diagnosis of melanoma. The expression of COX-2 was determined immunohistochemically in formalin-fixed, paraffin-embedded specimens of 33 early Clark I/II melanomas and 58 naevi. Mean COX-2 expression in melanomas was significantly stronger than in naevi (P approximately 10(-13)). A simple diagnostic algorithm using threshold values of the COX-2 expression level allows for differentiation between early melanomas and naevi with high sensitivity (Se) and specificity (Sp) (for Se between 91 and 100%, Sp values change between 96.5 and 51.7%). Areas under the receiver operating characteristic curves were, respectively, 0.97+/-0.02 and 0.86+/-0.04 for the COX-2 expression in central and border regions of the lesions. For all the melanomas (not only the early ones),the respective areas under the ROC curve values were 0.98+/-0.01 and 0.97+/-0.02. In conclusion, COX-2 is the first immunohistochemical marker that allows the distinguishing of early melanomas from benign melanocytic lesions with both high sensitivity and specificity.
Collapse
|
60
|
Cotter MA, Florell SR, Leachman SA, Grossman D. Absence of senescence-associated beta-galactosidase activity in human melanocytic nevi in vivo. J Invest Dermatol 2007; 127:2469-71. [PMID: 17522702 PMCID: PMC2292406 DOI: 10.1038/sj.jid.5700903] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
61
|
Yang CT, Hindes AE, Hultman KA, Johnson SL. Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish. PLoS Genet 2007; 3:e88. [PMID: 17542649 PMCID: PMC1885281 DOI: 10.1371/journal.pgen.0030088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 04/17/2007] [Indexed: 12/01/2022] Open
Abstract
The establishment of a single cell type regeneration paradigm in the zebrafish provides an opportunity to investigate the genetic mechanisms specific to regeneration processes. We previously demonstrated that regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors following larval melanocyte ablation with a small molecule, MoTP. The ease of ablating melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells. Here, we reported the identification of two mutants, earthaj23e1 and juliej24e1 from a melanocyte ablation screen. Both mutants develop normal larval melanocytes, but upon melanocyte ablation, each mutation results in a distinct stage-specific defect in melanocyte regeneration. Positional cloning reveals that the earthaj23e1 mutation is a nonsense mutation in gfpt1 (glutamine:fructose-6-phosphate aminotransferase 1), the rate-limiting enzyme in glucosamine-6-phosphate biosynthesis. Our analyses reveal that a mutation in gfpt1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration and that gfpt1 acts cell autonomously in melanocytes to promote ontogenetic melanocyte darkening. We identified that the juliej24e1 mutation is a splice-site mutation in skiv2l2 (superkiller viralicidic activity 2-like 2), a predicted DEAD-box RNA helicase. Our in situ analysis reveals that the mutation in skiv2l2 causes defects in cell proliferation, suggesting that skiv2l2 plays a role in regulating melanoblast proliferation during early stages of melanocyte regeneration. This finding is consistent with previously described role for cell division during larval melanocyte regeneration. The analyses of these mutants reveal their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process, but also in late stages of differentiation of the regenerating melanocyte. We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis, and those involved in larval or adult growth. Programs of ontogenetic development and regeneration share many components. Differences in genetic requirements between regeneration and development may identify mechanisms specific to the stem cells that maintain cell populations in postembryonic stages, or identify other regeneration-specific functions. Here, we utilize a forward genetic approach that takes advantage of single cell type ablation and regeneration to isolate mechanisms specific to regeneration of the zebrafish melanocyte. Upon chemical ablation of melanocytes, zebrafish larvae reconstitute their larval pigment pattern from undifferentiated precursors or stem cells. We isolated two zebrafish mutants that develop embryonic melanocytes normally but fail to regenerate their melanocytes upon ablation. This phenotype suggests the regeneration-specific roles of the mutated genes. We further identified the mutations in gfpt1 and skiv2l2 and show their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process (skiv2l2), but also in late stages of differentiation of the regenerating melanocyte (gfpt1). We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis and those involved in larval or adult growth.
Collapse
|
62
|
Yanagisawa K, Yasuda S, Kai M, Imai SI, Yamada K, Yamashita T, Jimbow K, Kanoh H, Sakane F. Diacylglycerol kinase α suppresses tumor necrosis factor-α-induced apoptosis of human melanoma cells through NF-κB activation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:462-74. [PMID: 17276726 DOI: 10.1016/j.bbalip.2006.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 11/15/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
We investigated the implication of diacylglycerol kinase (DGK) alpha (type I isoform) in melanoma cells because we found that this DGK isoform was expressed in several human melanoma cell lines but not in noncancerous melanocytes. Intriguingly, the overexpression of wild-type (WT) DGKalpha, but not of its kinase-dead (KD) mutant, markedly suppressed tumor necrosis factor (TNF)-alpha-induced apoptosis of AKI human melanoma cells. In the reverse experiment, siRNA-mediated knockdown of DGKalpha significantly enhanced the apoptosis. The overexpression of other type I isoforms (DGKbeta and DGKgamma) had, on the other hand, no detectable effects on the apoptosis. These results indicate that DGKalpha specifically suppresses the TNF-alpha-induced apoptosis through its catalytic action. We found that the overexpression of DGKalpha-WT, but not of DGKalpha-KD, further enhanced the TNF-alpha-stimulated transcriptional activity of an anti-apoptotic factor, NF-kappaB. Conversely, DGKalpha-knockdown considerably inhibited the NF-kappaB activity. Moreover, an NF-kappaB inhibitor blunted the anti-apoptotic effect of DGKalpha overexpression. Together, these results strongly suggest that DGKalpha is a novel positive regulator of NF-kappaB, which suppresses TNF-alpha-induced melanoma cell apoptosis.
Collapse
|
63
|
Shields JM, Thomas NE, Cregger M, Berger AJ, Leslie M, Torrice C, Hao H, Penland S, Arbiser J, Scott G, Zhou T, Bar-Eli M, Bear JE, Der CJ, Kaufmann WK, Rimm DL, Sharpless NE. Lack of Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Signaling Shows a New Type of Melanoma. Cancer Res 2007; 67:1502-12. [PMID: 17308088 DOI: 10.1158/0008-5472.can-06-3311] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The majority of human melanomas harbor activating mutations of either N-RAS or its downstream effector B-RAF, which cause activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase and the ERK MAPK cascade. The melanoma-relevant effectors of ERK activation, however, are largely unknown. In this work, we show that increased ERK activation correlates strongly with mutational status of N-RAS or B-RAF in 21 melanoma cell lines. Melanoma lines that were wild-type for RAS/RAF showed low levels of ERK activation comparable with primary human melanocytes. Through supervised analysis of RNA expression profiles, we identified 82 genes, including TWIST1, HIF1alpha, and IL-8, which correlated with ERK activation across the panel of cell lines and which decreased with pharmacologic inhibition of ERK activity, suggesting that they are ERK transcriptional targets in melanoma. Additionally, lines lacking mutations of N-RAS and B-RAF were molecularly distinct and characterized by p53 inactivation, reduced ERK activity, and increased expression of epithelial markers. Analysis of primary human melanomas by tissue microarray confirmed a high correlation among expression of these epithelial markers in a heterogeneous sample of 570 primary human tumors, suggesting that a significant frequency of primary melanomas is of this "epithelial-like" subtype. These results show a molecularly distinct melanoma subtype that does not require ERK activation or epithelial-mesenchymal transformation for progression.
Collapse
|
64
|
Abstract
To find novel skin-whitening agents, the melanogenesis inhibitory action of gallic acid (GA) was investigated. In this current study, the effects of GA on mushroom tyrosinase, tyrosinase inhibitory activity, and melanin content were assessed in B16 melanoma cells (B16 cells). Results indicated that GA has a strong antityrosinase activity (IC50=3.59x10(-6) M). Furthermore, data on murine tyrosinase activity and melanin biosynthesis revealed that GA effectively suppressed murine tyrosinase action and the amount of melanin. To investigate the relation between GA's inhibition of melanogenesis and antioxidant activity, the effect of GA on reactive species (RS) generation and the reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in were determined in B16 cells. Results indicated that GA effectively down-regulated the RS generation and enhanced the GSH/GSSG ratio. Based on these results, I propose that GA exerts antimelanogenic activity coupled with antioxidant properties by suppressing RS generation and maintaining a higher GSH/GSSG ratio.
Collapse
|
65
|
Chang YH, Kim C, Jung M, Lim YH, Lee S, Kang S. Inhibition of Melanogenesis by Selina-4(14),7(11)-dien-8-one Isolated from Atractylodis Rhizoma Alba. Biol Pharm Bull 2007; 30:719-23. [PMID: 17409509 DOI: 10.1248/bpb.30.719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To develop effective skin-lightening agents, we tested medicinal herbal extracts for their melanogenic-inhibitory activities. We isolated a sesquiterpenoid compound from the extract of Atractylodis Rhizoma Alba using the bioactivity-guided fractionation and identified it as selina-4(14),7(11)-dien-8-one (compound 1) with spectroscopic methods. Compound 1 dramatically reduced melanin synthesis of melan-a cells without any apparent cytotoxicity. Compound 1 did not inhibit cell-free tyrosinase activity but decreased tyrosinase activity in melanocytes. These effects were attributed to reduced expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). These results suggest that compound 1 may be an effective skin-lightening agent that regulates expression of melanogenic enzymes.
Collapse
|
66
|
Murisier F, Guichard S, Beermann F. Distinct distal regulatory elements control tyrosinase expression in melanocytes and the retinal pigment epithelium. Dev Biol 2006; 303:838-47. [PMID: 17196956 DOI: 10.1016/j.ydbio.2006.11.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/17/2006] [Accepted: 11/22/2006] [Indexed: 10/23/2022]
Abstract
Pigment cells of mammals are characterized by two different developmental origins: cells of the retinal pigment epithelium (RPE) originate from the optic cup of the developing forebrain, whereas melanocytes arise from the neural crest. The pigmentation gene tyrosinase is expressed in all pigment cells but differentially regulated in melanocytes and RPE. The tyrosinase promoter does not confer strong expression in pigment cells in vivo, while inclusion of a distal regulatory element at position -15 kb is necessary and sufficient to provide strong expression in melanocytes. Nevertheless, the regulatory elements responsible for correct spatial and temporal tyrosinase expression in the RPE remained unidentified so far. In this report, we show that a 186 kb BAC containing the tyrosinase gene provides transgene expression in both RPE and melanocytes indicating the presence of regulatory sequences required for expression in the RPE. A deletion analysis of the BAC was performed demonstrating that a RPE-regulatory element resides between -17 and -75 kb. Using multi-species comparative genomic analysis we identified three conserved sequences within this region. When tested in transgenic mice one of these sequences located at -47 kb targeted expression to the RPE. In addition, deletion of this regulatory element within a tyrosinase::lacZ BAC provided evidence that this sequence is not only sufficient but also required for correct spatial and temporal expression in the RPE. The identification of this novel element demonstrates that tyrosinase gene expression is controlled by separate distal regulatory sequences in melanocytes and RPE.
Collapse
|
67
|
Lai K, Di Girolamo N, Conway RM, Jager MJ, Madigan MC. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production. Graefes Arch Clin Exp Ophthalmol 2006; 245:715-24. [PMID: 17043807 DOI: 10.1007/s00417-006-0444-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/12/2006] [Accepted: 08/19/2006] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. METHODS Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. RESULTS UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. CONCLUSIONS Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be regulated following UVR exposure, and whether they are important for choroidal melanoma development.
Collapse
|
68
|
Scott GA, Arioka M, Jacobs SE. Lysophosphatidylcholine mediates melanocyte dendricity through PKCzeta activation. J Invest Dermatol 2006; 127:668-75. [PMID: 17024099 DOI: 10.1038/sj.jid.5700567] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Melanocytes photoprotect the skin through transfer of melanin-containing melanosomes to keratinocytes. Factors that increase melanocyte dendricity increase melanosome transfer, and are important for prevention of skin cancer. Secretory phospholipase-A2 type X (sPLA2-X) is released by epidermal keratinocytes and we have shown that lysophosphatidylcholine (LPC), the main lysophospholipid released in response to sPLA2-X activity, stimulates melanocyte dendricity. LPC activates protein kinase C (PKC) and increases cAMP in other cells. Treatment of melanocytes with sPLA2-X or LPC induced phosphorylation of the zeta isoform of PKC, and inhibition of protein kinase C zeta (PKCzeta) activity abrogated LPC-dependent dendricity. We have shown previously that the guanosine triphosphate-binding proteins Rac and Rho link hormone signaling and dendricity in melanocytes. Treatment of melanocytes with LPC induced rapid activation of Rac that peaked at 30 minutes; Rho was also activated, but peaked earlier and declined faster. Through the use of constitutively active mutants of Rac, we show that PKCzeta activation is downstream of Rac. We conclude that the primary signaling pathway for LPC-dependent dendrite formation in human melanocytes involves the activation of PKCzeta and that PKCzeta phosphorylation is Rac dependent. Downstream mediators of LPC-dependent dendricity include Rac and Rho.
Collapse
|
69
|
Ito K, Tanaka K, Nishibe Y, Hasegawa J, Ueno H. GABA-synthesizing enzyme, GAD67, from dermal fibroblasts: evidence for a new skin function. Biochim Biophys Acta Gen Subj 2006; 1770:291-6. [PMID: 17113713 DOI: 10.1016/j.bbagen.2006.09.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 09/19/2006] [Accepted: 09/25/2006] [Indexed: 12/12/2022]
Abstract
Glutamate decarboxylase (GAD) catalyzes the synthesis of gamma-aminobutyric acid (GABA), an inhibitory neurotransmitter, from glutamate. An expression of GAD protein has been reported for brain and pancreas, but not for skin. In this study, we present evidence that GAD67 mRNA and protein are expressed in mouse skin and in human dermal fibroblasts. The expression of GAD67 gene is weaker in aged mouse than the young one. To further explore the function of GAD in skin, we have examined a potential role(s) of GABA in human dermal fibroblasts. We have observed that GABA stimulates the synthesis of hyaluronic acid (HA) and enhances the survival rate of the dermal fibroblasts when fibroblasts are exposed to H(2)O(2) an oxidative stress agent. Also observed were lowering the levels of HA and collagen in the embryonic skin from GAD67 deficient mouse as compared to those from the wild-type (WT) mouse. In this study, we have presented the evidences that GAD67 is localized in the dermis and is potentially involved in variety of skin activities.
Collapse
|
70
|
Kuźbicki L, Aładowicz E, Chwirot BW. Cyclin-dependent kinase 2 expression in human melanomas and benign melanocytic skin lesions. Melanoma Res 2006; 16:435-44. [PMID: 17013093 DOI: 10.1097/01.cmr.0000232290.61042.ee] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cyclin-dependent kinase 2 (CDK-2) is strongly involved in regulating the progression of the cell cycle through G1/S checkpoint and S phase. Numerous studies demonstrated increased levels of CDK-2 (and also of its regulatory cyclins E and/or A) in different types of human tumours. Correlations found between the expression of those cell cycle regulators and progression and/or invasiveness of some tumours indicated the importance of CDK-2 as a potential prognostic marker. At the same time, in vitro studies of melanoma cell lines revealed melanocyte-specific regulation of CDK-2. The present study was aimed at examining levels of CDK-2 in human melanomas and benign pigmented lesions to evaluate whether it might be considered a potential molecular marker of melanoma progression. Expression of CDK-2 was determined immunohistochemically in formalin-fixed paraffin-embedded specimens comprising 76 lesions including 41 primary cutaneous melanomas, 15 lymph node melanoma metastases (in eight cases correlated with primary tumours), three melanoma recurrences (two cases correlated with both primary and metastatic melanomas) and 17 nevi. Our results demonstrate that development and progression of melanoma are associated with changes in CDK-2 expression level. Statistical significance of the observed correlations indicates that CDK-2 may be a suitable prognostic marker for melanoma and perhaps also a target for chemotherapeutic drugs.
Collapse
|
71
|
Sadej R, Spychala J, Skladanowski AC. Expression of ecto-5'-nucleotidase (eN, CD73) in cell lines from various stages of human melanoma. Melanoma Res 2006; 16:213-22. [PMID: 16718268 DOI: 10.1097/01.cmr.0000215030.69823.11] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ecto-5'-nucleotidase is a GPI-anchored enzyme localized in cell membrane lipid rafts. Although it is highly expressed in many tumour cells, its specific function during tumorigenesis is unclear. We have found that, among different melanoma cells, upregulated expression of ecto-5'-nucleotidase is associated with a highly invasive phenotype. Analysis of other cell membrane proteins involved in melanoma adhesion and metastasis demonstrated that expression of alpha5, beta1, beta3-integrin subunits and CD44 was elevated gradually in accordance with increasing metastatic potential. Expression of alphav-integrin and caveolin-1 was seen mostly in cells derived from metastatic melanomas. Furthermore, in contrast to N-cadherin, which was unaltered in all lines, we could not detect E-cadherin in any cell type. Functional assays demonstrated that highly expressed ecto-5'-nucleotidase is a catalytically competent protein that is very sensitive to inhibition by concanavalin A. The interaction with concanavalin A also caused increased association of ecto-5'-nucleotidase-rich lipid rafts with much heavier cytoskeletal complexes as determined by density gradient centrifugation. A similar shift towards heavier cytoskeletal fractions also took place with other proteins coexpressed with ecto-5'-nucleotidase, such as alphav, alpha5, beta1 and beta3-integrins, caveolin-1 and CD44. As ConA-induced clustering may reflect the interactions of membrane proteins with extracellular matrix, we also analysed the effect of several extracellular matrix proteins on the in-situ activity of ecto-5'-nucleotidase in WM9 cells and found that tenascin C strongly inhibited ecto-5'-nucleotidase activity and adenosine generation from AMP. We also developed WM9 cells with reduced ecto-5'-nucleotidase expression and tested differences in cell adhesion on various extracellular matrix proteins. WM9 cells attached significantly weaker to tenascin C layer. These observations indicate that expression of ecto-5'-nucleotidase correlates with a number of metastasis-related markers and thus may have a function in this process. Furthermore, our data suggest that, in addition to generating adenosine, ecto-5'-nucleotidase may have independent roles in adhesion and interaction with extracellular matrix components in melanoma.
Collapse
|
72
|
Fayolle C, Pourchet J, Cohen A, Pedeux R, Puisieux A, Caron de Fromentel C, Dorè JF, Voeltzel T. UVB-induced G2 arrest of human melanocytes involves Cdc2 sequestration by Gadd45a in nuclear speckles. Cell Cycle 2006; 5:1859-64. [PMID: 16931908 DOI: 10.4161/cc.5.16.3119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Exposure to solar UVB radiation is involved in the development of cutaneous melanoma. We previously showed that human melanocytes and melanoma cells respond to UVB radiation via a p53-independent pathway involving GADD45A activation. Here, we determined that UVB-induction of Gadd45a is necessary for G(2) arrest and that Gadd45a and its partner p21(Waf1) colocalize in nuclear bodies called Nuclear Speckles. We further observed that UVB-induced G(2) arrest is associated with Cdc2 accumulation in these Nuclear Speckles. Knock-down of Gadd45a expression by RNA interference prevents both UVB-induced Cdc2 accumulation in Nuclear Speckles and G(2) arrest. Our results demonstrate that UVB-induced G(2) arrest of melanoma cells is Gadd45a-dependent. Furthermore, we show that Cdc2 sequestration by Gadd45a occurs in Nuclear Speckles, suggesting a new role for these nuclear bodies, so far only linked to RNA maturation.
Collapse
|
73
|
Lee MH, Lin YP, Hsu FL, Zhan GR, Yen KY. Bioactive constituents of Spatholobus suberectus in regulating tyrosinase-related proteins and mRNA in HEMn cells. PHYTOCHEMISTRY 2006; 67:1262-70. [PMID: 16782143 DOI: 10.1016/j.phytochem.2006.05.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/03/2006] [Accepted: 05/04/2006] [Indexed: 05/10/2023]
Abstract
Spatholobus suberectus Dunn (Leguminosae) is a traditional Chinese herbal medicine used to treat rheumatism, anemia, menoxenia, and other disorders. The extent to which this herbal medicine is useful to skin cells, however, has not been evaluated. Constituents of the 95% ethanol extracts of the dried vine stems of S. suberectus were therefore isolated and examined for their skin-whitening capacity. A bio-guided phytochemical investigation, involving use of the mushroom tyrosinase inhibitory system, of active fractions of the extracts resulted in the isolation of 12 constituents. The structures of these constituents, which were characterized by various spectroscopic techniques, consisted of one flavone, three isoflavones, five flavanones, two flavanonols, and one chalcone. Of these constituents 3',4',7-trihydroxyflavone (1), eriodictyol (3), plathymenin (5), dihydroquercetin (6), butin (7), neoisoliquiritigenin (8), dihydrokaempferol (9), liquiritigenin (10), and 6-methoxyeriodictyol (12) represented compounds isolated for the first time from S. suberectus. These constituents were evaluated their ability to inhibit cellular tyrosinase activity and for their melanin inhibitory activity in human epidermal melanocytes (HEMn). Butin (7) was the most efficacious of these constituents and exhibited concentration-dependent effects. Western blot analysis revealed that expression of tyrosinase and tyrosinase-related proteins 1 and 2 (TRP1 and TRP2) was decreased in butin (7)-treated HEMn cells. Additionally, quantitative real-time PCR (qRT-PCR) analysis disclosed that expression of mRNAs for tyrosinase, TRP1 and TRP2 was suppressed by butin (7). It is concluded that butin (7) is the most active of the components of S. suberectus in inhibiting pigmentation and that this inhibition is exerted through inhibition of transcription of the genes encoding tyrosinase, TRP1 and TRP2.
Collapse
|
74
|
Park HY, Wu C, Yonemoto L, Murphy-Smith M, Wu H, Stachur C, Gilchrest B. MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem J 2006; 395:571-8. [PMID: 16411896 PMCID: PMC1462691 DOI: 10.1042/bj20051388] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP-dependent pathway up-regulates MITF (microphthalmia-associated transcription factor), important for key melanogenic proteins such as tyrosinase, TRP-1 (tyrosinase-related protein 1) and TRP-2. We asked whether MITF is also a key transcription factor for PKC-beta (protein kinase C-beta), required to phosphorylate otherwise inactive tyrosinase. When paired cultures of human melanocytes were treated with isobutylmethylxanthine, known to increase intracellular cAMP, both protein and mRNA levels of PKC-beta were induced by 24 h. To determine whether MITF modulates PKC-beta expression, paired cultures of human melanocytes were transfected with dn-MITF (dominant-negative MITF) or empty control vector. By immunoblotting, PKC-beta protein was reduced by 63+/-3.7% within 48 h. Co-transfection of an expression vector for MITF-M, the MITF isoform specific for pigment cells, or empty control vector with a full-length PKC-beta promoter-CAT (chloramphenicol acetyltransferase) reporter construct (PKC-beta/CAT) into Cos-7 cells showed >60-fold increase in CAT activity. Melanocytes abundantly also expressed MITF-A, as well as the MITF-B and MITF-H isoforms. However, in contrast with MITF-M, MITF-A failed to transactivate co-expressed PKC-beta/CAT or CAT constructs under the control of a full-length tyrosinase promoter. Together, these results demonstrate that MITF, specifically MITF-M, is a key transcription factor for PKC-beta, linking the PKC- and cAMP-dependent pathways in regulation of melanogenesis.
Collapse
|
75
|
Meierjohann S, Wende E, Kraiss A, Wellbrock C, Schartl M. The oncogenic epidermal growth factor receptor variant Xiphophorus melanoma receptor kinase induces motility in melanocytes by modulation of focal adhesions. Cancer Res 2006; 66:3145-52. [PMID: 16540665 DOI: 10.1158/0008-5472.can-05-2667] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most prominent features of malignant melanoma is the fast generation of metastasizing cells, resulting in the poor prognosis of patients with this tumor type. For this process, cells must gain the ability to migrate. The oncogenic receptor Xmrk (Xiphophorus melanoma receptor kinase) from the Xiphophorus melanoma system is a mutationally activated version of the epidermal growth factor receptor that induces the malignant transformation of pigment cells. Here, we show that the activation of Xmrk leads to a clear increase of pigment cell motility in a fyn-dependent manner. Stimulation of Xmrk induces its interaction with the focal adhesion kinase (FAK) and the interaction of active, receptor-bound fyn with FAK. This results in changes in FAK activity and induces the modulation of stress fibers and focal adhesions. Overexpression of dominant-negative FAK shows that the activity of innate FAK and a receptor-induced focal adhesion turnover are a prerequisite for pigment cell migration. Our findings show that in our system, Xmrk is sufficient for the induction of pigment cell motility and underlines a role of the src family protein tyrosine kinase fyn in melanoma development and progression.
Collapse
|