51
|
O'Carroll AM, Lolait SJ, Harris LE, Pope GR. The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis. J Endocrinol 2013; 219:R13-35. [PMID: 23943882 DOI: 10.1530/joe-13-0227] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The apelin receptor (APJ; gene symbol APLNR) is a member of the G protein-coupled receptor gene family. Neural gene expression patterns of APJ, and its cognate ligand apelin, in the brain implicate the apelinergic system in the regulation of a number of physiological processes. APJ and apelin are highly expressed in the hypothalamo-neurohypophysial system, which regulates fluid homeostasis, in the hypothalamic-pituitary-adrenal axis, which controls the neuroendocrine response to stress, and in the forebrain and lower brainstem regions, which are involved in cardiovascular function. Recently, apelin, synthesised and secreted by adipocytes, has been described as a beneficial adipokine related to obesity, and there is growing awareness of a potential role for apelin and APJ in glucose and energy metabolism. In this review we provide a comprehensive overview of the structure, expression pattern and regulation of apelin and its receptor, as well as the main second messengers and signalling proteins activated by apelin. We also highlight the physiological and pathological roles that support this system as a novel therapeutic target for pharmacological intervention in treating conditions related to altered water balance, stress-induced disorders such as anxiety and depression, and cardiovascular and metabolic disorders.
Collapse
|
52
|
Kentish SJ, Wittert GA, Blackshaw LA, Page AJ. A chronic high fat diet alters the homologous and heterologous control of appetite regulating peptide receptor expression. Peptides 2013; 46:150-8. [PMID: 23792934 DOI: 10.1016/j.peptides.2013.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/04/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Leptin, ghrelin and neuropeptide W (NPW) modulate vagal afferent activity, which may underlie their appetite regulatory actions. High fat diet (HFD)-induced obesity induces changes in the plasma levels of these peptides and alters the expression of receptors on vagal afferents. We investigated homologous and heterologous receptor regulation by leptin, ghrelin and NPW. Mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Nodose ganglia were cultured overnight in the presence or absence of each peptide. Leptin (LepR), ghrelin (GHS-R), NPW (GPR7) and cholecystokinin type-1 (CCK1R) receptor mRNA, and the plasma leptin, ghrelin and NPW levels were measured. SLD: leptin reduced LepR, GPR7, increased GHS-R and CCK1R mRNA; ghrelin increased LepR, GPR7, CCK1R, and decreased GHS-R. HFD: leptin decreased GHS-R and GPR7, ghrelin increased GHS-R and GPR7. NPW decreased all receptors except GPR7 which increased with HFD. Plasma leptin was higher and NPW lower in HFD. Thus, HFD-induced obesity disrupts inter-regulation of appetite regulatory receptors in vagal afferents.
Collapse
MESH Headings
- Animals
- Appetite/physiology
- Appetite Regulation/physiology
- Cells, Cultured
- Diet, High-Fat
- Female
- Ghrelin/blood
- Ghrelin/metabolism
- Leptin/blood
- Leptin/metabolism
- Mice
- Mice, Inbred C57BL
- Neuropeptides/blood
- Neuropeptides/metabolism
- Nodose Ganglion/cytology
- Nodose Ganglion/drug effects
- Obesity/blood
- RNA, Messenger
- Receptor, Cholecystokinin A/genetics
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Ghrelin/metabolism
- Receptors, Leptin/metabolism
- Receptors, Neuropeptide/biosynthesis
- Receptors, Neuropeptide/metabolism
- Vagus Nerve/metabolism
Collapse
|
53
|
Gavin KM, Cooper EE, Hickner RC. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women. Metabolism 2013; 62:1180-8. [PMID: 23557590 DOI: 10.1016/j.metabol.2013.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/01/2013] [Accepted: 02/25/2013] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. MATERIALS/METHODS Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. RESULTS We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). CONCLUSIONS These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women.
Collapse
|
54
|
Cao L, Xun J, Jiang X, Tan R. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons. DIE PHARMAZIE 2013; 68:677-680. [PMID: 24020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.
Collapse
|
55
|
Yang D, Cao F, Ye X, Zhao H, Liu X, Li Y, Shi C, Wang H, Zhou J. Arsenic trioxide inhibits the Hedgehog pathway which is aberrantly activated in acute promyelocytic leukemia. Acta Haematol 2013; 130:260-7. [PMID: 23867347 DOI: 10.1159/000351603] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 04/21/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Dysregulated Hedgehog (Hh) signaling has been implicated in several human malignancies. Hh signaling inhibitors are predicted to have a minimal effect when the Smoothened receptor is mutated. Implications that Gli proteins are molecular targets of arsenic trioxide (ATO) action prompted us to investigate the expression of Hh signaling in acute promyelocytic leukemia (APL) and the influence of ATO on the Hh signaling pathway in APL. METHODS Quantitative real-time reverse transcription polymerase chain reaction and Western blot were employed to analyze the expression of Hh pathway components and the influence of ATO on the Hh signaling pathway in APL. RESULTS The expression of Hh pathway components was significantly upregulated in APL. In newly diagnosed APL patients, Gli2 expression was significantly positively correlated with Gli1 (R = 0.57, p < 0.001) and Smo (R = 0.56, p < 0.001) and the expression of Hh pathway components was significantly higher in the high WBC group (p < 0.05). ATO can significantly downregulate the expression of Hh pathway components in vitro and in vivo (p < 0.05). CONCLUSION The Hh pathway is aberrantly activated in APL and associated with a bad prognostic factor. ATO can effectively inhibit the expression of the Hh pathway. The obtained data give the first clinical evidence for the application of ATO in tumors exhibiting an aberrantly activated Hh pathway.
Collapse
|
56
|
Herwig A, de Vries EM, Bolborea M, Wilson D, Mercer JG, Ebling FJP, Morgan PJ, Barrett P. Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the Siberian hamster (Phodopus sungorus). PLoS One 2013; 8:e62003. [PMID: 23637944 PMCID: PMC3630139 DOI: 10.1371/journal.pone.0062003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/15/2013] [Indexed: 01/11/2023] Open
Abstract
Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response.
Collapse
|
57
|
Cao W, Tian W, Hong J, Li D, Tavares R, Noble L, Moss SF, Resnick MB. Expression of bile acid receptor TGR5 in gastric adenocarcinoma. Am J Physiol Gastrointest Liver Physiol 2013; 304:G322-7. [PMID: 23238937 PMCID: PMC3566614 DOI: 10.1152/ajpgi.00263.2012] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/12/2012] [Indexed: 02/08/2023]
Abstract
Bile reflux is a risk factor in the development of intestinal metaplasia in the stomach and is believed to function as an initiator of gastric carcinogenesis. However, whether the G protein-coupled bile acid receptor TGR5 is expressed in this tumor is not known. In this study, we determined the expression of TGR5 in gastric adenocarcinoma and examined the role of TGR5 in cell proliferation. Strong TGR5 staining was present in 12% of cases of intestinal metaplasia but in no cases of normal gastric epithelium (P < 0.01). Moderate to strong TGR5 membranous and cytoplasmic staining was present in 52% of the intestinal but in only 25% of the diffuse subtype of adenocarcinomas (P < 0.001). Kaplan-Meier univariate survival analysis revealed that moderate to strong TGR5 staining was associated with decreased patient survival (P < 0.05). Treatment with taurodeoxycholic acid (TDCA, a bile acid) significantly increased thymidine incorporation in the AGS gastric adenocarcinoma cell line, suggesting that bile acids may increase cell proliferation. This increase was significantly decreased by knockdown of TGR5 with TGR5 small-interfering RNA (siRNA). In addition, overexpression of TGR5 significantly enhanced TDCA-induced increases in thymidine incorporation. TGR5 is coupled with G(q)α and Gα(i-3) proteins. TDCA-induced increase in thymidine incorporation was significantly decreased by knockdown of G(q)α and Gα(i-3) with their siRNAs. We conclude that TGR5 is overexpressed in most gastric intestinal-type adenocarcinomas, and moderate to strong TGR5 staining is associated with decreased patient survival in all gastric adenocarcinomas. Bile acids increase cell proliferation via activation of TGR5 receptors and G(q)α and Gα(i-3) proteins.
Collapse
|
58
|
Karcz T, Kieć-Kononowicz K. Development of novel cellular model for affinity studies of histamine H(4) receptor ligands. Acta Biochim Pol 2013; 60:823-827. [PMID: 24432340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/04/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The G protein-coupled histamine H4 receptor (H4R) is the last member of histamine receptors family discovered so far. Its expression pattern, together with postulated involvement in a wide variety of immunological and inflammatory processes make histamine H4 receptor an interesting target for drug development. Potential H4R ligands may provide an innovative therapies for different immuno-based diseases, including allergy, asthma, pruritus associated with allergy or autoimmune skin conditions, rheumatoid arthritis and pain. However, none of successfully developed selective and potent histamine H4 receptor ligands have been introduced to the market up to date. For that reason there is still a strong demand for pharmacological models to be used in studies on potent H4R ligands. In current work we present the development of novel mammalian cell line, stably expressing human histamine H4 receptor, with use of retroviral transduction approach. Obtained cell line was pharmacologically characterized in radioligand binding studies and its utility for affinity testing of potent receptor ligands was confirmed in comparative studies with the use of relevant insect cells expression model. Obtained results allow for statement that developed cellular model may be successfully employed in search for new compounds active at histamine H4 receptor.
Collapse
|
59
|
Dey S, Zhan S, Matsunami H. A protocol for heterologous expression and functional assay for mouse pheromone receptors. Methods Mol Biol 2013; 1068:121-31. [PMID: 24014358 DOI: 10.1007/978-1-62703-619-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate social behaviors like intermale aggression, fear, and mating rituals are important for survival and propagation of a species. In mice, these behaviors have been implicated to be mediated by peptide pheromones that are sensed by a class of G protein-coupled receptors, vomeronasal receptor type 2 (V2Rs), expressed in the pheromone-detecting vomeronasal organ (VNO) (Chamero et al., Nature 450:899-902, 2007; Haga et al., Nature 466:118-122, 2010; Kimoto et al., Curr Biol 17:1879-1884, 2007; Leinders-Zufall et al., Nat Neurosci 12:1551-1558, 2009; Papes et al., Cell 141:692-703, 2010). Matching V2Rs with their cognate ligands is required to understand what receptors the biologically relevant pheromones are acting on. However, this goal has been greatly limited by the unavailability of appropriate heterologous tools commonly used to carry out receptor deorphanization, due to the fact that this family of receptors fails to traffic to the surface of heterologous cells. We have demonstrated that calreticulin, a housekeeping chaperone commonly expressed in most eukaryotic cells, is sparsely expressed in the vomeronasal sensory neurons (VSNs). Stable knock down of calreticulin in a HEK293T derived cell line (R24 cells) allows us to functionally express V2Rs on the surface of heterologous cells. In this chapter we describe protocols for maintenance and expansion of the R24 cell line and functional assays for V2Rs using these cells.
Collapse
|
60
|
Odori S, Hosoda K, Tomita T, Fujikura J, Kusakabe T, Kawaguchi Y, Doi R, Takaori K, Ebihara K, Sakai Y, Uemoto S, Nakao K. GPR119 expression in normal human tissues and islet cell tumors: evidence for its islet-gastrointestinal distribution, expression in pancreatic beta and alpha cells, and involvement in islet function. Metabolism 2013; 62:70-8. [PMID: 22883930 DOI: 10.1016/j.metabol.2012.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 06/09/2012] [Accepted: 06/27/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE GPR119 is reportedly involved in regulating glucose metabolism and food intake in rodents, but little is known about its expression and functional significance in humans. To begin to assess the potential clinical importance of GPR119, the distribution of GPR119 gene expression in humans was examined. MATERIALS/METHODS Expression of GPR119 mRNA in fresh samples of normal human pancreas (n=19) and pancreatic islets (n=3) and in insulinomas (n=2) and glucagonomas (n=2), all collected at surgery, was compared with the mRNA expression of various receptors highly expressed and operative in human pancreatic islets. RESULTS GPR119 mRNA was most abundant in the pancreas, followed by the duodenum, stomach, jejunum, ileum and colon. Pancreatic levels of GPR119 mRNA were similar to those of GPR40 mRNA and were higher than those of GLP1R and SUR1 mRNA, which are strongly expressed in human pancreatic islets. Moreover, levels of GPR119 mRNA in pancreatic islets were more than 10 times higher than in adjacent pancreatic tissue, as were levels of GPR40 mRNA. GPR119 mRNA was also abundant in two cases of insulinoma and two cases of glucagonoma, but was undetectable in a pancreatic acinar cell tumor. Similar results were obtained with mouse pancreatic islets, MIN6 insulinoma cells and alpha-TC glucagonoma cells. CONCLUSIONS The results provide evidence of an islet-gastrointestinal distribution of GPR119, its expression in pancreatic beta and alpha cells, and its possible involvement in islet function. They also provide the basis for a better understanding of the potential clinical importance of GPR119.
Collapse
|
61
|
Babwah AV, Pampillo M, Min L, Kaiser UB, Bhattacharya M. Single-cell analyses reveal that KISS1R-expressing cells undergo sustained kisspeptin-induced signaling that is dependent upon an influx of extracellular Ca2+. Endocrinology 2012; 153:5875-87. [PMID: 23070548 PMCID: PMC3512071 DOI: 10.1210/en.2012-1747] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kisspeptin receptor (KISS1R) is a Gα(q/11)-coupled seven-transmembrane receptor activated by a group of peptides referred to as kisspeptins (Kps). The Kp/KISS1R signaling system is a powerful regulator of GnRH secretion, and inactivating mutations in this system are associated with hypogonadotropic hypogonadism. A recent study revealed that Kp triggers prolonged signaling; not from the inability of the receptor to undergo rapid desensitization, but instead from the maintenance of a dynamic and active pool of KISS1R at the cell surface. To investigate this further, we hypothesized that if a dynamic pool of receptor is maintained at the cell surface for a protracted period, chronic Kp-10 treatment would trigger the sustained activation of Gα(q/11) as evidenced through the prolonged activation of phospholipase C, protein kinase C, and prolonged mobilization of intracellular Ca(2+). Through single-cell analyses, we tested our hypothesis in human embryonic kidney (HEK) 293 cells and found that was indeed the case. We subsequently determined that prolonged KISS1R signaling was not a phenomenon specific to HEK 293 cells but is likely a conserved property of KISS1R-expressing cells because evidence of sustained KISS1R signaling was also observed in the GT1-7 GnRH neuronal and Chinese hamster ovary cell lines. While exploring the regulation of prolonged KISS1R signaling, we identified a critical role for extracellular Ca(2+). We found that although free intracellular Ca(2+), primarily derived from intracellular stores, was sufficient to trigger the acute activation of a major KISS1R secondary effector, protein kinase C, it was insufficient to sustain chronic KISS1R signaling; instead extracellular Ca(2+) was absolutely required for this.
Collapse
|
62
|
Giani JF, Miquet JG, Muñoz MC, Burghi V, Toblli JE, Masternak MM, Kopchick JJ, Bartke A, Turyn D, Dominici FP. Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Horm IGF Res 2012; 22:224-233. [PMID: 22947377 PMCID: PMC3698955 DOI: 10.1016/j.ghir.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/06/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Growth hormone (GH) resistance leads to enhanced insulin sensitivity, decreased systolic blood pressure and increased lifespan. The aim of this study was to determine if there is a shift in the balance of the renin-angiotensin system (RAS) towards the ACE2/Ang-(1-7)/Mas receptor axis in the heart and the kidney of a model of GH resistance and retarded aging, the GH receptor knockout (GHR-/-) mouse. DESIGN RAS components were evaluated in the heart and the kidney of GHR-/- and control mice by immunohistochemistry and Western blotting (n=12 for both groups). RESULTS The immunostaining of Ang-(1-7) was increased in both the heart and the kidney of GHR-/- mice. These changes were concomitant with an increased immunostaining of the Mas receptor and ACE2 in both tissues. The immunostaining of AT1 receptor was reduced in heart and kidney of GHR-/- mice while that of AT2 receptor was increased in the heart and unaltered in the kidney. Ang II, ACE and angiotensinogen levels remained unaltered in the heart and the kidney of GH resistant mice. These results were confirmed by Western blotting and correlated with a significant increase in the abundance of the endothelial nitric oxide synthase in both tissues. CONCLUSIONS The shift within the RAS towards an exacerbation of the ACE2/Ang-(1-7)/Mas receptor axis observed in GHR-/- mice could be related to a protective role in cardiac and renal function; and thus, possibly contribute to the decreased incidence of cardiovascular diseases displayed by this animal model of longevity.
Collapse
|
63
|
Liu Q, Sikand P, Ma C, Tang Z, Han L, Li Z, Sun S, LaMotte RH, Dong X. Mechanisms of itch evoked by β-alanine. J Neurosci 2012; 32:14532-7. [PMID: 23077038 PMCID: PMC3491570 DOI: 10.1523/jneurosci.3509-12.2012] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 11/21/2022] Open
Abstract
β-Alanine, a popular supplement for muscle building, induces itch and tingling after consumption, but the underlying molecular and neural mechanisms are obscure. Here we show that, in mice, β-alanine elicited itch-associated behavior that requires MrgprD, a G-protein-coupled receptor expressed by a subpopulation of primary sensory neurons. These neurons exclusively innervate the skin, respond to β-alanine, heat, and mechanical noxious stimuli but do not respond to histamine. In humans, intradermally injected β-alanine induced itch but neither wheal nor flare, suggesting that the itch was not mediated by histamine. Thus, the primary sensory neurons responsive to β-alanine are likely part of a histamine-independent itch neural circuit and a target for treating clinical itch that is unrelieved by anti-histamines.
Collapse
|
64
|
Jacovetti C, Abderrahmani A, Parnaud G, Jonas JC, Peyot ML, Cornu M, Laybutt R, Meugnier E, Rome S, Thorens B, Prentki M, Bosco D, Regazzi R. MicroRNAs contribute to compensatory β cell expansion during pregnancy and obesity. J Clin Invest 2012; 122:3541-51. [PMID: 22996663 PMCID: PMC3461923 DOI: 10.1172/jci64151] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/19/2012] [Indexed: 01/09/2023] Open
Abstract
Pregnancy and obesity are frequently associated with diminished insulin sensitivity, which is normally compensated for by an expansion of the functional β cell mass that prevents chronic hyperglycemia and development of diabetes mellitus. The molecular basis underlying compensatory β cell mass expansion is largely unknown. We found in rodents that β cell mass expansion during pregnancy and obesity is associated with changes in the expression of several islet microRNAs, including miR-338-3p. In isolated pancreatic islets, we recapitulated the decreased miR-338-3p level observed in gestation and obesity by activating the G protein-coupled estrogen receptor GPR30 and the glucagon-like peptide 1 (GLP1) receptor. Blockade of miR-338-3p in β cells using specific anti-miR molecules mimicked gene expression changes occurring during β cell mass expansion and resulted in increased proliferation and improved survival both in vitro and in vivo. These findings point to a major role for miR-338-3p in compensatory β cell mass expansion occurring under different insulin resistance states.
Collapse
MESH Headings
- Adaptation, Physiological/physiology
- Animals
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cytokines/biosynthesis
- Cytokines/genetics
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estradiol/physiology
- Estrogen Antagonists/pharmacology
- Female
- Fulvestrant
- Gene Expression Regulation/physiology
- Glucagon-Like Peptide 1/physiology
- Glucagon-Like Peptide-1 Receptor
- Insulin Resistance/physiology
- Islets of Langerhans/growth & development
- Islets of Langerhans/metabolism
- Islets of Langerhans/pathology
- Male
- Mice
- Mice, Mutant Strains
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- MicroRNAs/physiology
- Obesity/pathology
- Obesity/physiopathology
- Organ Size/drug effects
- Postpartum Period/metabolism
- Pregnancy/metabolism
- Pregnancy/physiology
- Rats
- Rats, Wistar
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/genetics
- Receptors, Glucagon/agonists
- Receptors, Glucagon/deficiency
- Signal Transduction/drug effects
- Signal Transduction/physiology
Collapse
|
65
|
Gao T, Petrlova J, He W, Huser T, Kudlick W, Voss J, Coleman MA. Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs. PLoS One 2012; 7:e44911. [PMID: 23028674 PMCID: PMC3460959 DOI: 10.1371/journal.pone.0044911] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/09/2012] [Indexed: 02/05/2023] Open
Abstract
The protein family known as G-protein coupled receptors (GPCRs) comprises an important class of membrane-associated proteins, which remains a difficult family of proteins to characterize because their function requires a native-like lipid membrane environment. This paper focuses on applying a single step method leading to the formation of nanolipoprotein particles (NLPs) capable of solubilizing functional GPCRs for biophysical characterization. NLPs were used to demonstrate increased solubility for multiple GPCRs such as the Neurokinin 1 Receptor (NK1R), the Adrenergic Receptor â2 (ADRB2) and the Dopamine Receptor D1 (DRD1). All three GPCRs showed affinity for their specific ligands using a simple dot blot assay. The NK1R was characterized in greater detail to demonstrate correct folding of the ligand pocket with nanomolar specificity. Electron paramagnetic resonance (EPR) spectroscopy validated the correct folding of the NK1R binding pocket for Substance P (SP). Fluorescence correlation spectroscopy (FCS) was used to identify SP-bound NK1R-containing NLPs and measure their dissociation rate in an aqueous environment. The dissociation constant was found to be 83 nM and was consistent with dot blot assays. This study represents a unique combinational approach involving the single step de novo production of a functional GPCR combined with biophysical techniques to demonstrate receptor association with the NLPs and binding affinity to specific ligands. Such a combined approach provides a novel path forward to screen and characterize GPCRs for drug discovery as well as structural studies outside of the complex cellular environment.
Collapse
|
66
|
de Lau W, Kujala P, Schneeberger K, Middendorp S, Li VSW, Barker N, Martens A, Hofhuis F, DeKoter RP, Peters PJ, Nieuwenhuis E, Clevers H. Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured "miniguts". Mol Cell Biol 2012; 32:3639-47. [PMID: 22778137 PMCID: PMC3430189 DOI: 10.1128/mcb.00434-12] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/30/2012] [Indexed: 01/17/2023] Open
Abstract
Peyer's patches consist of domains of specialized intestinal epithelium overlying gut-associated lymphoid tissue (GALT). Luminal antigens reach the GALT by translocation through epithelial gatekeeper cells, the so-called M cells. We recently demonstrated that all epithelial cells required for the digestive functions of the intestine are generated from Lgr5-expressing stem cells. Here, we show that M cells also derive from these crypt-based Lgr5 stem cells. The Ets family transcription factor SpiB, known to control effector functions of bone marrow-derived immune cells, is specifically expressed in M cells. In SpiB(-/-) mice, M cells are entirely absent, which occurs in a cell-autonomous fashion. It has been shown that Tnfsf11 (RankL) can induce M cell development in vivo. We show that in intestinal organoid ("minigut") cultures, stimulation with RankL induces SpiB expression within 24 h and expression of other M cell markers subsequently. We conclude that RankL-induced expression of SpiB is essential for Lgr5 stem cell-derived epithelial precursors to develop into M cells.
Collapse
|
67
|
Zhao P, Abood ME. GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. Life Sci 2012; 92:453-7. [PMID: 22820167 DOI: 10.1016/j.lfs.2012.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/23/2023]
Abstract
This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.
Collapse
MESH Headings
- Animals
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Gene Expression
- Humans
- Ligands
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/physiology
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Lysophospholipid/drug effects
- Receptors, Lysophospholipid/genetics
- Receptors, Lysophospholipid/physiology
Collapse
|
68
|
Adams J, Schott S, Bern A, Renz M, Ikenberg K, Garbe C, Busch C. A novel role for relaxin-2 in the pathogenesis of primary varicosis. PLoS One 2012; 7:e39021. [PMID: 22737225 PMCID: PMC3380868 DOI: 10.1371/journal.pone.0039021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/15/2012] [Indexed: 11/26/2022] Open
Abstract
Background Varicose veins affect up to 40% of men and up to 51% of women. The pathophysiology of primary varicosis is poorly understood. Theories ranging from incompetence of the venous valves to structural changes in the vein wall have been proposed. Methodology/Principal Findings We analyzed the functional state of the intramural smooth muscle cells (n = 14 pairs matched for age and gender) and the expression of relaxin-2 and its receptors RXFP1 and RXFP2 in samples of varicose and healthy great saphenous veins (GSV) (n = 21 healthy GSV; n = 46 varicose GSV). Relaxin-2 and RXFP1 contents were determined in tissue samples (n = 9 samples per group). Pharmacological analyses were performed in a perfusion chamber. Morphometric determination of the nuclear size of the smooth muscle compartment yielded no significant difference in varicose GSV in comparison with the healthy controls. Relaxin-2 and its receptors were expressed in the muscular layer, endothelial cells and in blood vessels contained in the vein wall. Immunohistochemical expression of relaxin-2, RXFP1 and RXFP2 was significantly decreased in varicose GSV. Relaxin-2 and RXFP1 measured by ELISA and Western Blot were decreased in varicose GSV (relaxin-2 ELISA healthy vs. varicose GSV: 12.49±0.66 pg/mg versus 9.12±3.39 pg/mg of total protein; p = 0.01; Student's T-test). Contractions of vein samples induced by cholinergic or adrenergic stimulation were antagonized by relaxin-2. Conclusions/Significance We report that relaxin-2 and its receptors RXFP1 and RXFP2 are expressed in GSV and that their expression is significantly decreased in varicose GSV. Further, we were able to demonstrate a functional pharmacological relaxin-2 system in varicose GSV. Our results suggest a novel role for relaxin-2 in the pathogenesis of primary varicosis, rendering relaxin-2 a novel possible pharmacological agent for the treatment of this widely prevailing venous disease.
Collapse
|
69
|
Dias-Peixoto MF, Ferreira AJ, Almeida PWM, Braga VBA, Coutinho DCO, Melo DS, Gomes Filho A, Melo MB, Greco L, Campagnole-Santos MJ, Lima RF, Santos RAS, Guatimosim S. The cardiac expression of Mas receptor is responsive to different physiological and pathological stimuli. Peptides 2012; 35:196-201. [PMID: 22504011 DOI: 10.1016/j.peptides.2012.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 11/17/2022]
Abstract
The Mas protooncogene encodes a G protein-coupled receptor that has been described as a functional receptor for the cardioprotective fragment of the renin-angiotensin system (RAS), Angiotensin (Ang)-(1-7). The aim of this current study was to evaluate the responsiveness of Mas expression in hearts during different physiological and pathological conditions in rats. Physical training was considered a physiological condition, while isoproterenol-induced hypertrophy, myocardial infarction and DOCA-salt model of hypertension were used as pathological models of heart injury. The expression of Mas was analyzed by western blotting. Although swim-trained rats presented significant cardiac hypertrophy, our physical training protocol was unable to induce changes in the expression of Mas. On the other hand, cardiac hypertrophy and damage elicited by isoproterenol treatment led to a reduction in Mas expression. Myocardial infarction also significantly decreased the expression of Mas after 21 days of myocardial ischemia. Additionally, Mas expression levels were increased in hearts of DOCA-salt rats. Our present data indicate that Mas expression is responsive to different pathological stimuli, thereby suggesting that Mas receptor is involved in the homeostasis of the heart, as well as in the establishment and progression of cardiac diseases.
Collapse
|
70
|
Samartzis N, Samartzis EP, Noske A, Fedier A, Dedes KJ, Caduff R, Fink D, Imesch P. Expression of the G protein-coupled estrogen receptor (GPER) in endometriosis: a tissue microarray study. Reprod Biol Endocrinol 2012; 10:30. [PMID: 22520060 PMCID: PMC3443027 DOI: 10.1186/1477-7827-10-30] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/20/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The G protein-coupled estrogen receptor (GPER) is thought to be involved in non-genomic estrogen responses as well as processes such as cell proliferation and migration. In this study, we analyzed GPER expression patterns from endometriosis samples and normal endometrial tissue samples and compared these expression profiles to those of the classical sex hormone receptors. METHODS A tissue microarray, which included 74 samples from different types of endometriosis (27 ovarian, 19 peritoneal and 28 deep-infiltrating) and 30 samples from normal endometrial tissue, was used to compare the expression levels of the GPER, estrogen receptor (ER)-alpha, ER-beta and progesterone receptor (PR). The immunoreactive score (IRS) was calculated separately for epithelium and stroma as the product of the staining intensity and the percentage of positive cells. The expression levels of the hormonal receptors were dichotomized into low (IRS < 6) and high (IRS > = 6) expression groups. RESULTS The mean epithelial IRS (+/- standard deviation, range) of cytoplasmic GPER expression was 1.2 (+/- 1.7, 0-4) in normal endometrium and 5.1 (+/- 3.5, 0-12) in endometriosis (p < 0.001), of nuclear GPER 6.4 (+/- 2.6, 0-12) and 6.8 (+/- 2.9, 2-12; p = 0.71), of ER-alpha 10.6 (+/- 2.4, 3-12) and 9.8 (+/- 3.0, 2-12; p = 0.26), of ER-beta 2.4 (+/- 2.2; 0-8) and 5.6 (+/- 2.6; 0-10; p < 0.001), and of PR 11.5 (+/- 1.7; 3-12) and 8.1 (+/- 4.5; 0-12; p < 0.001), respectively. The mean stromal IRS of nuclear GPER expression was 7.7 (+/- 3.0; 2-12) in endometrium and 10.8 (+/- 1.7; 6-12) in endometriosis (p < 0.001), of ER-alpha 8.7 (+/- 3.1; 2-12) and 10.6 (+/- 2.4; 2-12; p = 0.001), of ER-beta 1.8 (+/- 2.0; 0-8) and 5.4 (+/- 2.5; 0-10; p < 0.001), and of PR 11.7 (+/- 0.9; 8-12) and 10.9 (+/- 2.0; 3-12; p = 0.044), respectively. Cytoplasmic GPER expression was not detectable in the stroma of endometrium and endometriosis. The observed frequency of high epithelial cytoplasmic GPER expression levels was 50% (n = 30/60) in the endometriosis and none (0/30) in the normal endometrium samples (p < 0.001). High epithelial cytoplasmic GPER expression levels were more frequent in endometriomas (14/20, 70%; p = 0.01), as compared to peritoneal (9/18, 50%) or deep-infiltrating endometriotic lesions (7/22, 31.8%). The frequency of high stromal nuclear GPER expression levels was 100% (n = 74/74) in endometriosis and 76.7% (n = 23/30) in normal endometrium (p < 0.001). The frequency of high epithelial nuclear GPER expression levels did not differ between endometriosis and normal endometrium. CONCLUSIONS The present data indicate a unique GPER expression pattern in endometriosis, especially in endometriomas as compared to the normal endometrium. The overexpression of GPER in endometriotic lesions suggests a potential role for GPER in the hormonal regulation of endometriosis, which should be taken into consideration for future hormonal treatment strategies.
Collapse
|
71
|
Laburthe M. [How to turn a silent proapoptotic gene in a potent antitumoral target in colorectal cancer]. Med Sci (Paris) 2012; 28:272-3. [PMID: 22480651 DOI: 10.1051/medsci/2012283015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
72
|
Chevalier N, Vega A, Bouskine A, Siddeek B, Michiels JF, Chevallier D, Fénichel P. GPR30, the non-classical membrane G protein related estrogen receptor, is overexpressed in human seminoma and promotes seminoma cell proliferation. PLoS One 2012; 7:e34672. [PMID: 22496838 PMCID: PMC3319601 DOI: 10.1371/journal.pone.0034672] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/05/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours are the most frequent cancer of young men with an increasing incidence all over the world. Pathogenesis and reasons of this increase remain unknown but epidemiological and clinical data have suggested that fetal exposure to environmental endocrine disruptors (EEDs) with estrogenic effects, could participate to testicular germ cell carcinogenesis. However, these EEDs (like bisphenol A) are often weak ligands for classical nuclear estrogen receptors. Several research groups recently showed that the non classical membrane G-protein coupled estrogen receptor (GPER/GPR30) mediates the effects of estrogens and several xenoestrogens through rapid non genomic activation of signal transduction pathways in various human estrogen dependent cancer cells (breast, ovary, endometrium). The aim of this study was to demonstrate that GPER was overexpressed in testicular tumours and was able to trigger JKT-1 seminoma cell proliferation. RESULTS We report here for the first time a complete morphological and functional characterization of GPER in normal and malignant human testicular germ cells. In normal adult human testes, GPER was expressed by somatic (Sertoli cells) and germ cells (spermatogonia and spermatocytes). GPER was exclusively overexpressed in seminomas, the most frequent testicular germ cell cancer, localized at the cell membrane and triggered a proliferative effect on JKT-1 cells in vitro, which was completely abolished by G15 (a GPER selective antagonist) and by siRNA invalidation. CONCLUSION These results demonstrate that GPER is expressed by human normal adult testicular germ cells, specifically overexpressed in seminoma tumours and able to trigger seminoma cell proliferation in vitro. It should therefore be considered rather than classical ERs when xeno-estrogens or other endocrine disruptors are assessed in testicular germ cell cancers. It may also represent a prognosis marker and/or a therapeutic target for seminomas.
Collapse
|
73
|
Than A, Tee WT, Chen P. Apelin secretion and expression of apelin receptors in 3T3-L1 adipocytes are differentially regulated by angiotensin type 1 and type 2 receptors. Mol Cell Endocrinol 2012; 351:296-305. [PMID: 22249006 DOI: 10.1016/j.mce.2012.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/27/2011] [Accepted: 01/04/2012] [Indexed: 12/28/2022]
Abstract
Adipocytes play pivotal roles in regulating metabolism through secretion of a variety of adipokines, which in turn is regulated by other metabolic factors (e.g., insulin). Understanding the regulations of adipokine secretion is important because adipokines are implicated with metabolic disorders, such as, obesity and diabetes mellitus. Here, we investigated the regulatory roles of angiotensin II (AngII) on the secretion of apelin in 3T3-L1 adipocytes, and distinct signaling pathways mediated by AngII receptor type 1 (AT₁) and type 2 (AT₂) were revealed. It was found that activation of AT₁ receptors stimulates apelin secretion in Ca²⁺, protein kinase C, and MAPK kinase dependent ways while activation of AT₂ receptors inhibits apelin secretion through cAMP and cGMP dependent pathways. Furthermore, we demonstrate that the expression of apelin receptor (APJ) is also similarly regulated by AT₁ and AT₂ receptors. Finally, a detailed AngII signaling map is proposed.
Collapse
|
74
|
Maîtrepierre E, Sigoillot M, Le Pessot L, Briand L. Recombinant expression, in vitro refolding, and biophysical characterization of the N-terminal domain of T1R3 taste receptor. Protein Expr Purif 2012; 83:75-83. [PMID: 22450161 DOI: 10.1016/j.pep.2012.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/28/2012] [Accepted: 03/12/2012] [Indexed: 11/19/2022]
Abstract
The sweet taste receptor is a heterodimeric receptor composed of the T1R2 and T1R3 subunits, while T1R1 and T1R3 assemble to form the umami taste receptor. T1R receptors belong to the family of class C G-protein coupled receptors (GPCRs). In addition to a transmembrane heptahelical domain, class C GPCRs have a large extracellular N-terminal domain (NTD), which is the primary ligand-binding site. The T1R2 and T1R1 subunits have been shown to be responsible for ligand binding, via their NTDs. However, little is known about the contribution of T1R3-NTD to receptor functions. To enable biophysical characterization, we overexpressed the human NTD of T1R3 (hT1R3-NTD) using Escherichia coli in the form of inclusion bodies. Using a fractional factorial screen coupled to a functional assay, conditions were determined for the refolding of hT1R3-NTD. Far-UV circular dichroism spectroscopic studies revealed that hT1R3-NTD was well refolded. Using size-exclusion chromatography, we found that the refolded protein behaves as a dimer. Ligand binding quantified by tryptophan fluorescence quenching and microcalorimetry showed that hT1R3-NTD is functional and capable of binding sucralose with an affinity in the millimolar range. This study also provides a strategy to produce functional hT1R3-NTD by heterologous expression in E. coli; this is a prerequisite for structural determination and functional analysis of ligand-binding regions of other class C GPCRs.
Collapse
|
75
|
Stasikowska-Kanicka O, Wągrowska-Danilewicz M, Białek I, Danilewicz M. The immunoexpression of Shh, Smo and Gli2 in Helicobacter pylori positive and negative gastric biopsies. POL J PATHOL 2012; 63:25-30. [PMID: 22535603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
The Hedgehog signaling pathway plays a principal role during embryonic development, tissue regeneration and carcinogenesis in various adult tissues. Although hedgehog signaling is important in gastric carcinogenesis, its role in Helicobacter pylori-associated gastritis is unclear. The aim of our study was to examine Sonic Hedgehog (Shh) signaling pathway in response to H. pylori infection. Thirty-one formalin-fixed, paraffin-embedded tissue specimens of chronic gastritis were retrieved from archival material. The immunoexpression of Shh, Smoothened (Smo) and Glioblastoma transcription factor 2 (Gli2) were detected using the immunohistochemical method. Sonic Hedgehog protein was expressed in H. pylori-positive and H. pylori-negative groups of patients. The immunoexpression of Shh, Smo and Gli2 proteins was lower in H. pylori-positive group compared to H. pylori-negative group, however only the differences in Shh and Smo immunoexpression were statistically significant. The immunoexpression of Shh was significantly correlated with the immunoexpression of Smo in both tested groups (p < 0.001, p < 0.02, respectively). No statistically significant correlation was found between Shh and Gli2 among H. pylori-positive and H. pylori-negative groups. The above findings support the hypothesis of the involvement of Shh signaling pathway in H. Pylori-associated gastritis.
Collapse
|