76
|
Qin W, Hu BZ, Zhang Z, Chen S, Li FJ, Zhu ZY, Wang XJ, Liu M, Li CH. [Clinical characteristics and death risk factors of severe COVID-19]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2020; 43:648-653. [PMID: 32727175 DOI: 10.3760/cma.j.cn112147-20200320-00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To analyze the clinical features and death-related risk factors of COVID-19. Methods: We enrolled 891 COVID-19 patients admitted to the Affiliated Hospital of Jianghan University from December 2019 to February 2020, including 427 men and 464 women. Of the 891 cases, 582 were severe or critical, including 423(73%)severe and 159 (27%) critical cases. We compared the demographics, laboratory findings, clinical characteristics, treatments and prognosis data of the 582 severe patients. Univariate and multivariate logistic regression analysis was conducted to explore the risk factors associated with death in COVID-19 patients. Results: The 582 severe patients included 293 males and 289 females, with a median age of 64(range 24 to 106). Sixty-three patients died, including 45 males and 18 females, with a median age of 71(range 37 to 90). The average onset time of the 582 patients was 8 days, of whom 461 (79%) had fever, 358 (62%) dry cough, 274 (47%) fatigue. There were 206 cases with shortness of breath (35%), 155 cases with expectoration (27%), 83 cases with muscle pain or joint pain (14%), 71 cases with diarrhea (12%), and 29 cases with headache (4%). Underlying diseases were present in 267 (46%) patients, most commonly hypertension (194, 33%), followed by diabetes (69, 12%), coronary atherosclerotic heart disease (37, 6%), tumor (18, 3%), and chronic obstructive pulmonary disease (5, 1%). Chest CT showed bilateral lung involvement in 505 patients (87%). Upon admission, the median lymphocyte count of the 582 patients was 0.8(IQR, 0.6-1.1)×10(9)/L, the median D-dimer was 0.5 (IQR, 0.4- 0.8) mg/L, the median N-terminal brain natriuretic peptide precursor (NT-proBNP) was 433 (IQR, 141- 806) pg/L, and the median creatinine was 70.3 (IQR, 56.9-87.9) μmol/L. The death group had a median lymphocyte count of 0.5 (0.4-0.8)×10(9)/L, D-dimer 1.1 (0.7-10.0)mg/L, N-terminal brain natriuretic peptide precursor 1479(893-5 087) pg/ml, and creatinine 89.9(67.1-125.3) μmol/L. Multivariate logistic analysis showed that increased D-dimer (OR: 1.095, 95% CI: 1.045-1.148, P<0.001), increased NT-proBNP (OR: 4.759, 95% CI: 2.437-9.291, P<0.001), and decreased lymphocyte count (OR: 0.180, 95% CI: 0.059-0.550, P=0.003) were the risk factors of death in COVID-19 patients. Conclusions: The average onset time of severe COVID-19 was 8 days, and the most common symptoms were fever, dry cough and fatigue. Comorbidities such as hypertension were common and mostly accompanied by impaired organ functions on admission. Higher D-dimer, higher NT-proBNP, and lower lymphocyte count were the independent risk factors of death in COVID-19 patients.
Collapse
|
77
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang Z, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YXZ, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Σ^{+} and Σ[over ¯]^{-} Polarization in the J/ψ and ψ(3686) Decays. PHYSICAL REVIEW LETTERS 2020; 125:052004. [PMID: 32794879 DOI: 10.1103/physrevlett.125.052004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
From 1310.6×10^{6} J/ψ and 448.1×10^{6} ψ(3686) events collected with the BESIII experiment, we report the first observation of Σ^{+} and Σ[over ¯]^{-} spin polarization in e^{+}e^{-}→J/ψ[ψ(3686)]→Σ^{+}Σ[over ¯]^{-} decays. The relative phases of the form factors ΔΦ have been measured to be (-15.5±0.7±0.5)° and (21.7±4.0±0.8)° with J/ψ and ψ(3686) data, respectively. The nonzero value of ΔΦ allows for a direct and simultaneous measurement of the decay asymmetry parameters of Σ^{+}→pπ^{0}(α_{0}=-0.998±0.037±0.009) and Σ[over ¯]^{-}→p[over ¯]π^{0}(α[over ¯]_{0}=0.990±0.037±0.011), the latter value being determined for the first time. The average decay asymmetry, (α_{0}-α[over ¯]_{0})/2, is calculated to be -0.994±0.004±0.002. The CP asymmetry A_{CP,Σ}=(α_{0}+α[over ¯]_{0})/(α_{0}-α[over ¯]_{0})=-0.004±0.037±0.010 is extracted for the first time, and is found to be consistent with CP conservation.
Collapse
|
78
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Ferroli RB, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huesken N, Hussain T, Andersson WI, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi M, Qi TY, Qian S, Qian WB, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YX, Tang CJ, Tang GY, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan WB, Yan WC, Yan WC, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YXZ, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Study of Open-Charm Decays and Radiative Transitions of the X(3872). PHYSICAL REVIEW LETTERS 2020; 124:242001. [PMID: 32639837 DOI: 10.1103/physrevlett.124.242001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
The processes X(3872)→D^{*0}D[over ¯]^{0}+c.c.,γJ/ψ,γψ(2S), and γD^{+}D^{-} are searched for in a 9.0 fb^{-1} data sample collected at center-of-mass energies between 4.178 and 4.278 GeV with the BESIII detector. We observe X(3872)→D^{*0}D^{0}[over ¯]+c.c. and find evidence for X(3872)→γJ/ψ with statistical significances of 7.4σ and 3.5σ, respectively. No evident signals for X(3872)→γψ(2S) and γD^{+}D^{-} are found, and the upper limit on the relative branching ratio R_{γψ}≡{B[X(3872)→γψ(2S)]}/{B[X(3872)→γJ/ψ]}<0.59 is set at 90% confidence level. Measurements of branching ratios relative to decay X(3872)→π^{+}π^{-}J/ψ are also reported for decays X(3872)→D^{*0}D^{0}[over ¯]+c.c.,γψ(2S),γJ/ψ, and γD^{+}D^{-}, as well as the non-D^{*0}D^{0}[over ¯] three-body decays π^{0}D^{0}D^{0}[over ¯] and γD^{0}D^{0}[over ¯].
Collapse
|
79
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. Measurements of Absolute Branching Fractions of Fourteen Exclusive Hadronic D Decays to η. PHYSICAL REVIEW LETTERS 2020; 124:241803. [PMID: 32639841 DOI: 10.1103/physrevlett.124.241803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Using 2.93 fb^{-1} of e^{+}e^{-} collision data taken at a center-of-mass energy of 3.773 GeV with the BESIII detector, we report the first measurements of the absolute branching fractions of 14 hadronic D^{0(+)} decays to exclusive final states with an η, e.g., D^{0}→K^{-}π^{+}η, K_{S}^{0}π^{0}η, K^{+}K^{-}η, K_{S}^{0}K_{S}^{0}η, K^{-}π^{+}π^{0}η, K_{S}^{0}π^{+}π^{-}η, K_{S}^{0}π^{0}π^{0}η, and π^{+}π^{-}π^{0}η; D^{+}→K_{S}^{0}π^{+}η, K_{S}^{0}K^{+}η, K^{-}π^{+}π^{+}η, K_{S}^{0}π^{+}π^{0}η, π^{+}π^{+}π^{-}η, and π^{+}π^{0}π^{0}η. Among these decays, the D^{0}→K^{-}π^{+}η and D^{+}→K_{S}^{0}π^{+}η decays have the largest branching fractions, which are B(D^{0}→K^{-}π^{+}η)=(1.853±0.025_{stat}±0.031_{syst})% and B(D^{+}→K_{S}^{0}π^{+}η)=(1.309±0.037_{stat}±0.031_{syst})%, respectively. The charge-parity asymmetries for the six decays with highest event yields are determined, and no statistically significant charge-parity violation is found.
Collapse
|
80
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. First Observation of D^{+}→ημ^{+}ν_{μ} and Measurement of Its Decay Dynamics. PHYSICAL REVIEW LETTERS 2020. [PMID: 32603168 DOI: 10.1016/j.enpol.2020.111655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
By analyzing a data sample corresponding to an integrated luminosity of 2.93 fb^{-1} collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure for the first time the absolute branching fraction of the D^{+}→ημ^{+}ν_{μ} decay to be B_{D^{+}→ημ^{+}ν_{μ}}=(10.4±1.0_{stat}±0.5_{syst})×10^{-4}. Using the world averaged value of B_{D^{+}→ηe^{+}ν_{e}}, the ratio of the two branching fractions is determined to be B_{D^{+}→ημ^{+}ν_{μ}}/B_{D^{+}→ηe^{+}ν_{e}}=0.91±0.13_{(stat+syst)}, which agrees with the theoretical expectation of lepton flavor universality within uncertainty. By studying the differential decay rates in five four-momentum transfer intervals, we obtain the product of the hadronic form factor f_{+}^{η}(0) and the c→d Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| to be f_{+}^{η}(0)|V_{cd}|=0.087±0.008_{stat}±0.002_{syst}. Taking the input of |V_{cd}| from the global fit in the standard model, we determine f_{+}^{η}(0)=0.39±0.04_{stat}±0.01_{syst}. On the other hand, using the value of f_{+}^{η}(0) calculated in theory, we find |V_{cd}|=0.242±0.022_{stat}±0.006_{syst}±0.033_{theory}.
Collapse
|
81
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai XH, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Bortone A, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng WS, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, de Boer RB, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huang YP, Huang Z, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JL, Li JQ, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu FX, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min TJ, Mitchell RE, Mo XH, Mo YJ, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qi TY, Qian S, Qian WB, Qian Z, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song WM, Song YX, Sosio S, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZT, Tan YH, Tan YX, Tang CJ, Tang GY, Tang J, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang M, Wang MZ, Wang M, Wang WH, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZY, Wang Z, Wang Z, Wei DH, Weidenkaff P, Weidner F, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie XH, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yuan ZY, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao YB, Zhao YX, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu ZA, Zou BS, Zou JH. First Observation of D^{+}→ημ^{+}ν_{μ} and Measurement of Its Decay Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:231801. [PMID: 32603168 DOI: 10.1103/physrevlett.124.231801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
By analyzing a data sample corresponding to an integrated luminosity of 2.93 fb^{-1} collected at a center-of-mass energy of 3.773 GeV with the BESIII detector, we measure for the first time the absolute branching fraction of the D^{+}→ημ^{+}ν_{μ} decay to be B_{D^{+}→ημ^{+}ν_{μ}}=(10.4±1.0_{stat}±0.5_{syst})×10^{-4}. Using the world averaged value of B_{D^{+}→ηe^{+}ν_{e}}, the ratio of the two branching fractions is determined to be B_{D^{+}→ημ^{+}ν_{μ}}/B_{D^{+}→ηe^{+}ν_{e}}=0.91±0.13_{(stat+syst)}, which agrees with the theoretical expectation of lepton flavor universality within uncertainty. By studying the differential decay rates in five four-momentum transfer intervals, we obtain the product of the hadronic form factor f_{+}^{η}(0) and the c→d Cabibbo-Kobayashi-Maskawa matrix element |V_{cd}| to be f_{+}^{η}(0)|V_{cd}|=0.087±0.008_{stat}±0.002_{syst}. Taking the input of |V_{cd}| from the global fit in the standard model, we determine f_{+}^{η}(0)=0.39±0.04_{stat}±0.01_{syst}. On the other hand, using the value of f_{+}^{η}(0) calculated in theory, we find |V_{cd}|=0.242±0.022_{stat}±0.006_{syst}±0.033_{theory}.
Collapse
|
82
|
Xiong Z, Fu L, Zhou H, Liu JK, Wang AM, Huang Y, Huang X, Yi B, Wu J, Li CH, Quan J, Li M, Leng YS, Luo WJ, Hu CP, Liao WH. [Construction and evaluation of a novel diagnosis pathway for 2019-Corona Virus Disease]. ZHONGHUA YI XUE ZA ZHI 2020; 100:1223-1229. [PMID: 32157849 DOI: 10.3760/cma.j.cn112137-20200228-00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To construct and evaluate a diagnosis pathway (Xiangya pathway) for Corona Virus Disease 2019 (COVID-19). Methods: Consecutive subjects aged ≥12 years old who were screened for COVID-19 were included in Xiangya Hospital of Central South University from January 23 to February 3, 2020, and the subjects were further divided into the inception cohort and the validation cohort. The gender, age, onset time of disease of the subjects were recorded. The information of epidemiological history, fever, and the declined blood lymphocytes were collected as clinical indicators, CT scan was used to evaluate the possibility of COVID-19 and range of lung involvement. According to the current Chinese national standards, throat swabs of suspected cases were collected and the nucleic acid of COVID-19 was detected by reverse transcription-polymerase chain reaction (RT-PCR). The Xiangya pathway was constructed with multi-indexes, compared with clinical indicators, CT results and Chinese national standards, their effectiveness of detecting confirmed cases were verified in the inception and validation cohort. Results: A total of 382 consecutive adults who was screened for COVID-19 were included, and 261 cases were in the inception cohort and 121 cases were in the validation cohort. Among the 382 cases, 192 were males (50.3%) and 190 were females (49.7%), with a median age of 35 years (range: 15-92 years). There were 183 cases (47.9%) with epidemiological history, 275 cases (72.0%) with fever, 212 cases (55.5%) with decreased peripheral blood lymphocytes, 114 cases (29.8%) with positive CT findings, 43 cases (11.3%) with positive CT-COVID-19, and 30 cases (7.9%) with positive virus nucleic acid by throat swab. Compared with clinical indicators, the sensitivity and specificity of CT were 0.950 and 0.704, respectively. The accuracy of CT to make a definite diagnosis was higher than that of epidemiological history, fever, and declined blood lymphocyte count (0.809 vs 0.660, 0.532, 0.596, P=0.001, 0.002, 0.003, respectively). The sensitivity of this pathway and the pathway recommended by the Health Commission of China were both high (all were 1.000), while the specificity and accuracy of the Xiangya pathway were higher than the one recommended by the Health Commission (0.872 vs 0.765, 0.778 vs 0.592, both P<0.001). The CT-COVID-19 reduced the missed diagnosis rate caused by false negative of nucleic acid test (31 vs 64), with difference rate of 51.6%, and the positive rate of nucleic acid test was 64.5% (20/31). In validation cohort, the specificity and accuracy of the Xiangya pathway was 0.967, the positive rate of nucleic acid test was 76.9%(10/13). Conclusions: The Xiangya pathway can predict the nucleic acid test results of COVID-19, and can be applied as a reliable strategy to screen patients with suspected COVID-19 among people aged ≥12 years in areas other than Hubei during the epidemic period of COVID-19. The cohort size needs to be increased for further validation.
Collapse
|
83
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Amoroso A, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao XL, Gao Y, Gao Y, Gao YG, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guo YP, Guskov A, Han S, Han TT, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Holtmann T, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang LQ, Huang XT, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Jaeger S, Janchiv S, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HB, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth MG, Kühn W, Lane JJ, Lange JS, Larin P, Lavezzi L, Leithoff H, Lellmann M, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JC, Li JL, Li K, Li LK, Li L, Li PL, Li PR, Li SY, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu S, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu ZQ, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma RT, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Olsen SL, Ouyang Q, Pacetti S, Pan X, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi HR, Qi M, Qi TY, Qian S, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schnier C, Schoenning K, Shan DC, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Song YX, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YX, Tang CJ, Tang GY, Tang J, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang WP, Wang X, Wang XF, Wang XL, Wang Y, Wang Y, Wang YD, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang Z, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, White DJ, Wiedner U, Wilkinson G, Wolke M, Wollenberg L, Wu JF, Wu LH, Wu LJ, Wu X, Wu Z, Xia L, Xiao H, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xu GF, Xu JJ, Xu QJ, Xu W, Xu XP, Yan L, Yan L, Yan WB, Yan WC, Yan X, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan W, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang G, Zhang HH, Zhang HY, Zhang JL, Zhang JQ, Zhang JW, Zhang JY, Zhang JZ, Zhang J, Zhang J, Zhang L, Zhang L, Zhang S, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZY, Zhao G, Zhao J, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhu AN, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Observation of a Resonant Structure in e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0}. PHYSICAL REVIEW LETTERS 2020; 124:112001. [PMID: 32242687 DOI: 10.1103/physrevlett.124.112001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
A partial-wave analysis is performed for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} at the center-of-mass energies ranging from 2.000 to 2.644 GeV. The data samples of e^{+}e^{-} collisions, collected by the BESIII detector at the BEPCII collider with a total integrated luminosity of 300 pb^{-1}, are analyzed. The total Born cross sections for the process e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0}, as well as the Born cross sections for the subprocesses e^{+}e^{-}→ϕπ^{0}π^{0}, K^{+}(1460)K^{-}, K_{1}^{+}(1400)K^{-}, K_{1}^{+}(1270)K^{-}, and K^{*+}(892)K^{*-}(892), are measured versus the center-of-mass energy. The corresponding results for e^{+}e^{-}→K^{+}K^{-}π^{0}π^{0} and ϕπ^{0}π^{0} are consistent with those of BABAR with better precision. By analyzing the cross sections for the four subprocesses, K^{+}(1460)K^{-}, K_{1}^{+}(1400)K^{-}, K_{1}^{+}(1270)K^{-}, and K^{*+}(892)K^{*-}(892), a structure with mass M=(2126.5±16.8±12.4) MeV/c^{2} and width Γ=(106.9±32.1±28.1) MeV is observed with an overall statistical significance of 6.3σ, although with very limited significance in the subprocesses e^{+}e^{-}→K_{1}^{+}(1270)K^{-} and K^{*+}(892)K^{*-}(892). The resonant parameters of the observed structure suggest it can be identified with the ϕ(2170), thus the results provide valuable input to the internal nature of the ϕ(2170).
Collapse
|
84
|
Liu M, He P, Liu HG, Wang XJ, Li FJ, Chen S, Lin J, Chen P, Liu JH, Li CH. [Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2020; 43:209-214. [PMID: 32164090 DOI: 10.3760/cma.j.issn.1001-0939.2020.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective: To investigate the clinical characteristics of medical staff with novel coronavirus pneumonia(NCP). Methods: 30 patients infected with novel coronavirus referred to jianghan university hospital between January 11, 2020 and January 3, 2020 were studied. The data reviewed included those of clinical manifestations, laboratory investigation and Radiographic features. Results: The patients consisted of 10 men and 20 women, including 22 doctors and 8 nurses,aged 21~59 years(mean 35±8 years).They were divided to 26 common type and 4 severe cases, all of whom had close(within 1m) contact with patients infected of novel coronavirus pneumonia. The average contact times were 12 (7,16) and the average cumulative contact time was 2 (1.5,2.7) h.Clinical symptoms of these patients were fever in 23 patients (76.67%) , headache in 16 petients (53.33%) , fatigue or myalgia in 21patients (70%) , nausea, vomiting or diarrhea in 9 petients (30%) , cough in 25 petients (83.33%) , and dyspnea in 14 petients (46.67%) .Routine blood test revealed WBC<4.0×10(9)/L in 8 petients (26.67%) , (4-10) ×10(9)/L in 22 petients (73.33%) , and WBC>4.0×10(9)/L in 4 petients (13.33%) during the disease.Lymphocyte count<1.0×10(9)/L occurred in 12 petients (40%),abnormal liver function in 7 petients (23.33%) ,myocardial damage in 5 petients(16.67%), elevated D-dimer (>0.5mg/l) in 5 patients (16.67%). Compared with normal patients, the average exposure times, cumulative exposure time, BMI, Fever time, white blood cell count, liver enzyme, LDH, myoenzyme and D-dimer were significantly increased in severe patients, while the lymphocyte count and albumin levels in peripheral blood were significantly decreased.Chest CT mainly showed patchy shadows and interstitial changes.According to imaging examination, 11 patients (36.67%) showed Unilateral pneumonia and 19 patients (63.33%) showed bilateral pneumonia,4 patients (13.33%) showed bilateral multiple mottling and ground-glass opacity.Compared with the patients infected in the protected period, the proportion of severe infection and bilateral pneumonia were both increased in the patients infected in unprotected period. Conclusion: Medical staffs are at higher risk of infection.Infection rates are associated with contact time, the amount of suction virus. Severe patients had BMI increased, heating time prolonged, white blood cell count, lymphocyte count, D-dimer and albumin level significantly changed and were prone to be complicated with liver damage and myocardial damage.Strict protection measures is important to prevent infection for medical workers.
Collapse
|
85
|
Liu M, He P, Liu HG, Wang XJ, Li FJ, Chen S, Lin J, Chen P, Liu JH, Li CH. [Clinical characteristics of 30 medical workers infected with new coronavirus pneumonia]. ZHONGHUA JIE HE HE HU XI ZA ZHI = ZHONGHUA JIEHE HE HUXI ZAZHI = CHINESE JOURNAL OF TUBERCULOSIS AND RESPIRATORY DISEASES 2020; 43:E016. [PMID: 32062957 DOI: 10.3760/cma.j.issn.1001-0939.2020.0016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the clinical characteristics of medical staff with novel coronavirus pneumonia(NCP). Methods: 30 patients infected with novel coronavirus referred to jianghan university hospital between January 11, 2020 and January 3, 2020 were studied. The data reviewed included those of clinical manifestations, laboratory investigation and Radiographic features. Results: The patients consisted of 10 men and 20 women, including 22 doctors and 8 nurses,aged 21~59 years(mean 35±8 years).They were divided to 26 common type and 4 severe cases, all of whom had close(within 1m) contact with patients infected of novel coronavirus pneumonia. The average contact times were 12 (7,16) and the average cumulative contact time was 2 (1.5,2.7) h.Clinical symptoms of these patients were fever in 23 patients (76.67%) , headache in 16 petients (53.33%) , fatigue or myalgia in 21patients (70%) , nausea, vomiting or diarrhea in 9 petients (30%) , cough in 25 petients (83.33%) , and dyspnea in 14 petients (46.67%) .Routine blood test revealed WBC <4.0×10(9)/L in 8 petients (26.67%) , (4-10) ×10(9)/L in 22 petients (73.33%) , and WBC>4.0×10(9)/L in 4 petients (13.33%) during the disease.Lymphocyte count <1.0×10(9)/L occurred in 12 petients (40%),abnormal liver function in 7 petients (23.33%) ,myocardial damage in 5 petients(16.67%), elevated D-dimer (>0.5mg/l) in 5 patients (16.67%). Compared with normal patients, the average exposure times, cumulative exposure time, BMI, Fever time, white blood cell count, liver enzyme, LDH, myoenzyme and D-dimer were significantly increased in severe patients, while the lymphocyte count and albumin levels in peripheral blood were significantly decreased.Chest CT mainly showed patchy shadows and interstitial changes.According to imaging examination, 11 patients (36.67%) showed Unilateral pneumonia and 19 patients (63.33%) showed bilateral pneumonia,4 patients (13.33%) showed bilateral multiple mottling and ground-glass opacity.Compared with the patients infected in the protected period, the proportion of severe infection and bilateral pneumonia were both increased in the patients infected in unprotected period. Conclusion: Medical staffs are at higher risk of infection.Infection rates are associated with contact time, the amount of suction virus. Severe patients had BMI increased, heating time prolonged , white blood cell count, lymphocyte count, D-dimer and albumin level significantly changed and were prone to be complicated with liver damage and myocardial damage.Strict protection measures is important to prevent infection for medical workers.
Collapse
|
86
|
Ablikim M, Achasov MN, Adlarson P, Ahmed S, Albrecht M, Alekseev M, Amoroso A, An FF, An Q, Bai Y, Bakina O, Baldini Ferroli R, Balossino I, Ban Y, Begzsuren K, Bennett JV, Berger N, Bertani M, Bettoni D, Bianchi F, Biernat J, Bloms J, Boyko I, Briere RA, Cai H, Cai X, Calcaterra A, Cao GF, Cao N, Cetin SA, Chai J, Chang JF, Chang WL, Chelkov G, Chen DY, Chen G, Chen HS, Chen J, Chen ML, Chen SJ, Chen XR, Chen YB, Cheng W, Cibinetto G, Cossio F, Cui XF, Dai HL, Dai JP, Dai XC, Dbeyssi A, Dedovich D, Deng ZY, Denig A, Denysenko I, Destefanis M, De Mori F, Ding Y, Dong C, Dong J, Dong LY, Dong MY, Du SX, Fang J, Fang SS, Fang Y, Farinelli R, Fava L, Feldbauer F, Felici G, Feng CQ, Fritsch M, Fu CD, Fu Y, Gao Q, Gao Y, Gao Y, Gao YG, Garillon B, Garzia I, Gersabeck EM, Gilman A, Goetzen K, Gong L, Gong WX, Gradl W, Greco M, Gu LM, Gu MH, Gu S, Gu YT, Guan CY, Guo AQ, Guo LB, Guo RP, Guo YP, Guskov A, Han S, Han TZ, Hao XQ, Harris FA, He KL, Heinsius FH, Held T, Heng YK, Himmelreich M, Hou YR, Hou ZL, Hu HM, Hu JF, Hu T, Hu Y, Huang GS, Huang JS, Huang LQ, Huang XT, Huesken N, Hussain T, Ikegami Andersson W, Imoehl W, Irshad M, Ji Q, Ji QP, Ji XB, Ji XL, Jiang HL, Jiang XS, Jiang XY, Jiao JB, Jiao Z, Jin DP, Jin S, Jin Y, Johansson T, Kalantar-Nayestanaki N, Kang XS, Kappert R, Kavatsyuk M, Ke BC, Keshk IK, Khoukaz A, Kiese P, Kiuchi R, Kliemt R, Koch L, Kolcu OB, Kopf B, Kuemmel M, Kuessner M, Kupsc A, Kurth M, Kurth MG, Kühn W, Lange JS, Larin P, Lavezzi L, Leithoff H, Lenz T, Li C, Li CH, Li C, Li DM, Li F, Li G, Li HB, Li HJ, Li JC, Li K, Li LK, Li L, Li PL, Li PR, Li WD, Li WG, Li XH, Li XL, Li XN, Li ZB, Li ZY, Liang H, Liang H, Liang YF, Liang YT, Liao LZ, Libby J, Lin CX, Lin DX, Liu B, Liu BJ, Liu CX, Liu D, Liu DY, Liu FH, Liu F, Liu F, Liu HB, Liu HM, Liu H, Liu H, Liu JB, Liu JY, Liu K, Liu KY, Liu K, Liu L, Liu LY, Liu Q, Liu SB, Liu T, Liu X, Liu XY, Liu YB, Liu ZA, Liu Z, Long YF, Lou XC, Lu HJ, Lu JD, Lu JG, Lu XL, Lu Y, Lu YP, Luo CL, Luo MX, Luo PW, Luo T, Luo XL, Lusso S, Lyu XR, Ma FC, Ma HL, Ma LL, Ma MM, Ma QM, Ma RQ, Ma XN, Ma XX, Ma XY, Ma YM, Maas FE, Maggiora M, Maldaner S, Malde S, Malik QA, Mangoni A, Mao YJ, Mao ZP, Marcello S, Meng ZX, Messchendorp JG, Mezzadri G, Min J, Min TJ, Mitchell RE, Mo XH, Mo YJ, Morales Morales C, Muchnoi NY, Muramatsu H, Mustafa A, Nakhoul S, Nefedov Y, Nerling F, Nikolaev IB, Ning Z, Nisar S, Niu SL, Olsen SL, Ouyang Q, Pacetti S, Pan Y, Papenbrock M, Pathak A, Patteri P, Pelizaeus M, Peng HP, Peters K, Pettersson J, Ping JL, Ping RG, Pitka A, Poling R, Prasad V, Qi H, Qi M, Qian S, Qiao CF, Qin LQ, Qin XP, Qin XS, Qin ZH, Qiu JF, Qu SQ, Rashid KH, Ravindran K, Redmer CF, Richter M, Rivetti A, Rodin V, Rolo M, Rong G, Rosner C, Rump M, Sarantsev A, Savrié M, Schelhaas Y, Schoenning K, Shan W, Shan XY, Shao M, Shen CP, Shen PX, Shen XY, Sheng HY, Shi HC, Shi RS, Shi X, Shi XD, Song JJ, Song QQ, Song XY, Sosio S, Sowa C, Spataro S, Sui FF, Sun GX, Sun JF, Sun L, Sun SS, Sun T, Sun WY, Sun XH, Sun YJ, Sun YK, Sun YZ, Sun ZJ, Sun ZT, Tan YT, Tang CJ, Tang GY, Tang X, Thoren V, Tsednee B, Uman I, Wang B, Wang BL, Wang CW, Wang DY, Wang HP, Wang K, Wang LL, Wang LS, Wang M, Wang MZ, Wang M, Wang PL, Wang WP, Wang X, Wang XF, Wang XL, Wang YD, Wang Y, Wang Y, Wang YF, Wang YQ, Wang Z, Wang ZG, Wang ZY, Wang ZY, Wang Z, Weber T, Wei DH, Weidenkaff P, Weidner F, Wen HW, Wen SP, Wiedner U, Wilkinson G, Wolke M, Wu JF, Wu LH, Wu LJ, Wu Z, Xia L, Xia Y, Xiao SY, Xiao YJ, Xiao ZJ, Xie YG, Xie YH, Xing TY, Xiong XA, Xiu QL, Xu GF, Xu JJ, Xu L, Xu QJ, Xu W, Xu XP, Yan F, Yan L, Yan WB, Yan WC, Yan YH, Yang HJ, Yang HX, Yang L, Yang RX, Yang SL, Yang YH, Yang YX, Yang Y, Yang ZQ, Yang Z, Ye M, Ye MH, Yin JH, You ZY, Yu BX, Yu CX, Yu G, Yu JS, Yu T, Yuan CZ, Yuan XQ, Yuan Y, Yue CX, Yuncu A, Zafar AA, Zeng Y, Zhang BX, Zhang BY, Zhang CC, Zhang DH, Zhang HH, Zhang HY, Zhang J, Zhang JL, Zhang JQ, Zhang JW, Zhang JW, Zhang JY, Zhang JY, Zhang JZ, Zhang K, Zhang L, Zhang L, Zhang SF, Zhang TJ, Zhang XY, Zhang Y, Zhang YH, Zhang YT, Zhang Y, Zhang Y, Zhang Y, Zhang Y, Zhang ZH, Zhang ZP, Zhang ZY, Zhao G, Zhao J, Zhao JW, Zhao JY, Zhao JZ, Zhao L, Zhao L, Zhao MG, Zhao Q, Zhao SJ, Zhao TC, Zhao YB, Zhao ZG, Zhemchugov A, Zheng B, Zheng JP, Zheng Y, Zheng YH, Zhong B, Zhong C, Zhou L, Zhou LP, Zhou Q, Zhou X, Zhou XK, Zhou XR, Zhou X, Zhou X, Zhu AN, Zhu J, Zhu J, Zhu K, Zhu KJ, Zhu SH, Zhu WJ, Zhu XL, Zhu YC, Zhu YS, Zhu ZA, Zhuang J, Zou BS, Zou JH. Measurement of Proton Electromagnetic Form Factors in e^{+}e^{-}→pp[over ¯] in the Energy Region 2.00-3.08 GeV. PHYSICAL REVIEW LETTERS 2020; 124:042001. [PMID: 32058790 DOI: 10.1103/physrevlett.124.042001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The process of e^{+}e^{-}→pp[over ¯] is studied at 22 center-of-mass energy points (sqrt[s]) from 2.00 to 3.08 GeV, exploiting 688.5 pb^{-1} of data collected with the BESIII detector operating at the BEPCII collider. The Born cross section (σ_{pp[over ¯]}) of e^{+}e^{-}→pp[over ¯] is measured with the energy-scan technique and it is found to be consistent with previously published data, but with much improved accuracy. In addition, the electromagnetic form-factor ratio (|G_{E}/G_{M}|) and the value of the effective (|G_{eff}|), electric (|G_{E}|), and magnetic (|G_{M}|) form factors are measured by studying the helicity angle of the proton at 16 center-of-mass energy points. |G_{E}/G_{M}| and |G_{M}| are determined with high accuracy, providing uncertainties comparable to data in the spacelike region, and |G_{E}| is measured for the first time. We reach unprecedented accuracy, and precision results in the timelike region provide information to improve our understanding of the proton inner structure and to test theoretical models which depend on nonperturbative quantum chromodynamics.
Collapse
|
87
|
Zhang XW, Wu Y, Wang DK, Jin X, Li CH. Expression changes of inflammatory cytokines TNF-α, IL-1β and HO-1 in hematoma surrounding brain areas after intracerebral hemorrhage. J BIOL REG HOMEOS AG 2019; 33:1359-1367. [PMID: 31659887 DOI: 10.23812/19-150-a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the expression changes of inflammatory factors heme oxygenase-1 (HO-1), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in intracerebral hemorrhage (ICH), brain tissues surrounding hematoma were collected from ICH patients. The expressions of HO-1, TNF-α, IL- 1β, and other genes were examined at different time points of ICH. Changes in HO-1, TNF-α, and IL-1β positive cell numbers after ICH were detected by immunohistochemical staining. The results showed that the expressions of HO-1, TNF-α, and IL-1β had no significant changes in brain tissues surrounding hematoma within 6 hours after ICH (P > 0.05). Their expressions during 6-24 hours and 24-72 hours after ICH increased constantly. After reaching the peak, they remained steady or slightly decreased after 72 hours. The dynamic expression changes of HO-1, TNF-α, and IL-1β were observed and their development trends were interfered timely to alleviate the secondary neurological impairment after ICH, which was significant to prevent ICH.
Collapse
|
88
|
Hsieh YC, Liao YC, Li CH, Lin JC, Weng CJ, Lin CC, Lo CP, Huang KC, Huang JL, Lin CH, Wu TJ, Sheu WH. P5644Hypoglycemic episodes increase the risk of ventricular arrhythmias and sudden cardiac arrest in patients with type 2 diabetes - a nationwide cohort study. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz746.0587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Hypoglycemic episode (HE) increases the risk of cardiovascular mortality. The impact of HE on the risk of sudden death remains unclear. We hypothesized that HE increases the risks of ventricular arrhythmia (VA) and sudden cardiac arrest (SCA), and that anti-diabetic agents (ADAs) causing hypoglycemia also increase the risks of VA and SCA.
Methods
Patients aged ≥20 years with newly diagnosed diabetes were identified from the Taiwan National Insurance Database. HE was defined as the presentation of hypoglycemic coma or specified/unspecified hypoglycemia. For control group, we included diabetic patients without HE, and they were frequency-matched to the HE group at a 4:1 ratio. The primary outcome was the occurrence of any event of VA (including ventricular tachycardia and fibrillation) and SCA during the defined follow-up periods. Multivariate Cox hazards regression model was used to evaluate the hazard ratio (HR) for VA or SCA.
Results
A total of 54,303 diabetic patients were screened with 1,037 of them in the HE group, and 4,148 in the control group. During a mean follow-up period of 3.3±2.5 years, 29 VA/SCA events had occurred. Compared to the control group, the HE group had a higher incidence of VA/SCA (adjusted HR: 2.42, p=0.04). Diabetic patients medicated with insulin for glycemic control increased the risk of VA/SCA compared to those without insulin (adjusted HR: 3.05, p=0.01).
Kaplan-Meier survival curves
Conclusions
HEs in patients with diabetes increased the risks of VA and SCA compared to those without. Their use of insulin also independently increased the risk of VA/SCA.
Collapse
|
89
|
Hsieh YC, Li CH, Liao YC, Lin JC, Weng CJ, Lin SF, Huang JL, Wu TJ. P2564Levosimendan shortens action potential duration, decreases alternans threshold and prevents ventricular arrhythmia during therapeutic hypothermia in isolated rabbit hearts. Eur Heart J 2019. [DOI: 10.1093/eurheartj/ehz748.0892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Therapeutic hypothermia (TH) increases the susceptibility to ventricular arrhythmias (VA) by prolonging action potential duration (APD) and facilitating arrhythmogenic spatially discordant alternans (SDA). The calcium sensitizer levosimendan has been reported to shorten APD by enhancing ATP-sensitive K current. We hypothesize that levosimendan might shorten the already prolonged APD during TH, decreasing SDA threshold, and prevent the occurrence of VA.
Methods
Langendorff-perfused isolated rabbit hearts were subjected to 15-min TH (30°C) followed by 30-min treatment with levosimendan (0.5 μM, n=9) or vehicle (n=8). Using an optical mapping system, epicardial APD was evaluated by S1 pacing. SDA threshold was defined as the longest pacing cycle length (PCL) that induced SDA phenomenon. Ventricular fibrillation (VF) inducibility was evaluated by burst pacing for 30 s using the shortest PCL that achieved 1:1 ventricular capture.
Results
Levosimendan shortened the ventricular APD (at PCL 300 ms, from 229±9 ms to 211±18 ms, p=0.02) and decrease the SDA threshold (from 327±88 ms to 311±68 ms, p=0.001) during TH. The VF inducibility was decreased by levosimendan from 39±30% at 30°C to 14±12% after levosimendan infusion. In control hearts, the APD (p=0.75), SDA threshold (p=ns) and VF inducibility (p=0.12) were not changed by vehicle during TH.
Conclusions
Levosimendan protects the hearts against VA during TH by shortening APD and decreasing SDA threshold. Enhancing ATP-sensitive K current with levosimendan might be a novel approach to prevent VA during TH.
Collapse
|
90
|
Ye H, Liu XJ, Hui Y, Liang YH, Li CH, Wan Q. USF1 gene polymorphisms may associate with the efficacy and safety of chemotherapy based on paclitaxel and prognosis in the treatment of ovarian cancer. Neoplasma 2019; 65:153-160. [PMID: 29322800 DOI: 10.4149/neo_2018_170322n205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study was supposed to investigate the correlation between the functional single nucleotide polymorphisms (SNPs) (rs2516839 and rs3737787) in USF1 gene and the efficacy and safety of paclitaxel-based chemotherapy and prognosis in the treatment of ovarian cancer (OC). In total 100 OC patients were selected and divided into the sensitive group and the resistantgroup according to the tumor response to paclitaxel-based chemotherapy after surgery, and the incidence of observed and recorded toxic reaction. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was applied to test the polymorphisms of rs2516839 and rs3737787 in USF1 gene after extraction of DNA. The correlation between USF1 gene polymorphisms and paclitaxel-based chemotherapy resistance was analyzed using Logistic regression analysis. Stratified analysis was used to test the incidence of toxic reaction in OC patients. Cox proportional hazard model was adapted to make a multiple-factor survival analysis. Significant differences exhibited in the genotype and the allele frequencies of rs2516839 between the sensitive and resistant groups, which showed no obvious difference in the genotype and allele frequencies of rs3737787. OC patients carrying the GA+AA genotype had higher incidence of serious toxic reaction than those carrying the GG genotype. Physical status score, tumor type, maximum tumor diameter and rs2516839 were the independent risk factors for the prognosis of OC patients. Taken together, our results suggest that the rs2516839 polymorphism in USF1 gene may associate with the efficacy and safety of paclitaxel-based chemotherapy and prognosis in the treatment of OC.
Collapse
|
91
|
Li CH, van 't Erve OMJ, Yan C, Li L, Jonker BT. Electrical detection of current generated spin in topological insulator surface states: Role of interface resistance. Sci Rep 2019; 9:6906. [PMID: 31061408 PMCID: PMC6502888 DOI: 10.1038/s41598-019-43302-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/12/2019] [Indexed: 11/21/2022] Open
Abstract
Current generated spin polarization in topological insulator (TI) surface states due to spin-momentum locking has been detected recently using ferromagnet/tunnel barrier contacts, where the projection of the TI spin onto the magnetization of the ferromagnet is measured as a voltage. However, opposing signs of the spin voltage have been reported, which had been tentatively attributed to the coexistence of trivial two-dimensional electron gas states on the TI surface which may exhibit opposite current-induced polarization than that of the TI Dirac surface states. Models based on electrochemical potential have been presented to determine the sign of the spin voltage expected for the TI surface states. However, these models neglect critical experimental parameters which also affect the sign measured. Here we present a Mott two-spin current resistor model which takes into account these parameters such as spin-dependent interface resistances, and show that such inclusion can lead to a crossing of the voltage potential profiles for the spin-up and spin-down electrons within the channel, which can lead to measured spin voltages of either sign. These findings offer a resolution of the ongoing controversy regarding opposite signs of spin signal reported in the literature, and highlight the importance of including realistic experimental parameters in the model.
Collapse
|
92
|
Cao HT, Yang YJ, Zheng Q, Shi B, Li CH. [New insight of craniofacial and oral findings of the RASopathies]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2019; 53:858-861. [PMID: 30522213 DOI: 10.3760/cma.j.issn.1002-0098.2018.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The RASopathies are a group of syndromes that have in common germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway and have been a focus of study to understand the role of this pathway in development and disease. These syndromes include Noonan syndrome (NS), NS with multiple lentigines (NSML), neu-rofibromatosis type 1 (NF1), Costello syndrome (CS), cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type 1-like syndrome (NFLS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). These disorders affect multiple systems, including the craniofacial complex. Although the crani-ofacial features have been well described and can aid in clinical diagnosis, the dental phenotypes have not been analysed in detail for each of the RASopathies. In this review, we summarize the clinical features of the RASopathies, highlighting the reported craniofacial and dental findings.
Collapse
|
93
|
Liu APY, Ip JJK, Leung AWK, Luk CW, Li CH, Ho KKH, Lo R, Chan EKW, Chan ACY, Chung PHY, Chiang AKS. Treatment outcome and pattern of failure in hepatoblastoma treated with a consensus protocol in Hong Kong. Pediatr Blood Cancer 2019; 66:e27482. [PMID: 30270490 DOI: 10.1002/pbc.27482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM We reviewed the results and pattern of failure of the consensus HB/HCC 1996 treatment protocol for pediatric hepatoblastoma (HB) in Hong Kong. The role of SIOPEL and Children's Hepatic tumors International Collaboration (CHIC) risk stratification was evaluated. METHODS Patients enrolled on the protocol from 1996 to 2014 were included. PRETEXT staging, SIOPEL, and CHIC risk groups were retrospectively assigned. RESULTS Sixty patients were enrolled with median age at diagnosis of 1.1 years and median follow-up time of 6.8 years. Alpha-fetoprotein (AFP) was raised (>100 ng/mL) in 58 (97%) patients. Five (8%) had metastases at presentation and 7 (12%) experienced tumor rupture prior to or during treatment. Twenty-nine patients (48%) received a first-line cisplatin, 5-fluorouracil, and vincristine regimen only while 23 (38%) also had alternative chemotherapeutic agents. Hepatic resection could be performed in 48 (80%) patients. Three (5%) patients underwent upfront liver transplantation. Five-year event-free survival and overall survival rates were 69.2% ± 6.1% and 77.6% ± 5.5% respectively. Among the 16 patients with relapse/progression, 9 had intrahepatic failure only, 5 had distant failure only, and 2 had combined local and distant failure. Predictors of inferior outcome included advanced Evans staging, disease involving both lobes, rupture, low AFP, and suboptimal response to first-line chemotherapy. Assigned in 44 patients, PRETEXT staging, SIOPEL, and CHIC risk groups significantly predicted EFS and OS. CONCLUSIONS Although the consensus HB/HCC 1996 protocol led to cure in three-quarters of pediatric HB patients, an upfront risk stratification system is required to identify and improve the outcome of high-risk patients.
Collapse
|
94
|
Chen W, Li FF, Li C, Sui JK, Meng QF, Li XL, Li H, Li CH, Li YB. Artemisinin ameliorates the symptoms of experimental autoimmune myasthenia gravis by regulating the balance of TH1 cells, TH17 cells and Treg cells. J BIOL REG HOMEOS AG 2018; 32:1217-1223. [PMID: 30334416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by fatigue and muscle weakness. Artemisinin and its derivatives were reported to be experimentally used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and experimental allergic encephalomyelitis (EAE). Here, we tested the effects of artemisinin on experimental autoimmune myasthenia gravis (EAMG). Our data confirmed that artemisinin markedly ameliorated the symptoms of EAMG rats. There was a decreased level of tumor necrosis factor-α (TNF-α) and IL-17+ cells in mononuclear cells (MNCs), and an increased level of transforming growth factor-β1 (TGF-β1) and Treg cells in MNCs. These findings indicate that artemisinin may be a new choice for MG treatment.
Collapse
|
95
|
Sibidanov A, Varvell KE, Adachi I, Aihara H, Al Said S, Asner DM, Aushev T, Ayad R, Babu V, Badhrees I, Bahinipati S, Bakich AM, Bansal V, Barberio E, Behera P, Bhuyan B, Biswal J, Bozek A, Bračko M, Browder TE, Červenkov D, Chang P, Chekelian V, Chen A, Cheon BG, Chilikin K, Cho K, Choi SK, Choi Y, Cinabro D, Czank T, Dash N, Di Carlo S, Doležal Z, Drásal Z, Dutta D, Eidelman S, Epifanov D, Fast JE, Ferber T, Fulsom BG, Gaur V, Gabyshev N, Garmash A, Goldenzweig P, Greenwald D, Guan Y, Guido E, Haba J, Hayasaka K, Hayashii H, Hedges MT, Hirose S, Hou WS, Hsu CL, Iijima T, Inami K, Inguglia G, Ishikawa A, Itoh R, Iwasaki M, Iwasaki Y, Jacobs WW, Jaegle I, Jeon HB, Jin Y, Joo KK, Julius T, Kahn J, Kaliyar AB, Kang KH, Karyan G, Kawasaki T, Kiesling C, Kim DY, Kim JB, Kim SH, Kim YJ, Kinoshita K, Kodyš P, Korpar S, Kotchetkov D, Križan P, Krokovny P, Kuhr T, Kulasiri R, Kumar R, Kuzmin A, Kwon YJ, Lange JS, Lee IS, Li CH, Li L, Li Gioi L, Libby J, Liventsev D, Lubej M, Luo T, Masuda M, Matsuda T, Merola M, Miyabayashi K, Miyata H, Mizuk R, Mohanty GB, Moon HK, Mori T, Mussa R, Nakano E, Nakao M, Nanut T, Nath KJ, Natkaniec Z, Nayak M, Niiyama M, Nisar NK, Nishida S, Ogawa S, Okuno S, Ono H, Pakhlov P, Pakhlova G, Pal B, Park CS, Park CW, Park H, Paul S, Pedlar TK, Pestotnik R, Piilonen LE, Ritter M, Rostomyan A, Rozanska M, Sakai Y, Salehi M, Sandilya S, Sato Y, Savinov V, Schneider O, Schnell G, Schwanda C, Seino Y, Senyo K, Sevior ME, Shebalin V, Shen CP, Shibata TA, Shiu JG, Simon F, Sokolov A, Solovieva E, Starič M, Strube JF, Stypula J, Sumihama M, Sumisawa K, Sumiyoshi T, Takizawa M, Tamponi U, Tanida K, Tenchini F, Trabelsi K, Uchida M, Uehara S, Uglov T, Unno Y, Uno S, Urquijo P, Van Hulse C, Varner G, Vorobyev V, Wang CH, Wang MZ, Wang P, Watanabe M, Watanuki S, Widmann E, Won E, Yamashita Y, Ye H, Yelton J, Yuan CZ, Yusa Y, Zhang ZP, Zhilich V, Zhukova V, Zhulanov V, Zupanc A. Search for B^{-}→μ^{-}ν[over ¯]_{μ} Decays at the Belle Experiment. PHYSICAL REVIEW LETTERS 2018; 121:031801. [PMID: 30085771 DOI: 10.1103/physrevlett.121.031801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/01/2018] [Indexed: 06/08/2023]
Abstract
We report the results of a search for the rare, purely leptonic decay B^{-}→μ^{-}ν[over ¯]_{μ} performed with a 711 fb^{-1} data sample that contains 772×10^{6} BB[over ¯] pairs, collected near the ϒ(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^{+}e^{-} collider. The signal events are selected based on the presence of a high momentum muon and the topology of the rest of the event showing properties of a generic B-meson decay, as well as the missing energy and momentum being consistent with the hypothesis of a neutrino from the signal decay. We find a 2.4 standard deviation excess above background including systematic uncertainties, which corresponds to a branching fraction of B(B^{-}→μ^{-}ν[over ¯]_{μ})=(6.46±2.22±1.60)×10^{-7} or a frequentist 90% confidence level interval on the B^{-}→μ^{-}ν[over ¯]_{μ} branching fraction of [2.9,10.7]×10^{-7}.
Collapse
|
96
|
Li CH, van 't Erve OMJ, Yan C, Li L, Jonker BT. Electrical Detection of Charge-to-spin and Spin-to-Charge Conversion in a Topological Insulator Bi 2Te 3 Using BN/Al 2O 3 Hybrid Tunnel Barrier. Sci Rep 2018; 8:10265. [PMID: 29980749 PMCID: PMC6035191 DOI: 10.1038/s41598-018-28547-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022] Open
Abstract
One of the most striking properties of three-dimensional topological insulators (TIs) is spin-momentum locking, where the spin is locked at right angles to momentum and hence an unpolarized charge current creates a net spin polarization. Alternatively, if a net spin is injected into the TI surface state system, it is distinctively associated with a unique carrier momentum and hence should generate a charge accumulation, as in the so-called inverse Edelstein effect. Here using a Fe/Al2O3/BN tunnel barrier, we demonstrate both effects in a single device in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface state system. This work is the first to utilize BN as part of a hybrid tunnel barrier on TI, where we observed a high spin polarization of 93% for the TI surfaces states. The reverse spin-to-charge measurement is an independent confirmation that spin and momentum are locked in the surface states of TI, and offers additional avenues for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the spin system within TI surface states, an important step towards its utilization in TI-based spintronics devices.
Collapse
|
97
|
Wang X, Zhang JJ, Yuan FS, Wang Y, Li CH, Varrela JE, Yue J, Ge LH. [Three-dimensional analysis of the early correction of anterior crossbite using eruption guidance appliance]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2018; 50:532-537. [PMID: 29930425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the clinical effect of eruption guidance appliance in the treatment of anterior cross bite in mixed-dentition children. METHODS In the study,10 mixed-dentition children with anterior cross bite, totally 12 incisors, were selected. Alginate was used to take upper and lower dentition impression and make a hard plaster model,which served as the eruption guidance appliance for treatment. The pre- and post-operative dental casts were digitized with SmartOptics Activity 880 scanner,and the three-dimensional overlapping models were obtained by reverse engineering software,Geomagic Studio 2012,then the three-dimensional movements of the upper and lower incisors were analyzed using Imageware 13.2 software. The overbite and overjet were analyzed using the same methods. Measurement with copper wire was used to analyze the upper and lower arch length. Space analysis was the result by the sum of crown width minus the arch length. The crown width of unerupted permanent teeth was according to X-ray method to predict. The SPSS 17.0 software was used to analyze the pre- and post-operative measurements of the same child. The normality test of the measured data showed that it conformed to the normal distribution. Therefore,the t test and double side test were used,and the significance level was 0.05. RESULTS The course of treatment was (5.6±2.7) months. During orthodontic treatment, the upper incisors moved mainly labially (P<0.001) in three-dimensional displacement, and the lower incisors moved mainly the same direction (P=0.025). During the treatment of eruption guidance appliance,the average overbite decreased (1.01±0.9) mm (t=-3.531, P=0.006), and the difference was statistically significant. There was no statistically significant difference between the pre- and post-operative average overjet (t=0.771, P=0.460). The severity of crowding in upper arch decreased (1.9±0.99) mm (t=-6.042, P<0.001),and that in lower arch decreased (1.9±0.74) mm (t=-8.143, P<0.001), both of the differences were statistically significant. CONCLUSION The anterior cross bite in mixed dentition could be corrected by eruption guidance appliance, and at the same time, the normal overjet and overbite were established, and the teeth were aligned.
Collapse
|
98
|
Huang ZF, Wang ZF, Li CH, Hao D, Lan J. [Application of plasma sprayed zirconia coating in dental implant: study in implant]. ZHONGHUA KOU QIANG YI XUE ZA ZHI = ZHONGHUA KOUQIANG YIXUE ZAZHI = CHINESE JOURNAL OF STOMATOLOGY 2018; 53:264-270. [PMID: 29690698 DOI: 10.3760/cma.j.issn.1002-0098.2018.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Objective: To investigate the osseointegration of a novel coating-plasma-sprayed zirconia in dental implant. Methods: Zirconia coating on non-thread titanium implant was prepared using plasma spraying, the implant surface morphology, surface roughness and wettability were measured. In vivo, zirconia coated implants were inserted in rabbit tibia and animals were respectively sacrificed at 2, 4, 8 and 12 weeks after implantation. The bond strength between implant and bone was measured by push-out test. The osseointegration was observed by scanning electron microscopy (SEM), micro CT and histological analyses. Quantified parameters including removal torque, and bone-implant contact (BIC) percentage were calculated. Results: The surface roughness (1.6 µm) and wettability (54.6°) of zirconia coated implant was more suitable than those of titanium implant (0.6 µm and 74.4°) for osseointegration. At 12 weeks, the push-out value of zirconia coated implant and titanium implant were (64.9±3.0) and (50.4±2.9) N, and BIC value of these two groups were (54.7±3.6)% and (41.5±3.6)%. All these differences had statistical significance. Conclusions: The surface characters of zirconia coated implant were more suitable for osseointegration and present better osseointegration than smooth titanium implant in vivo, especially at early stage.
Collapse
|
99
|
Li CH, Huang LN, Zhang MC, He M. [Forensic Psychiatric Assessment for Organic Personality Disorders after Craniocerebral Trauma]. FA YI XUE ZA ZHI 2017; 33:158-161. [PMID: 29231022 DOI: 10.3969/j.issn.1004-5619.2017.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To explore the occurrence and the differences of clinical manifestations of organic personality disorder with varying degrees of craniocerebral trauma. METHODS According to the International Classification of Diseases-10, 396 subjects with craniocerebral trauma caused by traffic accidents were diagnosed, and the degrees of craniocerebral trauma were graded. The personality characteristics of all patients were evaluated using the simplified Neuroticism Extraversion Openness Five-Factor Inventory (NEO-FFI). RESULTS The occurrence rate of organic personality disorder was 34.6% while it was 34.9% and 49.5% in the patients with moderate and severe craniocerebral trauma, respectively, which significantly higher than that in the patients (18.7%) of mild craniocerebral trauma (P<0.05). Compared with the patients without personality disorder, the neuroticism, extraversion and agreeableness scores all showed significantly differences (P<0.05) in the patients of mild craniocerebral trauma with personality disorder; the neuroticism, extraversion, agreeableness and conscientiousness scores showed significantly differences ( P>0.05) in the patients of moderate and severe craniocerebral trauma with personality disorder. The agreeableness and conscientiousness scores in the patients of moderate and severe craniocerebral trauma with personality disorder were significantly lower than that of mild craniocerebral trauma, and the patients of severe craniocerebral trauma had a lower score in extraversion than in the patients of mild craniocerebral trauma. CONCLUSIONS The severity of craniocerebral trauma is closely related to the incidence of organic personality disorder, and it also affects the clinical features of the latter, which provides a certain significance and help for forensic psychiatric assessment.
Collapse
|
100
|
Lee ACW, Li CH, So KT. Going to the Multidisciplinary Case Conference for Child Abuse: A Review and Guide to the Medical Practitioner. HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490790501200109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Multidisciplinary case conference is an important component in the management of suspected cases of child abuse and neglect in Hong Kong. The medical practitioner is one of the key professionals in the case conference to discuss the nature of the case, issues concerning child protection, and interventions to safeguard the child's subsequent welfare interests. Yet, specific guidance for the medical profession is lacking. In this article, the authors present an overview of the child protection case conference and practical suggestions for the medical practitioner when called to participate in the multidisciplinary case conference.
Collapse
|