76
|
Dominguez E, Zarnowski R, Sanchez H, Covelli AS, Westler WM, Azadi P, Nett J, Mitchell AP, Andes DR. Conservation and Divergence in the Candida Species Biofilm Matrix Mannan-Glucan Complex Structure, Function, and Genetic Control. mBio 2018; 9:e00451-18. [PMID: 29615504 PMCID: PMC5885036 DOI: 10.1128/mbio.00451-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 01/18/2023] Open
Abstract
Candida biofilms resist the effects of available antifungal therapies. Prior studies with Candida albicans biofilms show that an extracellular matrix mannan-glucan complex (MGCx) contributes to antifungal sequestration, leading to drug resistance. Here we implement biochemical, pharmacological, and genetic approaches to explore a similar mechanism of resistance for the three most common clinically encountered non-albicansCandida species (NAC). Our findings reveal that each Candida species biofilm synthesizes a mannan-glucan complex and that the antifungal-protective function of this complex is conserved. Structural similarities extended primarily to the polysaccharide backbone (α-1,6-mannan and β-1,6-glucan). Surprisingly, biochemical analysis uncovered stark differences in the branching side chains of the MGCx among the species. Consistent with the structural analysis, similarities in the genetic control of MGCx production for each Candida species also appeared limited to the synthesis of the polysaccharide backbone. Each species appears to employ a unique subset of modification enzymes for MGCx synthesis, likely accounting for the observed side chain diversity. Our results argue for the conservation of matrix function among Candida spp. While biogenesis is preserved at the level of the mannan-glucan complex backbone, divergence emerges for construction of branching side chains. Thus, the MGCx backbone represents an ideal drug target for effective pan-Candida species biofilm therapy.IMPORTANCECandida species, the most common fungal pathogens, frequently grow as a biofilm. These adherent communities tolerate extremely high concentrations of antifungal agents, due in large part, to a protective extracellular matrix. The present studies define the structural, functional, and genetic similarities and differences in the biofilm matrix from the four most common Candida species. Each species synthesizes an extracellular mannan-glucan complex (MGCx) which contributes to sequestration of antifungal drug, shielding the fungus from this external assault. Synthesis of a common polysaccharide backbone appears conserved. However, subtle structural differences in the branching side chains likely rely upon unique modification enzymes, which are species specific. Our findings identify MGCx backbone synthesis as a potential pan-Candida biofilm therapeutic target.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
45 |
77
|
Xiao Y, Mitchell AP. Shared roles of yeast glycogen synthase kinase 3 family members in nitrogen-responsive phosphorylation of meiotic regulator Ume6p. Mol Cell Biol 2000; 20:5447-53. [PMID: 10891485 PMCID: PMC85996 DOI: 10.1128/mcb.20.15.5447-5453.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen limitation activates meiosis and meiotic gene expression in yeast, but nitrogen-responsive signal transduction mechanisms that govern meiotic gene expression are poorly understood. We show here that Ume6p, a subunit of the Ume6p-Ime1p meiotic transcriptional activator, undergoes increased phosphorylation in vivo in response to nitrogen limitation. Phosphorylation depends on an N-terminal glycogen synthase kinase 3 (GSK3) target site in which substitutions cause reduced Ume6p-Ime1p interaction and meiotic gene expression, thus arguing that phosphorylation promotes functional Ume6p-Ime1p interaction. Phosphorylation of this site depends on two GSK3 homologs, Rim11p and Mck1p. Prior studies indicate that Rim11p phosphorylates both Ume6p and Ime1p in vitro and is required for Ume6p-Ime1p interaction, but no evidence has linked Mck1p function to Ume6p activity. Here we find that Mck1p-Ume6p interaction is detectable by two-hybrid assays and that meiosis in a partially defective rim11-K68R mutant is completely dependent on Mck1p. These findings argue that nitrogen limitation governs Rim11p/Mck1p-dependent phosphorylation of Ume6p, which in turn is required for Ume6p-Ime1p interaction and meiotic gene activation.
Collapse
|
research-article |
25 |
45 |
78
|
Mitchell AP, Magasanik B. Purification and properties of glutamine synthetase from Saccharomyces cerevisiae. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)33228-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
|
42 |
42 |
79
|
Chamilos G, Nobile CJ, Bruno VM, Lewis RE, Mitchell AP, Kontoyiannis DP. Candida albicans Cas5, a regulator of cell wall integrity, is required for virulence in murine and toll mutant fly models. J Infect Dis 2009; 200:152-7. [PMID: 19463063 DOI: 10.1086/599363] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Candida albicans is the most common human fungal pathogen, yet the pathogenesis of C. albicans infection remains incompletely understood. We hypothesized that C. albicans has developed evolutionarily conserved mechanisms to invade disparate hosts and tested whether Toll mutant flies could serve as a model host for high-throughput screening of C. albicans virulence genes. We screened 34 C. albicans mutants defective in putative transcription factor genes (see http://www.tigr.org/tigr-scripts/e2k1/qzhao/page.cgi?num=1 ) by means of a previously established model of invasive candidiasis in Toll mutant flies. C. albicans mutants that displayed attenuated virulence in flies were subsequently tested for virulence in a mouse model of hematogenous candidiasis. Of the 34 C. albicans mutants tested, only the prototrophic cas5Delta/Delta mutant (strain VIC1186) exhibited attenuated virulence in Toll mutant flies that was restored in the complemented strain (VIC1190). Similarly, BALB/c mice infected intravenously with the cas5Delta/Delta mutant had significantly better survival and a lower fungal burden in kidneys and spleen than did those infected with the isogenic wild-type strain DAY185. CAS5 encodes a key transcriptional regulator of genes involved in cell wall integrity and lacks an orthologue in Saccharomyces cerevisiae. Our findings support the notion that Drosophila melanogaster is a promising model for large-scale studies of genes involved in the pathogenesis of C. albicans infection in mammals.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
41 |
80
|
Abstract
Fluconazole resistance of the fungal pathogen Candida albicans can arise through several mechanisms, but the responsible genes and pathways are poorly understood. We report here that mutations in CKA2, identified through an insertional mutagenesis screen, confer fluconazole resistance. CKA2 and its homologue CKA1 specify catalytic subunits of protein kinase CK2. Although cka1 mutations have little effect on fluconazole resistance, CKA1 overexpression suppresses the fluconazole resistance of a cka2 mutant. This observation, along with synthetic cka1-cka2 interactions, argues that Cka1p and Cka2p carry out similar functions. cka2 mutants overexpress CDR1 and CDR2, two fluconazole efflux transporter genes, and a cdr1 mutation decreases resistance of a cka2 mutant, as expected if CDR1 and CDR2 overexpression is responsible for fluconazole resistance of the cka2 mutant. The protein phosphatase calcineurin is required for azole tolerance, and we find that the calcineurin inhibitor cyclosporin reverses fluconazole resistance of cka2 mutants. In addition, a mutation in CRZ1, which specifies a homologue of the Saccharomyces cerevisiae transcription factor that is a major target of calcineurin, suppresses fluconazole resistance of cka2 mutants. Expression analysis of Cka2p-responsive genes argues that Cka2p and Crz1p act through distinct mechanisms. Several clinical fluconazole-resistant isolates overexpress some Cka2p-responsive genes. We suggest that a Cka2p-dependent regulatory pathway is altered by clinically derived azole resistance mutations.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
40 |
81
|
Bowdish KS, Yuan HE, Mitchell AP. Analysis of RIM11, a yeast protein kinase that phosphorylates the meiotic activator IME1. Mol Cell Biol 1994; 14:7909-19. [PMID: 7969131 PMCID: PMC359330 DOI: 10.1128/mcb.14.12.7909-7919.1994] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Many yeast genes that are essential for meiosis are expressed only in meiotic cells. Known regulators of early meiotic genes include IME1, which is required for their expression, and SIN3 and UME6, which prevent their expression in nonmeiotic cells. We report here the molecular characterization of the RIM11 gene, which we find is required for expression of several early meiotic genes. A close functional relationship between RIM11 and IME1 is supported by two observations. First, sin3 and ume6 mutations are epistatic to rim11 mutations; prior studies have demonstrated their epistasis to ime1 mutations. Second, overexpression of RIM11 can suppress an ime1 missense mutation (ime1-L321F) but not an ime1 deletion. Sequence analysis indicates that RIM11 specifies a protein kinase related to rat glycogen synthase kinase 3 and the Drosophila shaggy/zw3 gene product. Three partially defective rim11 mutations alter residues involved in ATP binding or catalysis, and a completely defective rim11 mutation alters a tyrosine residue that corresponds to the site of an essential phosphorylation for glycogen synthase kinase 3. Immune complexes containing a hemagglutinin (HA) epitope-tagged RIM11 derivative, HA-RIM11, phosphorylate two proteins, p58 and p60, whose biological function is undetermined. In addition, HA-RIM11 immune complexes phosphorylate a functional IME1 derivative but not the corresponding ime1-L321F derivative. We propose that RIM11 stimulates meiotic gene expression through phosphorylation of IME1.
Collapse
|
research-article |
31 |
38 |
82
|
Benjamin PM, Wu JI, Mitchell AP, Magasanik B. Three regulatory systems control expression of glutamine synthetase in Saccharomyces cerevisiae at the level of transcription. MOLECULAR & GENERAL GENETICS : MGG 1989; 217:370-7. [PMID: 2570348 DOI: 10.1007/bf02464906] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The GLN1 gene of Saccharomyces cerevisiae was cloned by complementation of a gln1 auxotroph. A GLN1-lacZ fusion was constructed to assay GLN1 promoter activity. beta-Galactosidase and glutamine synthetase expression in chromosomally integrated GLN1-lacZ fusion strains were co-regulated in response to a shift from glutamine to glutamate as the nitrogen source, purine limitation, and 3-aminotriazole-induced histidine starvation. Regulation of GLN1 expression by each of the three pathways occurred at the transcriptional level. Increased accumulation of GLN1 mRNA was observed within 5 min after a shift from glutamine to glutamate as the nitrogen source. After 5 min, GLN1 mRNA levels were constant. The level of GLN1 transcript was reduced by approximately 75% within 5 min following glutamine addition to the cells growing with glutamate as nitrogen source. This indicates that the GLN1 message is unstable and has a half-life of approximately 3 min. Deletion analysis indicated that the sequences required for GLN1 expression are located within approximately 350 bp upstream from the transcriptional initiation site.
Collapse
|
|
36 |
38 |
83
|
Mitchell AP, Winn AN, Dusetzina SB. Pharmaceutical Industry Payments and Oncologists' Selection of Targeted Cancer Therapies in Medicare Beneficiaries. JAMA Intern Med 2018; 178:854-856. [PMID: 29630687 PMCID: PMC6145757 DOI: 10.1001/jamainternmed.2018.0776] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This study examines the association between oncologists’ receipt of payments from pharmaceutical manufacturers and drug selection in 2 situations where there are multiple treatment options.
Collapse
|
research-article |
7 |
38 |
84
|
Woolford CA, Lagree K, Xu W, Aleynikov T, Adhikari H, Sanchez H, Cullen PJ, Lanni F, Andes DR, Mitchell AP. Bypass of Candida albicans Filamentation/Biofilm Regulators through Diminished Expression of Protein Kinase Cak1. PLoS Genet 2016; 12:e1006487. [PMID: 27935965 PMCID: PMC5147786 DOI: 10.1371/journal.pgen.1006487] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one. The ability of the pathogen Candida albicans to grow on surfaces as biofilms is a determinant of infection ability, because biofilms on implanted medical devices seed infections. Biofilm formation by this organism requires growth in the form of filamentous cells and the expression of filamentation-associated genes. Inhibition of cell proliferation can induce filamentous cell formation, as we find here for strains that express greatly reduced levels of the cell cycle regulator Cak1. Surprisingly, biofilm formation occurs independently of many central biofilm regulatory genes when Cak1 levels are reduced. This response to proliferation inhibition may reflect the activation of numerous biofilm regulators, thus relieving the dependence on any one regulator. The stimulation of biofilm formation by proliferation inhibition, a property of many bacterial pathogens as well, may contribute to the limited effectiveness of antimicrobials against biofilms.
Collapse
|
Journal Article |
9 |
36 |
85
|
Sia RA, Mitchell AP. Stimulation of later functions of the yeast meiotic protein kinase Ime2p by the IDS2 gene product. Mol Cell Biol 1995; 15:5279-87. [PMID: 7565676 PMCID: PMC230775 DOI: 10.1128/mcb.15.10.5279] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ime2p is a protein kinase that is expressed only during meiosis in Saccharomyces cerevisiae. Ime2p stimulates early, middle, and late meiotic gene expression and down-regulates expression of IME1, which specifies an activator of early meiotic genes that acts independently of Ime2p. We have identified a new gene, IDS2 (for IME2-dependent signaling), which has a functional relationship to Ime2p. An ids2 null mutation delays down-regulation of IME1 and expression of middle and late meiotic genes. In an ime1 null mutant that express IME2 from the GAL1 promoter (ime1 delta PGAL1-IME2 mutant), early meiotic gene expression depends only upon Ime2p. In such strains, Ids2p is dispensable for expression of the early genes HOP1 and SPO13 but is essential for expression of the middle and late genes SPS1, SPS2, and SPS100. Ids2p is also essential for the autoregulatory pathway through which Ime2p activates its own expression via the IME2 upstream activation sequences (UAS). An PGAL1-IME2 derivative that produces a truncated Ime2p (lacking its C-terminal 174 residues) permits IME2 UAS activation in the absence of Ids2p. This observation suggests that Ids2p acts upstream of Ime2p or that Ids2p and Ime2p act in independent, convergent pathways to stimulate IME2 UAS activity. Accumulation of epitope-tagged Ids2p derivatives is greatest in growing cells and declines during meiosis. We propose that Ids2p acts indirectly to modify Ime2p activity, thus permitting Ime2p to carry out later meiotic functions.
Collapse
|
research-article |
30 |
33 |
86
|
Mitchell AP, Rotter JS, Patel E, Richardson D, Wheeler SB, Basch E, Goldstein DA. Association Between Reimbursement Incentives and Physician Practice in Oncology: A Systematic Review. JAMA Oncol 2019; 5:893-899. [PMID: 30605222 PMCID: PMC10309659 DOI: 10.1001/jamaoncol.2018.6196] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Significant controversy exists regarding whether physicians factor personal financial considerations into their clinical decision making. Within oncology, several reimbursement policies may incentivize physicians to increase health care use. OBJECTIVE To evaluate whether the financial incentives presented by oncology reimbursement policies affect physician practice patterns. EVIDENCE REVIEW Studies evaluating an association between reimbursement incentives and changes in reimbursement policy on oncology care delivery were reviewed. Articles were identified systematically by searching PubMed/MEDLINE, Web of Science, Proquest Health Management, Econlit, and Business Source Premier. English-language articles focused on the US health care system that made empirical estimates of the association between a measurement of physician reimbursement/compensation and a measurement of delivery of cancer treatment services were included. The Risk of Bias in Non-Randomized Studies of Interventions tool was used to assess risk of bias. There were no date restrictions on the publications, and literature searches were finalized on February 14, 2018. FINDINGS Eighteen studies were included. All were observational cohort studies, and most had a moderate risk of bias. Heterogeneity of reimbursement policies and outcomes precluded meta-analysis; therefore, a qualitative synthesis was performed. Most studies (15 of 18 [83%]) reported an association between reimbursement and care delivery consistent with physician responsiveness to financial incentives, although such an association was not identified in all studies. Findings consistently suggested that self-referral arrangements may increase use of radiotherapy and that profitability of systemic anticancer agents may affect physicians' choice of drug. Findings were less conclusive as to whether profitability of systemic anticancer therapy affects the decision of whether to use any systemic therapy. CONCLUSIONS AND RELEVANCE To date, this study is the first systematic review of reimbursement policy and clinical care delivery in oncology. The findings suggest that some oncologists may, in certain circumstances, alter treatment recommendations based on personal revenue considerations. An implication of this finding is that value-based reimbursement policies may be a useful tool to better align physician incentives with patient need and increase the value of oncology care.
Collapse
|
Systematic Review |
6 |
33 |
87
|
Mitchell AP, Winn AN, Lund JL, Dusetzina SB. Evaluating the Strength of the Association Between Industry Payments and Prescribing Practices in Oncology. Oncologist 2019; 24:632-639. [PMID: 30728276 PMCID: PMC6516135 DOI: 10.1634/theoncologist.2018-0423] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Financial relationships between physicians and the pharmaceutical industry are common, but factors that may determine whether such relationships result in physician practice changes are unknown. MATERIALS AND METHODS We evaluated physician use of orally administered cancer drugs for four cancers: prostate (abiraterone, enzalutamide), renal cell (axitinib, everolimus, pazopanib, sorafenib, sunitinib), lung (afatinib, erlotinib), and chronic myeloid leukemia (CML; dasatinib, imatinib, nilotinib). Separate physician cohorts were defined for each cancer type by prescribing history. The primary exposure was the number of calendar years during 2013-2015 in which a physician received payments from the manufacturer of one of the studied drugs; the outcome was relative prescribing of that drug in 2015, compared with the other drugs for that cancer. We evaluated whether practice setting at a National Cancer Institute (NCI)-designated Comprehensive Cancer Center, receipt of payments for purposes other than education or research (compensation payments), maximum annual dollar value received, and institutional conflict-of-interest policies were associated with the strength of the payment-prescribing association. We used modified Poisson regression to control confounding by other physician characteristics. RESULTS Physicians who received payments for a drug in all 3 years had increased prescribing of that drug (compared with 0 years), for renal cell (relative risk [RR] 1.81, 95% confidence interval [CI] 1.58-2.07), CML (RR 1.22, 95% CI 1.08-1.39), and lung (RR 1.69, 95% CI 1.58-1.82), but not prostate (RR 0.97, 95% CI 0.93-1.02). Physicians who received compensation payments or >$100 annually had increased prescribing compared with those who did not, but NCI setting and institutional conflict-of-interest policies were not consistently associated with the direction of prescribing change. CONCLUSION The association between industry payments and cancer drug prescribing was greatest among physicians who received payments consistently (within each calendar year). Receipt of payments for compensation purposes, such as for consulting or travel, and higher dollar value of payments were also associated with increased prescribing. IMPLICATIONS FOR PRACTICE Financial payments from pharmaceutical companies are common among oncologists. It is known from prior work that oncologists tend to prescribe more of the drugs made by companies that have given them money. By combining records of industry gifts with prescribing records, this study identifies the consistency of payments over time, the dollar value of payments, and payments for compensation as factors that may strengthen the association between receiving payments and increased prescribing of that company's drug.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
32 |
88
|
Abstract
Among 41 yeast glutamine auxotrophs, complementation analysis defined a single gene, GLN1, on chromosome 16 between MAK3 and MAK6. Half of the alleles fell into two intragenic complementation classes. No clustering of complementing alleles was found in a fine structure map. Altered glutamine synthetase subunits, including nonsense fragments and charge variants, were identified in several of the mutants, indicating that GLN1 is the structural gene for this enzyme. Negative complementation was observed for almost every allele associated with a protein product and all gln1/+ heterozygotes displayed reduced susceptibility to ammonia repression of the remaining glutamine synthetase activity. This latter observation is explained by the hypothesis that ammonia represses the enzyme only through its metabolism to glutamine. A basis for the two gln1 complementation classes is proposed.
Collapse
|
research-article |
40 |
31 |
89
|
Lagree K, Woolford CA, Huang MY, May G, McManus CJ, Solis NV, Filler SG, Mitchell AP. Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality. PLoS Genet 2020; 16:e1008582. [PMID: 31961865 PMCID: PMC6994163 DOI: 10.1371/journal.pgen.1008582] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/31/2020] [Accepted: 12/20/2019] [Indexed: 12/16/2022] Open
Abstract
Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans to colonize and cause infection in diverse host tissues. One way that C. albicans controls its metabolism is through the glucose repression pathway, where expression of alternative carbon source utilization genes is repressed in the presence of its preferred carbon source, glucose. Here we carry out genetic and gene expression studies that identify transcription factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevisiae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative carbon source utilization genes. However, Mig1/2 functions have several distinctive features in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation, more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibitors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1 is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae: the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator. Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and illuminate connections among carbon control, pathogenicity, and Snf1 essentiality. All organisms tailor genetic programs to the available nutrients, such as sources of carbon. Here we define two key regulators of the genetic programs for carbon source utilization in the fungal pathogen Candida albicans. The two regulators have many shared roles, yet are partially specialized to control carbon acquisition and metabolism, respectively. In addition, the regulators together control traits associated with pathogenicity, an indication that carbon regulation is integrated into the pathogenicity program. Finally, the regulators help to explain a long-standing riddle—that the central carbon regulator Snf1 is essential for C. albicans viability.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
30 |
90
|
Mitchell AP, Simpson RJ. Statin cost effectiveness in primary prevention: a systematic review of the recent cost-effectiveness literature in the United States. BMC Res Notes 2012; 5:373. [PMID: 22828389 PMCID: PMC3444438 DOI: 10.1186/1756-0500-5-373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022] Open
Abstract
Background The literature on the cost-effectiveness of statin drugs in primary prevention of coronary heart disease is complex. The objective of this study is to compare the disparate results of recent cost-effectiveness analyses of statins. Findings We conducted a systematic review of the literature on statin cost-effectiveness. The four studies that met inclusion criteria reported varying conclusions about the cost-effectiveness of statin treatment, without a clear consensus as to whether statins are cost-effective for primary prevention. However, after accounting for each study’s assumptions about statin costs, we found substantial agreement among the studies. Studies that assumed statins to be more expensive found them to be less cost-effective, and vice-versa. Furthermore, treatment of low-risk groups became cost-effective as statins became less expensive. Conclusions Drug price is the primary determinant of statin cost-effectiveness within a given risk group. As more statin drugs become generic, patients at low risk for coronary disease may be treated cost-effectively. Though many factors must be weighed in any medical decision, from a cost-effectiveness perspective, statins may now be considered an appropriate therapy for many patients at low risk for heart disease.
Collapse
|
Systematic Review |
13 |
30 |
91
|
Fanning S, Xu W, Beaurepaire C, Suhan JP, Nantel A, Mitchell AP. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol Microbiol 2012; 86:284-302. [PMID: 22882910 DOI: 10.1111/j.1365-2958.2012.08193.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/04/2023]
Abstract
The cyclic AMP protein kinase A pathway governs numerous biological features of the fungal pathogen Candida albicans. The catalytic protein kinase A subunits, Tpk1 (orf19.4892) and Tpk2 (orf19.2277), have divergent roles, and most studies indicate a more pronounced role for Tpk2. Here we dissect two Tpk1-responsive properties: adherence and cell wall integrity. Homozygous tpk1/tpk1 mutants are hyperadherent, and a Tpk1 defect enables biofilm formation in the absence of Bcr1, a transcriptional regulator of biofilm adhesins. A quantitative gene expression-based assay reveals that tpk1/tpk1 and bcr1/bcr1 genotypes show mixed epistasis, as expected if Tpk1 and Bcr1 act mainly in distinct pathways. Overexpression of individual Tpk1-repressed genes indicates that cell surface proteins Als1, Als2, Als4, Csh1 and Csp37 contribute to Tpk1-regulated adherence. Tpk1 is also required for cell wall integrity, but has no role in the gene expression response to cell wall inhibition by caspofungin. Interestingly, increased expression of the adhesin gene ALS2 confers a cell wall defect, as manifested in hypersensitivity to the cell wall inhibitor caspofungin and a shallow cell wall structure. Our findings indicate that Tpk1 governs C. albicans cell wall properties through repression of select cell surface protein genes.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
30 |
92
|
Abstract
In the yeast Saccharomyces cerevisiae, only a/alpha cells can enter meiosis; a and alpha cells cannot. Because a/alpha cells are typically diploid and a and alpha cells are typically haploid, this cell type restriction ensures that only diploid cells enter meiosis. Entry into meiosis is accompanied by an increase in expression of the IME1 gene; the IME1 product (IME1) then activates IME2 and other meiotic genes. We have found that IME1 expression is toxic to starved haploid cells, presumably because IME1 directs them into meiosis. IME1 toxicity is greater in rad52 mutants, in which meiotic recombination causes lethal damage. Suppressors of IME1 toxicity include recessive mutations in two genes, RIM11 and RIM16 (Regulator of Inducer of Meiosis), that are required for IME1 to activate IME2 expression. RIM11 maps near CIN4 on chromosome XIII.
Collapse
|
research-article |
33 |
29 |
93
|
Zubenko GS, Mitchell AP, Jones EW. Mapping of the proteinase b structural gene PRB1, in Saccharomyces cerevisiae and identification of nonsense alleles within the locus. Genetics 1980; 96:137-46. [PMID: 7009321 PMCID: PMC1214285 DOI: 10.1093/genetics/96.1.137] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We report the mapping of the structural gene for proteinase B, PRB1. It is located 1.1 cM proximal to CAN1 on the left arm of chromosome V of Saccharomyces cerevisiae. We have identified 34 amber and 12 ochre mutations among the 126 prb1 mutations in our collection.
Collapse
|
research-article |
45 |
29 |
94
|
Lamb TM, Mitchell AP. Coupling of Saccharomyces cerevisiae early meiotic gene expression to DNA replication depends upon RPD3 and SIN3. Genetics 2001; 157:545-56. [PMID: 11156977 PMCID: PMC1461525 DOI: 10.1093/genetics/157.2.545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.
Collapse
|
research-article |
24 |
28 |
95
|
|
Research Support, U.S. Gov't, P.H.S. |
21 |
28 |
96
|
Mitchell AP, Magasanik B. Three regulatory systems control production of glutamine synthetase in Saccharomyces cerevisiae. Mol Cell Biol 1984; 4:2767-73. [PMID: 6152013 PMCID: PMC369287 DOI: 10.1128/mcb.4.12.2767-2773.1984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Production of glutamine synthetase in Saccharomyces cerevisiae is controlled by three regulatory systems. One system responds to glutamine levels and depends on the positively acting GLN3 product. This system mediates derepression of glutamine synthetase in response to pyrimidine limitation as well, but genetic evidence argues that this is an indirect effect of depletion of the glutamine pool. The second system is general amino acid control, which couples derepression of a variety of biosynthetic enzymes to starvation for many single amino acids. This system operates through the positive regulatory element GCN4. Expression of histidinol dehydrogenase, which is under general control, is not stimulated by glutamine limitation. A third system responds to purine limitation. No specific regulatory element has been identified, but depression of glutamine synthetase is observed during purine starvation in gln3 gcn4 double mutants. This demonstrates that a separate purine regulatory element must exist. Pulse-labeling and immunoprecipitation experiments indicate that all three systems control glutamine synthetase at the level of subunit synthesis.
Collapse
|
research-article |
41 |
28 |
97
|
Lagree K, Mon HH, Mitchell AP, Ducker WA. Impact of surface topography on biofilm formation by Candida albicans. PLoS One 2018; 13:e0197925. [PMID: 29912894 PMCID: PMC6005505 DOI: 10.1371/journal.pone.0197925] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
Candida albicans is a fungal pathogen that causes serious biofilm-based infections. Here we have asked whether surface topography may affect C. albicans biofilm formation. We tested biofilm growth of the prototypical wild-type strain SC5314 on a series of polydimethylsiloxane (PDMS) solids. The surfaces were prepared with monolayer coatings of monodisperse spherical silica particles that were fused together into a film using silica menisci. The surface topography was varied by varying the diameter of the silica particles that were used to form the film. Biofilm formation was observed to be a strong function of particle size. In the particle size range 4.0-8.0 μm, there was much more biofilm than in the size range 0.5-2.0 μm. The behavior of a clinical isolate from a clade separate from SC5314, strain p76067, showed results similar to that of SC5314. Our results suggest that topographic coatings may be a promising approach to reduce C. albicans biofilm infections.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
27 |
98
|
Malathi K, Xiao Y, Mitchell AP. Catalytic roles of yeast GSK3beta/shaggy homolog Rim11p in meiotic activation. Genetics 1999; 153:1145-52. [PMID: 10545448 PMCID: PMC1460824 DOI: 10.1093/genetics/153.3.1145] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In Saccharomyces cerevisiae, many meiotic genes are activated by a heteromeric transcription factor composed of Ime1p and Ume6p. Ime1p-Ume6p complex formation depends upon the protein kinase Rim11p, which interacts with and phosphorylates both Ime1p and Ume6p in vitro. Rim11p may promote complex formation through its phosphorylation of Ime1p and Ume6p or simply through its interaction with both proteins. Here, we characterize mutant Ime1p derivatives that interact with Rim11p but are not phosphorylated in vitro. These mutant proteins are also defective in interaction with Ume6p. These results argue that Ime1p must be phosphorylated to interact with Ume6p. Our genetic observations suggest that Ime1p tyrosine residues are among the Rim11p phosphoacceptors, and we find that Ime1p reacts with an anti-phosphotyrosine antibody. Ime1p and Rim11p have been thought to act only through Ume6p, but we find that Ime1p and Rim11p promote meiosis at a very low level in the absence of Ume6p. A nonphosphorylatable mutant Ime1p derivative promotes sporulation through this Ume6p-independent pathway, as does a mutant Rim11p derivative that fails to interact with Ime1p. Therefore, Ime1p and Rim11p have two genetically separable functions in the sporulation program. However, catalytic activity of Rim11p is required for sporulation in the presence or absence of Ume6p.
Collapse
|
research-article |
26 |
27 |
99
|
Cuevas RA, Eutsey R, Kadam A, West-Roberts JA, Woolford CA, Mitchell AP, Mason KM, Hiller NL. A novel streptococcal cell-cell communication peptide promotes pneumococcal virulence and biofilm formation. Mol Microbiol 2017; 105:554-571. [PMID: 28557053 DOI: 10.1111/mmi.13721] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 12/29/2022]
Abstract
Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human respiratory track, where it utilizes cell-cell communication systems to coordinate population-level behaviors. We reasoned that secreted peptides that are highly expressed during infection are pivotal for virulence. Thus, we used in silico pattern searches to define a pneumococcal secretome and analyzed the transcriptome of the clinically important PMEN1 lineage to identify which peptide-encoding genes are highly expressed in vivo. In this study, we characterized virulence peptide 1 (vp1), a highly expressed Gly-Gly peptide-encoding gene in chinchilla middle ear effusions. The vp1 gene is widely distributed across pneumococcus as well as encoded in related species. Studies in the chinchilla model of middle ear infection demonstrated that VP1 is a virulence determinant. The vp1 gene is positively regulated by a transcription factor from the Rgg family and its cognate SHP (short hydrophobic peptide). In vitro data indicated that VP1 promotes increased thickness and biomass for biofilms grown on chinchilla middle ear epithelial cells. Furthermore, the wild-type biofilm is restored with the exogenous addition of synthetic VP1. We conclude that VP1 is a novel streptococcal regulatory peptide that controls biofilm development and pneumococcal pathogenesis.
Collapse
|
Journal Article |
8 |
27 |
100
|
Banos G, Winters M, Mrode R, Mitchell AP, Bishop SC, Woolliams JA, Coffey MP. Genetic evaluation for bovine tuberculosis resistance in dairy cattle. J Dairy Sci 2016; 100:1272-1281. [PMID: 27939547 DOI: 10.3168/jds.2016-11897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022]
Abstract
Genetic evaluations for resistance to bovine tuberculosis (bTB) were calculated based on British national data including individual animal tuberculin skin test results, postmortem examination (presence of bTB lesions and bacteriological culture for Mycobacterium bovis), animal movement and location information, production history, and pedigree records. Holstein cows with identified sires in herds with bTB breakdowns (new herd incidents) occurring between the years 2000 and 2014 were considered. In the first instance, cows with a positive reaction to the skin test and a positive postmortem examination were defined as infected. Values of 0 and 1 were assigned to healthy and infected animal records, respectively. Data were analyzed with mixed models. Linear and logit function heritability estimates were 0.092 and 0.172, respectively. In subsequent analyses, breakdowns were split into 2-mo intervals to better model time of exposure and infection in the contemporary group. Intervals with at least one infected individual were retained and multiple intervals within the same breakdown were included. Healthy animal records were assigned values of 0, and infected records a value of 1 in the interval of infection and values reflecting a diminishing probability of infection in the preceding intervals. Heritability and repeatability estimates were 0.115 and 0.699, respectively. Reliabilities and across time stability of the genetic evaluation were improved with the interval model. Subsequently, 2 more definitions of "infected" were analyzed with the interval model: (1) all positive skin test reactors regardless of postmortem examination, and (2) all positive skin test reactors plus nonreactors with positive postmortem examination. Estimated heritability was 0.085 and 0.089, respectively; corresponding repeatability estimates were 0.701 and 0.697. Genetic evaluation reliabilities and across time stability did not change. Correlations of genetic evaluations for bTB with other traits in the current breeding goal were mostly not different from zero. Correlation with the UK Profitable Lifetime Index was moderate, significant, and favorable. Results demonstrated the feasibility of a national genetic evaluation for bTB resistance. Selection for enhanced resistance will have a positive effect on profitability and no antagonistic effects on current breeding goal traits. Official genetic evaluations are now based on the interval model and the last bTB trait definition.
Collapse
|
Journal Article |
9 |
27 |