76
|
Banos G, Winters M, Mrode R, Mitchell AP, Bishop SC, Woolliams JA, Coffey MP. Genetic evaluation for bovine tuberculosis resistance in dairy cattle. J Dairy Sci 2016; 100:1272-1281. [PMID: 27939547 DOI: 10.3168/jds.2016-11897] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/17/2016] [Indexed: 11/19/2022]
Abstract
Genetic evaluations for resistance to bovine tuberculosis (bTB) were calculated based on British national data including individual animal tuberculin skin test results, postmortem examination (presence of bTB lesions and bacteriological culture for Mycobacterium bovis), animal movement and location information, production history, and pedigree records. Holstein cows with identified sires in herds with bTB breakdowns (new herd incidents) occurring between the years 2000 and 2014 were considered. In the first instance, cows with a positive reaction to the skin test and a positive postmortem examination were defined as infected. Values of 0 and 1 were assigned to healthy and infected animal records, respectively. Data were analyzed with mixed models. Linear and logit function heritability estimates were 0.092 and 0.172, respectively. In subsequent analyses, breakdowns were split into 2-mo intervals to better model time of exposure and infection in the contemporary group. Intervals with at least one infected individual were retained and multiple intervals within the same breakdown were included. Healthy animal records were assigned values of 0, and infected records a value of 1 in the interval of infection and values reflecting a diminishing probability of infection in the preceding intervals. Heritability and repeatability estimates were 0.115 and 0.699, respectively. Reliabilities and across time stability of the genetic evaluation were improved with the interval model. Subsequently, 2 more definitions of "infected" were analyzed with the interval model: (1) all positive skin test reactors regardless of postmortem examination, and (2) all positive skin test reactors plus nonreactors with positive postmortem examination. Estimated heritability was 0.085 and 0.089, respectively; corresponding repeatability estimates were 0.701 and 0.697. Genetic evaluation reliabilities and across time stability did not change. Correlations of genetic evaluations for bTB with other traits in the current breeding goal were mostly not different from zero. Correlation with the UK Profitable Lifetime Index was moderate, significant, and favorable. Results demonstrated the feasibility of a national genetic evaluation for bTB resistance. Selection for enhanced resistance will have a positive effect on profitability and no antagonistic effects on current breeding goal traits. Official genetic evaluations are now based on the interval model and the last bTB trait definition.
Collapse
|
77
|
Ichikawa Y, Morohashi N, Tomita N, Mitchell AP, Kurumizaka H, Shimizu M. Sequence-directed nucleosome-depletion is sufficient to activate transcription from a yeast core promoter in vivo. Biochem Biophys Res Commun 2016; 476:57-62. [PMID: 27208777 DOI: 10.1016/j.bbrc.2016.05.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 11/18/2022]
Abstract
Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.
Collapse
|
78
|
|
79
|
Xu W, Solis NV, Filler SG, Mitchell AP. Gene Expression Profiling of Infecting Microbes Using a Digital Bar-coding Platform. J Vis Exp 2016:e53460. [PMID: 26863547 PMCID: PMC4781349 DOI: 10.3791/53460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
For most mammalian pathogens, gene expression profiling studies have been limited by technical difficulties to accurately quantify pathogen gene transcripts from infected tissues. Pathogen RNA constitutes a tiny portion of the total RNA isolated from infected tissue samples. Both microarray and RNAseq technologies have difficulties in generating reliable reads for weakly expressed pathogen genes. Mutant pathogen strains with reduced in vivo proliferation pose an even bigger challenge. Here we describe an in vivo gene expression profiling protocol that is very fast, extremely sensitive and highly reproducible. We developed this protocol during our investigation of the fungal pathogen Candida albicans in a murine model of hematogenously disseminated candidiasis. Using this protocol, we have documented time courses of dynamically regulated C. albicans gene expression during kidney infection, and discovered unexpected features of gene expression responses to antifungal drug treatment in vivo.
Collapse
|
80
|
Mitchell AP, Harrison MR, Walker MS, George DJ, Abernethy AP, Hirsch BR. Clinical Trial Participants With Metastatic Renal Cell Carcinoma Differ From Patients Treated in Real-World Practice. J Oncol Pract 2015; 11:491-7. [PMID: 26330533 DOI: 10.1200/jop.2015.004929] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Although narrow eligibility criteria improve the internal validity of clinical trials, they may result in differences between study populations and real-world patients, threatening generalizability. Therefore, we evaluated whether patients treated for metastatic renal cell cancer (mRCC) in routine clinical practice are similar to those enrolled onto clinical trials. PATIENTS AND METHODS In this cohort study, we compared baseline characteristics of patients with mRCC in phase III clinical trials of new targeted therapies and those in a retrospective registry composed of academic (Duke) and community (ACORN Network) practices. RESULTS A total of 438 registry patients received sunitinib, sorafenib, temsirolimus, or pazopanib (most commonly used agents) in first-line treatment. Registry patients receiving tyrosine kinase inhibitors (sunitinib, sorafenib, or pazopanib) were more likely to have poor-risk disease by Memorial Sloan Kettering Cancer Center criteria (poor, 7.4% v 2.9%; P < .001; favorable, 30.1% v 43.8%; P < .001) and to have impaired performance status (Eastern Cooperative Oncology Group > 1, 11.1% v 0.6%; P < .001). However, registry patients receiving temsirolimus were less likely to have poor-risk disease (poor, 10.2% v 69.4%; P < .001; favorable, 16.9% v 0%; P < .001). Thus, 39.0% of registry patients would have been excluded from the phase III clinical trial testing the drug they received. CONCLUSION Patients with mRCC treated with tyrosine kinase inhibitors in real-world clinical practice are sicker than those enrolled onto pivotal clinical trials, and more than one third are trial ineligible. Application of clinical trial findings to dissimilar populations may result in patient harm. Clinical research with more inclusive eligibility criteria is needed to appropriately guide real-world practice.
Collapse
|
81
|
Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med 2014; 4:4/10/a019729. [PMID: 25274758 DOI: 10.1101/cshperspect.a019729] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance.
Collapse
|
82
|
Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. Novel entries in a fungal biofilm matrix encyclopedia. mBio 2014; 5:e01333-14. [PMID: 25096878 PMCID: PMC4128356 DOI: 10.1128/mbio.01333-14] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022] Open
Abstract
Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed for protection from antifungal drugs. The availability of these biochemical analyses provides a unique resource for further functional investigation of the biofilm matrix, a defining trait of this lifestyle.
Collapse
|
83
|
Mitchell AP, Hirsch BR, Abernethy AP. Lack of timely accrual information in oncology clinical trials: a cross-sectional analysis. Trials 2014; 15:92. [PMID: 24661848 PMCID: PMC3987844 DOI: 10.1186/1745-6215-15-92] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poor accrual is a significant barrier to the successful completion of oncology clinical trials; half of all phase 3 oncology trials close due to insufficient accrual. Timely access to accrual data fosters an understanding of successful trial design and can be used to inform the design of new clinical trials prospectively. Accrual statistics are available within research networks, such as the cancer cooperative groups, but comprehensive data reflecting the overall portfolio of cancer clinical trials are lacking. As a demonstration case, the purpose of this study was to quantify the public availability of accrual data across all recent renal cell carcinoma (RCC) trials. METHODS The database for the Aggregate Analysis of ClinicalTrials.gov (AACT) summarizes all trials registered between October 2007 and September 2010. In total, 108 trials of pharmacologic therapy for RCC were included. Accrual data on these trials were gathered via ClinicalTrials.gov (CTG), a manual review of resulting publications, and online surveys sent to principle investigators or trial coordinators. RESULTS In total, 26% (20 of 76) of trials listing a government, academic, or cooperative group (GAC) sponsor responded to the survey vs 0% (0 of 32) of those listing only industry sponsors. Across all methods, accrual data were available for only 40% (43 of 108) of trials, including 37% (28 of 76) of GAC trials and 47% (15 of 32) of industry trials. Moreover, 87% (66 of 76) of GAC trials were ongoing (open, actively recruiting, or of unknown status) vs 75% (24 of 32) of industry trials, while 9% (10 of 108) of trials were terminated or suspended. CONCLUSIONS Despite extensive efforts (surveys, phone calls, CTG abstraction, publication searches), accurate accrual data remained inaccessible for 60% of the RCC trial cohort. While CTG reports trial results, ongoing accrual data are also critically needed. Poor access to accrual data will continue to limit attempts to develop a national summary of clinical trials metrics and to optimize the cancer clinical research portfolio.
Collapse
|
84
|
Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 2013; 288:33939-33952. [PMID: 24114876 DOI: 10.1074/jbc.m113.505735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans contains four ORFs (GIT1,2,3,4) predicted to encode proteins involved in the transport of glycerophosphodiester metabolites. Previously, we reported that Git1, encoded by ORF 19.34, is responsible for the transport of intact glycerophosphoinositol but not glycerophosphocholine (GroPCho). Here, we report that a strain lacking both GIT3 (ORF 19.1979) and GIT4 (ORF 19.1980) is unable to transport [(3)H]GroPCho into the cell. In the absence of a GroPCho transporter, C. albicans can utilize GroPCho via a mechanism involving extracellular hydrolysis. Upon reintegration of either GIT3 or GIT4 into the genome, measurable uptake of [(3)H]GroPCho is observed. Transport assays and kinetic analyses indicate that Git3 has the greater transport velocity. We present evidence that GDE1 (ORF 19.3936) codes for an enzyme with glycerophosphodiesterase activity against GroPCho. Homozygous deletion of GDE1 results in a buildup of internal GroPCho that is restored to wild type levels by reintegration of GDE1 into the genome. The transcriptional regulator, Pho4, is shown to regulate the expression of GIT3, GIT4, and GDE1. Finally, Git3 is shown to be required for full virulence in a mouse model of disseminated candidiasis, and Git3 sequence orthologs are present in other pathogenic Candida species. In summary, we have characterized multiple aspects of GroPCho utilization by C. albicans and have demonstrated that GroPCho transport plays a key role in the growth of the organism in the host.
Collapse
|
85
|
Cheng S, Clancy CJ, Xu W, Schneider F, Hao B, Mitchell AP, Nguyen MH. Profiling of Candida albicans gene expression during intra-abdominal candidiasis identifies biologic processes involved in pathogenesis. J Infect Dis 2013; 208:1529-37. [PMID: 24006479 DOI: 10.1093/infdis/jit335] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The pathogenesis of intra-abdominal candidiasis is poorly understood. METHODS Mice were intraperitoneally infected with Candida albicans (1 × 10(6) colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. RESULTS Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. CONCLUSIONS A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5.
Collapse
|
86
|
Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CMQ, Vanier G, Urb M, Campoli P, Al Abdallah Q, Lehoux M, Chabot JC, Ouimet MC, Baptista SD, Fritz JH, Nierman WC, Latgé JP, Mitchell AP, Filler SG, Fontaine T, Sheppard DC. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog 2013; 9:e1003575. [PMID: 23990787 PMCID: PMC3749958 DOI: 10.1371/journal.ppat.1003575] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 07/09/2013] [Indexed: 11/24/2022] Open
Abstract
Aspergillus fumigatus is the most common cause of invasive mold disease in humans. The mechanisms underlying the adherence of this mold to host cells and macromolecules have remained elusive. Using mutants with different adhesive properties and comparative transcriptomics, we discovered that the gene uge3, encoding a fungal epimerase, is required for adherence through mediating the synthesis of galactosaminogalactan. Galactosaminogalactan functions as the dominant adhesin of A. fumigatus and mediates adherence to plastic, fibronectin, and epithelial cells. In addition, galactosaminogalactan suppresses host inflammatory responses in vitro and in vivo, in part through masking cell wall β-glucans from recognition by dectin-1. Finally, galactosaminogalactan is essential for full virulence in two murine models of invasive aspergillosis. Collectively these data establish a role for galactosaminogalactan as a pivotal bifunctional virulence factor in the pathogenesis of invasive aspergillosis. Invasive aspergillosis is the most common mold infection in humans, predominately affecting immunocompromised patients. The mechanisms by which the mold Aspergillus fumigatus adheres to host tissues and causes disease are poorly understood. In this report, we compared mutants of Aspergillus with different adhesive properties to identify fungal factors involved in adherence to host cells. This approach identified a cell wall associated polysaccharide, galactosaminogalactan, which is required for adherence to a wide variety of substrates. Galactosaminogalactan was also observed to suppress inflammation by concealing β-glucans, key pattern associated microbial pattern molecules in Aspergillus hyphae, from recognition by the innate immune system. Mutants that were deficient in galactosaminogalactan were less virulent in mouse models of invasive aspergillosis. These data identify a bifunctional role for galactosaminogalactan in the pathogenesis of invasive aspergillosis, and suggest that it may serve as a useful target for antifungal therapy.
Collapse
|
87
|
Fanning S, Xu W, Beaurepaire C, Suhan JP, Nantel A, Mitchell AP. Functional control of the Candida albicans cell wall by catalytic protein kinase A subunit Tpk1. Mol Microbiol 2012; 86:284-302. [PMID: 22882910 DOI: 10.1111/j.1365-2958.2012.08193.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/04/2023]
Abstract
The cyclic AMP protein kinase A pathway governs numerous biological features of the fungal pathogen Candida albicans. The catalytic protein kinase A subunits, Tpk1 (orf19.4892) and Tpk2 (orf19.2277), have divergent roles, and most studies indicate a more pronounced role for Tpk2. Here we dissect two Tpk1-responsive properties: adherence and cell wall integrity. Homozygous tpk1/tpk1 mutants are hyperadherent, and a Tpk1 defect enables biofilm formation in the absence of Bcr1, a transcriptional regulator of biofilm adhesins. A quantitative gene expression-based assay reveals that tpk1/tpk1 and bcr1/bcr1 genotypes show mixed epistasis, as expected if Tpk1 and Bcr1 act mainly in distinct pathways. Overexpression of individual Tpk1-repressed genes indicates that cell surface proteins Als1, Als2, Als4, Csh1 and Csp37 contribute to Tpk1-regulated adherence. Tpk1 is also required for cell wall integrity, but has no role in the gene expression response to cell wall inhibition by caspofungin. Interestingly, increased expression of the adhesin gene ALS2 confers a cell wall defect, as manifested in hypersensitivity to the cell wall inhibitor caspofungin and a shallow cell wall structure. Our findings indicate that Tpk1 governs C. albicans cell wall properties through repression of select cell surface protein genes.
Collapse
|
88
|
Abstract
Temperature affects diverse biological processes. In fungi such as the pathogen Candida albicans, temperature governs a morphogenetic switch between yeast and hyphal growth. A new report connects the thermosensor Hsp90 to a CDK-cyclin-transcription factor module that controls morphogenesis.
Collapse
|
89
|
Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 2012; 8:e1002848. [PMID: 22876186 PMCID: PMC3410897 DOI: 10.1371/journal.ppat.1002848] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/22/2012] [Indexed: 01/10/2023] Open
Abstract
Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.
Collapse
|
90
|
Mitchell AP, Simpson RJ. Statin cost effectiveness in primary prevention: a systematic review of the recent cost-effectiveness literature in the United States. BMC Res Notes 2012; 5:373. [PMID: 22828389 PMCID: PMC3444438 DOI: 10.1186/1756-0500-5-373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/03/2012] [Indexed: 11/24/2022] Open
Abstract
Background The literature on the cost-effectiveness of statin drugs in primary prevention of coronary heart disease is complex. The objective of this study is to compare the disparate results of recent cost-effectiveness analyses of statins. Findings We conducted a systematic review of the literature on statin cost-effectiveness. The four studies that met inclusion criteria reported varying conclusions about the cost-effectiveness of statin treatment, without a clear consensus as to whether statins are cost-effective for primary prevention. However, after accounting for each study’s assumptions about statin costs, we found substantial agreement among the studies. Studies that assumed statins to be more expensive found them to be less cost-effective, and vice-versa. Furthermore, treatment of low-risk groups became cost-effective as statins became less expensive. Conclusions Drug price is the primary determinant of statin cost-effectiveness within a given risk group. As more statin drugs become generic, patients at low risk for coronary disease may be treated cost-effectively. Though many factors must be weighed in any medical decision, from a cost-effectiveness perspective, statins may now be considered an appropriate therapy for many patients at low risk for heart disease.
Collapse
|
91
|
|
92
|
Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP. Portrait of Candida albicans adherence regulators. PLoS Pathog 2012; 8:e1002525. [PMID: 22359502 PMCID: PMC3280983 DOI: 10.1371/journal.ppat.1002525] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/21/2011] [Indexed: 12/20/2022] Open
Abstract
Cell-substrate adherence is a fundamental property of microorganisms that enables them to exist in biofilms. Our study focuses on adherence of the fungal pathogen Candida albicans to one substrate, silicone, that is relevant to device-associated infection. We conducted a mutant screen with a quantitative flow-cell assay to identify thirty transcription factors that are required for adherence. We then combined nanoString gene expression profiling with functional analysis to elucidate relationships among these transcription factors, with two major goals: to extend our understanding of transcription factors previously known to govern adherence or biofilm formation, and to gain insight into the many transcription factors we identified that were relatively uncharacterized, particularly in the context of adherence or cell surface biogenesis. With regard to the first goal, we have discovered a role for biofilm regulator Bcr1 in adherence, and found that biofilm regulator Ace2 is a major functional target of chromatin remodeling factor Snf5. In addition, Bcr1 and Ace2 share several target genes, pointing to a new connection between them. With regard to the second goal, our findings reveal existence of a large regulatory network that connects eleven adherence regulators, the zinc-response regulator Zap1, and approximately one quarter of the predicted cell surface protein genes in this organism. This limited yet sensitive glimpse of mutant gene expression changes had thus defined one of the broadest cell surface regulatory networks in C. albicans.
Collapse
|
93
|
Finkel JS, Yudanin N, Nett JE, Andes DR, Mitchell AP. Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant. Fungal Genet Biol 2011; 48:1056-61. [PMID: 21820070 PMCID: PMC3185220 DOI: 10.1016/j.fgb.2011.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022]
Abstract
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Δ/Δ mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.
Collapse
|
94
|
Mitchell AP, Poiesz M, Leung A. A case of highly aggressive extraskeletal myxoid chondrosarcoma. Case Rep Oncol 2011; 4:377-84. [PMID: 21941486 PMCID: PMC3177793 DOI: 10.1159/000331237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extraskeletal myxoid chondrosarcoma (EMC) is a soft tissue malignancy characterized by specific chromosomal abnormalities involving the TEC gene. This disease has historically been considered largely indolent both histologically and clinically. Rarer subsets of EMC exist that demonstrate aggressive histopathologic features and clinical behavior, though it remains unclear whether or not aggressive histopathology is predictive of outcome. Herein we present a case of EMC with aggressive histopathologic features that underwent rapid clinical progression despite initial treatment with curative intent. This case provides the context for a discussion of the existing literature regarding treatment, prognosis, pathology, and genetic/molecular features of EMC in general and aggressive EMC specifically.
Collapse
|
95
|
Ganguly S, Mitchell AP. Mucosal biofilms of Candida albicans. Curr Opin Microbiol 2011; 14:380-5. [PMID: 21741878 DOI: 10.1016/j.mib.2011.06.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022]
Abstract
Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties.
Collapse
|
96
|
Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, Mitchell AP, Dongari-Bagtzoglou A. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 2011; 6:e16218. [PMID: 21283544 PMCID: PMC3026825 DOI: 10.1371/journal.pone.0016218] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/10/2010] [Indexed: 11/18/2022] Open
Abstract
Candida albicans triggers recurrent infections of the oropharyngeal mucosa that result from biofilm growth. Prior studies have indicated that the transcription factor Bcr1 regulates biofilm formation in a catheter model, both in vitro and in vivo. We thus hypothesized that Bcr1 plays similar roles in the formation of oral mucosal biofilms and tested this hypothesis in a mouse model of oral infection. We found that a bcr1/bcr1 mutant did not form significant biofilm on the tongues of immunocompromised mice, in contrast to reference and reconstituted strains that formed pseudomembranes covering most of the tongue dorsal surface. Overexpression of HWP1, which specifies an epithelial adhesin that is under the transcriptional control of Bcr1, partly but significantly rescued the bcr1/bcr1 biofilm phenotype in vivo. Since HWP1 overexpression only partly reversed the biofilm phenotype, we investigated whether additional mechanisms, besides adhesin down-regulation, were responsible for the reduced virulence of this mutant. We discovered that the bcr1/bcr1 mutant was more susceptible to damage by human leukocytes when grown on plastic or on the surface of a human oral mucosa tissue analogue. Overexpression of HYR1, but not HWP1, significantly rescued this phenotype. Furthermore a hyr1/hyr1 mutant had significantly attenuated virulence in the mouse oral biofilm model of infection. These discoveries show that Bcr1 is critical for mucosal biofilm infection via regulation of epithelial cell adhesin and neutrophil function.
Collapse
|
97
|
Dagley MJ, Gentle IE, Beilharz TH, Pettolino FA, Djordjevic JT, Lo TL, Uwamahoro N, Rupasinghe T, Tull DL, McConville M, Beaurepaire C, Nantel A, Lithgow T, Mitchell AP, Traven A. Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. Mol Microbiol 2010; 79:968-89. [PMID: 21299651 DOI: 10.1111/j.1365-2958.2010.07503.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cell wall is essential for viability of fungi and is an effective drug target in pathogens such as Candida albicans. The contribution of post-transcriptional gene regulators to cell wall integrity in C. albicans is unknown. We show that the C. albicans Ccr4-Pop2 mRNA deadenylase, a regulator of mRNA stability and translation, is required for cell wall integrity. The ccr4/pop2 mutants display reduced wall β-glucans and sensitivity to the echinocandin caspofungin. Moreover, the deadenylase mutants are compromised for filamentation and virulence. We demonstrate that defective cell walls in the ccr4/pop2 mutants are linked to dysfunctional mitochondria and phospholipid imbalance. To further understand mitochondrial function in cell wall integrity, we screened a Saccharomyces cerevisiae collection of mitochondrial mutants. We identify several mitochondrial proteins required for caspofungin tolerance and find a connection between mitochondrial phospholipid homeostasis and caspofungin sensitivity. We focus on the mitochondrial outer membrane SAM complex subunit Sam37, demonstrating that it is required for both trafficking of phospholipids between the ER and mitochondria and cell wall integrity. Moreover, in C. albicans also Sam37 is essential for caspofungin tolerance. Our study provides the basis for an integrative view of mitochondrial function in fungal cell wall biogenesis and resistance to echinocandin antifungal drugs.
Collapse
|
98
|
Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 2010; 201:1718-28. [PMID: 20415594 DOI: 10.1086/652407] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Candida albicans is the most common cause of invasive fungal infections in humans. It is unclear how C. albicans escapes from phagocytic attack and survives in the hostile blood environment during life-threatening systemic infections. Using a conditional overexpression or suppression genetic strategy, we discovered that HYR1 gene reduced phagocytic killing activity of C. albicans in vitro and increased tissue fungal burden in vivo. Concordant with its positive regulation by the transcription factor Bcr1p, autonomous expression of HYR1 complemented the hypersusceptibility to phagocyte-mediated killing of a bcr1 null mutant of C. albicans in vitro. As for C. albicans, heterologous expression of HYR1 in Candida glabrata rendered the organism more resistant to neutrophil killing activity. Vaccination with a recombinant Hyr1p significantly protected mice against hematogenously disseminated candidiasis (P = .001). Finally, anti-rHyr1p polyclonal antibodies enhanced mouse neutrophil killing activity by directly neutralizing rHyr1p effects in vitro. Thus, Hyr1 is an important virulence factor for C. albicans, mediating resistance to phagocyte killing. Hyr1p is a promising target for vaccine or other immunological or small molecule intervention to improve the outcomes of disseminated candidiasis.
Collapse
|
99
|
Brotherstone S, White IMS, Coffey M, Downs SH, Mitchell AP, Clifton-Hadley RS, More SJ, Good M, Woolliams JA. Evidence of genetic resistance of cattle to infection with Mycobacterium bovis. J Dairy Sci 2010; 93:1234-42. [PMID: 20172243 DOI: 10.3168/jds.2009-2609] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/20/2009] [Indexed: 11/19/2022]
Abstract
Anecdotal evidence points to genetic variation in resistance of cattle to infection with Mycobacterium bovis, the causative agent of bovine tuberculosis (BTB), and published experimental evidence in deer and cattle suggests significant genetic variation in resistance and reactivity to diagnostic tests. However, such genetic variation has not been properly quantified in the United Kingdom dairy cattle population; it is possible that it exists and may be a factor influencing the occurrence of BTB. Using models based on the outcome of the process of diagnosis (ultimate fate models) and on the outcome of a single stage of diagnosis (continuation ratio models, herd test-date models), this study shows that there is heritable variation in individual cow susceptibility to BTB, and that selection for milk yield is unlikely to have contributed to the current epidemic. Results demonstrate that genetics could play an important role in controlling BTB by reducing both the incidence and the severity of herd breakdowns.
Collapse
|
100
|
Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E. Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 2010; 12:488-96. [PMID: 20223293 DOI: 10.1016/j.micinf.2010.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
Abstract
Candida albicans is an important cause of morbidity in hospitalized and immunosuppressed patients. Virulence factors of C. albicans include: filamentation, proteinases, adherence proteins and biofilm formation. The objective of this work was to use Galleria mellonella as a model to study the roles of C. albicans filamentation in virulence. We focused our study to five genes BCR1, FLO8, KEM1, SUV3 and TEC1 that have been shown to play a role in filamentation. Filaments are necessary for biofilm formation and evading interaction with macrophages in mammalian infections. Among the five mutant strain tested, we found that only the flo8/flo8 mutant strain did not form filaments within G. mellonella. This strain also exhibited reduced virulence in the larvae. Another strain that exhibited reduced pathogenicity in the G. mellonella model was tec1/tec1 but by contrast, the tec1/tec1 strain retained the ability to form filaments. Overexpression of TEC1 in the flo8/flo8 mutant restored filamentation but did not restore virulence in the larvae as well as in a mouse model of C. albicans infection. The filamentation phenotype did not affect the ability of hemocytes, the immune cells of G. mellonella, to associate with the various mutant strains of C. albicans. The capacities of the tec1/tec1 mutant and the flo8/flo8 TDH3-TEC1 strains to form filaments with impaired virulence suggest that filamentation alone is not sufficient to kill G. mellonella and suggest other virulence factors may be associated with genes that regulate filamentation.
Collapse
|