76
|
Wu F, Wang Y, Chen Y, Li Z, Ding CF. Alkali metal ion-induced conformation changes of methionine- and leucine enkephalin investigated by gas-phase hydrogen/deuterium exchange combined with theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
77
|
Liu B, Yan Y, Liang H, Tang K, Ding CF. One-step preparation of carbonaceous spheres rich in phosphate groups via hydrothermal carbonization for effective phosphopeptides enrichment. J Chromatogr A 2021; 1651:462285. [PMID: 34090058 DOI: 10.1016/j.chroma.2021.462285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/29/2023]
Abstract
A green strategy was developed to prepare carbonaceous spheres rich in phosphoric acid groups on the surface with D-Glucose 6-phosphate sodium salt (called G6PNa2) as a sole carbon source through one-step hydrothermal carbonization method. The method is simple and facile and meets the standards of green chemistry as water is the sole solvent employed. Following the hydrothermal carbonization synthesis, the carbonaceous spheres were further functionalized with Ti4+. The main factors including reaction temperature, reaction time, and concentration of G6PNa2 were systematically studied in order to obtain the desirable morphology and the optimum phosphopeptides enrichment, for the resulting Ti4+ functionalized carbonaceous spheres (CS-Ti4+). The performance evaluation of the CS-Ti4+ prepared under the optimum conditions demonstrated excellent selectivity (1:1000), low detection limit (1 fmol) and high recovery rate (85%) towards phosphopeptides. Furthermore, 24 low-abundance phosphopeptides were captured from human saliva using CS-Ti4+, indicating its great potential in mass spectrometry-based phosphoproteome studies.
Collapse
|
78
|
Gu L, Yang S, Wu F, Xu F, Yu S, Zhou M, Chu Y, Ding CF. Enantio-separation of pregabalin by ternary complexation using trapped ion mobility spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9052. [PMID: 33470461 DOI: 10.1002/rcm.9052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
UNLABELLED Rationale The rapid identification of small-molecule chiral drugs is challenging due to subtle structural differences. Different enantiomers of chiral drugs may produce inverse biological effects through their different pharmacokinetics. Therefore, it is highly desirable to distinguish the chirality of drug molecules. METHODS The chirality of pregabalin was distinguished by studying the ion mobility spectra of the ternary non-covalent complexes formed with cyclodextrins (CDs), pregabalin, and alkali-earth cations using trapped ion mobility spectrometry (TIMS). The ternary non-covalent complex ions were determined by electrospray ionization of mixed solutions. The analyzed sample was simply mixed, without derivatization or sample pretreatment. The relative contents of pregabalin enantiomers were derived using a calibration curve method. RESULTS The ion mobility spectra of several ternary non-covalent complexes formed with α-, β-, and γ-CD, pregabalin, and alkali-earth cations were obtained. We compared their ability to distinguish the chirality of pregabalin. The best peak-to-peak resolution (Rp-p ) was estimated to be 2.20 for [2β-CD + pregabalin + Sr]2+ , which can be ascribed as baseline separation. The derived relative contents for S-pregabalin were in agreement with the actual contents. CONCLUSIONS A novel and convenient method for discriminating the chirality of the pregabalin molecule by TIMS was developed and optimized. The chirality of pregabalin was recognized by studying the ion mobility spectra of the ternary non-covalent complexes, such as [2β-CD + pregabalin + Sr]2+ . This TIMS method could also be used to quantify the relative contents of pregabalin enantiomers.
Collapse
|
79
|
Gu L, Wu F, Yang S, Xu F, Dai X, Jiang Y, Fang X, Yu S, Ding CF. Direct distinction of ibuprofen and flurbiprofen enantiomers by ion mobility mass spectrometry of their ternary complexes with metal cations and cyclodextrins in the gas phase. J Sep Sci 2021; 44:2474-2482. [PMID: 33823081 DOI: 10.1002/jssc.202100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
Enantiomeric drugs are widely used and play important roles in pharmaceuticals. Ion mobility spectrometry coupled with mass spectrometry technology provides a unique method for distinguishing the enantiomeric drugs, enantiomeric identification, and quantitation in the gas phase. In this study, enantiomeric molecules of ibuprofen and flurbiprofen were clearly recognized by forming host-guest complex ions using trapped ion mobility time-of-flight mass spectrometry. Ternary complex ions can be produced easily by electrospray ionization of the mixed solutions of ibuprofen, cyclodextrins, and CaCl2 , LiCl, or NaCl, as well as flurbiprofen, cyclodextrins, and CaCl2 . The relative contents of different chiral ibuprofens in a mixed solution were also quantitatively measured. This new method is a simple, effective, and a convenient enantioselective analysis method.
Collapse
|
80
|
Zhu C, Wu J, Jin X, Yan Y, Ding CF, Tang K, Zhang D. Post-synthesis of biomimetic chitosan with honeycomb-like structure for sensitive recognition of phosphorylated peptides. J Chromatogr A 2021; 1643:462072. [PMID: 33789194 DOI: 10.1016/j.chroma.2021.462072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Chemical modification of biological materials is indispensable for enrichment of phosphorylated peptides. In this work, we synthesized a biomimetic honeycombed affinity chromatography (IMAC) adsorbent by preparing Crosslinked Chitosan, chelating aminomethyl phosphate decorated with Ti (IV) cation. The as-prepared CTSM@AMPA-Ti4+ composites with stable structure, low steric hindrance, and high Ti4+ loading amount were used as a promising adsorbent for enrichment of phosphopeptides. CTSM@AMPA-Ti4+ showed extremely high sensitivity (0.4 fmol) and selectivity at a low composition molar ratio of β-casein/BSA (1:1000). What's more, it can keep its performance in the case that used to capture phosphorylated peptides from standard protein ten times or soaking in the acid/base solution for a long time. In addition, CTSM@AMPA-Ti4+ successfully captured 35 phosphorylated peptides from human saliva. This study offers a way about diversiform functionalization of CTSM in phosphoproteome analysis and disease research.
Collapse
|
81
|
Jin X, Zhu C, Wu J, Yan Y, Ding CF, Tang K, Zhang D. Hydrophilic carrageenan functionalized magnetic carbon-based framework linked by silane coupling agent for the enrichment of N-glycopeptides from human saliva. J Sep Sci 2021; 44:2143-2152. [PMID: 33734567 DOI: 10.1002/jssc.202001216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022]
Abstract
In this work, a magnetic graphene material coated with mesoporous silica was selected as the substrate, 3-glycidoxypropyltrimethoxysilane and polyethyleneimine were sequentially bonded through chemical reactions, and then carrageenan was successfully introduced by electrostatic interaction; finally, hydrophilic nanocomposite material was prepared. Due to the large number of hydrophilic groups, and polyethyleneimine was connected by means of chemical bonds, this material exhibits good hydrophilicity and stability for glycopeptide enrichment. In the actual enrichment process, nanomaterial exhibits high selectivity (1:500), high sensitivity (2 fmol), and good repeatability (five cycles). In addition, the synthesized material also shows a good enrichment effect in the face of actual complex biological samples, which captured 40 N-glycopeptides from human saliva, indicating the application potential for enrichment of N-glycopeptides.
Collapse
|
82
|
Wu F, Yang S, Dai X, Gu L, Xu F, Fang X, Yu S, Ding CF. Discrimination of Aminobiphenyl Isomers in the Gas Phase and Investigation of Their Complex Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:716-724. [PMID: 33527834 DOI: 10.1021/jasms.0c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The analysis of positional isomers is of great significance because their different chemical properties but similar structures make separation difficult. In this work, a simple method for simultaneously discriminating three positional isomers of 2-aminobiphenyl (2-ABP), 3-ABP, and 4-ABP was studied by ion mobility spectrometry (IMS) and quantum mechanical calculations at the molecular level. In the experiments, three ABP isomers were mixed with α-, β-, and γ-cyclodextrins (CD), and the IMS results show that the three ABP isomers were clearly recognized by the formed complex of [α-CD + ABP + H]+ via measuring their IMS, in which the different ion mobilities of 1.515, 1.544, 1.585 V·s·com-2 with the collision cross sections (CCS) of 307.3, 312.5, 320.8 Å2 were obtained for [α-CD + 2-ABP + H]+, [α-CD + 3-ABP + H]+, and [α-CD + 4-ABP + H]+, respectively. Collision induced dissociation analysis of the three [α-CD + ABP + H]+ isomer complexes were further studied, indicating that the same fragmentation process required different collisional energies, and the greater the CCS for the [α-CD + ABP + H]+ with looser structure and the smaller energy required. Besides, the favorable conformation and the CCS value of the different [CD + ABP + H]+ isomer complexes were measured via quantum mechanical calculations to detail their intermolecular interactions. It revealed that the intermolecular binding between 2-ABP and α-CD is different from that of 3- and 4-ABP, resulting in different molecular conformations and CCS, and the interaction modes of ABP with β-CD are similar to that with γ-CD, which are very consistent with the experimental observations. Finally, relative quantification of the method was performed, and satisfactory linearity with correlation coefficients (R2) greater than 0.99 was obtained. This method for isomer discrimination and conformation analysis possesses the advantages of simplicity, sensitivity, cost-effectiveness, and as such it may be widely applied in chemistry and pharmaceutical sciences.
Collapse
|
83
|
Wu J, Jin X, Zhu C, Yan Y, Ding CF, Tang K. Gold nanoparticle-glutathione functionalized MOFs as hydrophilic materials for the selective enrichment of glycopeptides. Talanta 2021; 228:122263. [PMID: 33773719 DOI: 10.1016/j.talanta.2021.122263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Herein, a novel zwitterionic hydrophilic metal-organic framework (MOF)-functionalized material was synthesized through grafting l-glutathione (GSH) onto the Au which acts as the intermediate layer to modify the base material (PEI-ZIF-8) by the sulfhydryl group provided by GSH and the affinity provided by Au (denoted as PEI-ZIF-8@Au@GSH). The obtained product was employed to capture glycopeptides. Benefit from its excellent hydrophilic properties, abundant amphoteric ions, and unique large specific surface area, this material demonstrated amazing ability in the enrichment and identification of glycopeptides. As a result, the PEI-ZIF-8@Au@GSH displayed high sensitivity (as low as 2 fmol), excellent binding capacity (500 mg/g), outstanding enrichment selectivity (maximum mass ratio HRP to BSA is 1:1000) toward glycopeptides, and the ability to recycle at least five times. Furthermore, 35 and 51 glycopeptides were successfully detected from 5 μL human saliva and human serum respectively in the examination of the actual sample by MALDI-TOF MS. The above results indicated that the PEI-ZIF-8@Au@GSH had a satisfactory potential in the field of glycoproteomics.
Collapse
|
84
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Mikrochim Acta 2021; 188:32. [PMID: 33415462 DOI: 10.1007/s00604-020-04652-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023]
Abstract
A strategy for effectively enriching global phosphopeptides was successfully developed by using ammonia methyl phosphate (APA) as a novel chelating ligand and Ti4+ and Nb5+ as double functional ions (referred to as Fe3O4@mSiO2@APA@Ti4+/Nb5+). With the advantage of large specific surface area (151.1 m2/g), preeminent immobilized ability for metal ions (about 8% of total atoms), and unbiased enrichment towards phosphopeptides, Fe3O4@mSiO2@APA@Ti4+/Nb5+ displays high selectivity (maximum mass ratio β-casein to BSA is 1:1500), low limit of detection (LOD, as low as 0.05 fmol), good relative standard deviation (RSD, lower than 7%), recovery rate of 87% (18O isotope labeling method), outstanding phosphopeptide loading capacity (330 μg/mg), and at least five times re-use abilities. In the examination of the actual sample, 24 phosphopeptides were successfully detected in saliva and 4 phosphopeptides were also selectively extracted from human serum. All experiments have shown that Fe3O4@mSiO2@APA@Ti4+/Nb5+ exhibits exciting potential in view of the challenge of low abundance of phosphopeptides. Graphical abstract.
Collapse
|
85
|
Wu F, Gu L, Dai X, Yang S, Xu F, Fang X, Yu S, Ding CF. Direct and simultaneous recognition of the positional isomers of aminobenzenesulfonic acid by TIMS-TOF-MS. Talanta 2021; 226:122085. [PMID: 33676646 DOI: 10.1016/j.talanta.2021.122085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
Positional isomer recognition is a challenging scientific issue. Fast and accurate detection of isomers is required for understanding their chemical properties. Here, we describe a method for simultaneous recognition of three positional isomers of 2-aminobenzenesulfonic acid (2-ABSA), 3-ABSA, and 4-ABSA using trapped ion mobility spectroscopy-time-of-flight mass spectrometry (TIMS-TOF-MS). The three ABSA positional isomers were recognized by measuring the different ion mobility of the ternary complexes of [β-cyclodextrin (CD)+ABSA + Li]+ or [λ-CD + ABSA + Na]+, because their different collision cross-sections or different spatial conformations. The collision-induced dissociation mechanism of the different complexes of [β-CD + ABSA + Li]+ and [λ-CD + ABSA + Na]+ using tandem mass spectrometry exhibited the same dissociation process with slightly different dissociation energies, which the smaller cross-section requires higher collision energy that means the smaller complex with tighter and more stable conformation than a larger complex for the ABSA complexes. In addition, relative quantification of the ABSA isomers was studied by measuring any two of the three ABSA isomer complexes at different molar ratio of 10:1 to 1:10 in the μM range, good linearity (R2 > 0.99) with precision between 2.14% and 2.58%, and accuracy ≥ 97.1% were obtained. The method for fast determination and recognition of ABSA positional isomers by combination with CD and alkali metal ions possesses the advantages of being simple, direct, rapid, sensitive, cost-effective, and needs no chemical derivatives or chromatographic separation before analysis. Therefore, the proposed method would be a powerful tool for the analysis of ABSA isomers or even other positional isomers.
Collapse
|
86
|
Wang B, Wu H, Yan Y, Tang K, Ding CF. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8881. [PMID: 32638431 DOI: 10.1002/rcm.8881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 05/20/2023]
Abstract
RATIONALE Due to the dynamic nature of phosphorylation states and the low stoichiometry of phosphopeptides, it is still a challenge to efficiently capture phosphopeptides from complex biological samples before mass spectrometry analysis. Among the enrichment strategies, metal oxide affinity chromatography (MOAC) is one of the most widely used and the one with the most potential. It is based on reversible Lewis acid-base interactions between the metal oxides and the negatively charged phosphate groups to achieve the specific selection of phosphopeptides. METHODS A novel MOAC affinity probe, denoted as G@PDA@ZrO2 , was successfully synthesized by in situ grafting ZrO2 onto the surface of graphene (G) modified with polydopamine (PDA). The novel MOAC probe thus obtained was used for phosphopeptide enrichment. RESULTS This novel MOAC affinity probe when used to selectively enrich phosphopeptides from standard protein digest solutions exhibited a high selectivity (β-casein:bovine serum albumin = 1:1000), a low detection limit (4 fmol), and a high loading capacity (400 mg/g). At the same time, the experimental results proved that G@PDA@ZrO2 had great recyclability (five cycles), stability, and reproducibility. Subsequently, G@PDA@ZrO2 was applied to enrich phosphopeptides from human saliva and human serum, in which 25 and 4 phosphopeptide peaks, respectively, were detected. CONCLUSIONS This novel MOAC affinity probe (G@PDA@ZrO2 ) showed good performance in enriching phosphopeptides. Thus, G@PDA@ZrO2 has good potential in phosphopeptidomics analysis.
Collapse
|
87
|
Yi L, Yan Y, Tang K, Ding CF. Facile preparation of polymer-grafted ZIF-8-modified magnetic nanospheres for effective identification and capture of phosphorylated and glycosylated peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4657-4664. [PMID: 32909572 DOI: 10.1039/d0ay01412e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As a member of MOFs, Zn-MOFs (ZIF-8) are seldom used in phosphopeptide enrichment because ZIF-8 is soluble in acid solutions. Therefore, properly designing a novel strategy to overcome the defect of ZIF-8 is necessary. In this study, a novel multifunctional nanoprobe was designed by uniting magnetic core, titania shell and hydrophilic metal-organic frameworks (named as Fe3O4@PDA@mTiO2@PEI-g-ZIF-8). Integrating the strategies of hydrophilic interaction affinity chromatography (HILIC), immobilized metal ion affinity chromatography (IMAC) and metal oxide affinity chromatography (MOAC), the Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 mesoporous microspheres can enrich phosphorylated peptides and glycosylated peptides simultaneously. Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 has high selectivity (maximum molar ratio β-casein/HRP : BSA = 1 : 1000), low detection limit (2 fmol) towards phosphopeptides and glycopeptides. Besides, the Fe3O4@PDA@mTiO2@PEI-g-ZIF-8 also exhibited a fine performance in the actual sample detection. In the experiment, taking saliva as a sample, 16 phosphorylated peptides were identified, and from a human serum sample, 4 phosphorylated peptides were selectively identified. All in all, the materials show great potential in the future study of phosphoproteomics and glycoproteomics.
Collapse
|
88
|
Wu F, Wang B, Yan Y, Konenkov NV, Ding CF. Mass filter with phase modulation of radio frequency voltage. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4645. [PMID: 32896065 DOI: 10.1002/jms.4645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In this work, the parametric quadrupole resonance caused by the phase modulation of waveform potential is studied. Based on analytical and numerical description of the ion motion in the quadrupole mass filter with the phase modulation, a stability island is found with good ion optical properties such as high ion transmission efficiency (16%), high mass resolution (peak width measured at 10% of peak height, R0.1 = 6000), the required separation time (100-150 radio frequency [RF] cycles), and good peak shape of trapezoid form. Furthermore, the analysis of the frequency spectrum of the applied potential and the quadrupole mass filter (QMF) acceptance are also presented; a resonance frequency is found from this spectrum. Finally, a suitable stability X-islands with relative modulation frequency, ν = 2 ± β , β = 1 P , 10 ≤ P ≤ 40 , is established and studied in detail. Here, β is the imaginary part of the characteristic exponent of stable solutions to the Mathieu equation.
Collapse
|
89
|
Wu F, Li L, Guan P, Tang K, Yu S, Ding CF. Simultaneous enrichment and analysis of benzimidazole by in-tube SPME-MS based on poly (3-Acrylamidophenylboronic acid-co-divinylbenzene-co-N,N'-methylenebisacrylamide) monolithic column. Talanta 2020; 224:121402. [PMID: 33378997 DOI: 10.1016/j.talanta.2020.121402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/26/2022]
Abstract
In this work, a sensitive, rapid, and matrix effect-free method for online simultaneous detection of benzimidazoles in animal products by in-tube solid-phase microextraction coupled with mass spectrometry (in-tube SPME-MS) was investigated. Herein, according to the chemical structures properites of the analyte benzimidazoles, poly (3-Acrylamidophenylboronic acid-co-divinylbenzene-co-N,N'-Methylenebisacryladmide) [poly (AAPBA-co-DVB-co-MBAA)] microextraction column was prepared, and severs as the extraction and enrichment medium (in-tube SPME) via hydrophobic, B-N coordination, π-π, and hydrogen bonding interactions with the benzimidazoles. The monolithic column was optimized and characterized, showing satisfactory permeability and extraction capacity in range of 514-1000 μg mL-1 for the benzimidazoles. The important parameters of the in-tube SPME-MS system experimental condition were systematically optimized to achieve the maximal extraction efficiency. Under the optimized condition, the MS intensity of benzimidazoles measured by in-tube SPME-MS is more significant, cleaner, and has a better signal-to-noise ratio than the mass intensity measured by direct MS method. Good linearity was obtained with correlation coefficients between 0.9915 and 0.9990, and the detection limits (S/N = 3) of the benzimidazoles were between 0.55 and 0.91 ng g-1. Recoveries in the range of 72.5%-92.4% were obtained for the benzimidazoles in pork and chicken in three spiked concentration levels, with satisfactory relative standard deviations (n = 4) that lower than 7.5%. The developed in-tube SPME-MS method based on the poly (AAPBA-co-DVB-co-MBAA) column was successfully used to sensitively determine trace benzimidazoles in animal products without interference peaks, indicating that it is promising for the analysis of benzimidazoles in practical samples that requiring minimal sample pre-treatment and no chromatographic separation.
Collapse
|
90
|
Yang S, Guo Q, Wu F, Chu Y, Wang Y, Zhou M, Ding CF. Investigation of noncovalent interactions between peptides with potential intrinsic sequence patterns by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8736. [PMID: 32040870 DOI: 10.1002/rcm.8736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE The conformation of a protein largely depends on the interactions between peptides. Specific and intrinsic sequence peptide patterns, such as DNA double helix backbones, may be present in proteins. A computational statistical deep learning method has supported this assumption, but it has not been experimentally proven. Mass spectrometry, as a fast and accurate experimental method, could be used to evaluate the interaction of biomolecules. The results would be of great value for further study of the mechanism of protein folding. METHODS Several potential intrinsic peptides were chosen by the deep learning method, including seven groups of pentapeptides and five groups of nonapeptides. The noncovalent interactions between mixed polypeptides were investigated by electrospray ionization mass spectrometry (ESI-MS) in full-scan and collision-induced dissociation (CID) modes. Molecular dynamics and molecular mechanics Poisson-Boltzmann surface area (MD-MM/PBSA) analyses were also performed to support the results. RESULTS The ESI-MS spectra showed that 11 of the 12 groups of mixed polypeptides formed binary and ternary complexes with relatively high stability. The binding between nonapeptide groups was stronger than that between pentapeptide groups according to the relative intensity. The binding energies calculated by the MM/PBSA binding energy tool also provided strong evidence for the combination of the complexes. Electrostatic interactions, hydrophobic interactions, and van der Waals forces were thought to stabilize the complexes according to the binding models. CONCLUSIONS The results implied the formation of stable complexes between polypeptides and identified their noncovalent interactions, proving that specific sequences and combinations with relatively strong binding ability exist in potential intrinsic sequences of peptides in protein structures.
Collapse
|
91
|
Chen X, Chu Y, Gu L, Zhou M, Ding CF. The non-covalent complexes of α- or γ-cyclodextrin with divalent metal cations determined by mass spectrometry. Carbohydr Res 2020; 492:107987. [PMID: 32251851 DOI: 10.1016/j.carres.2020.107987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Noncovalent complexes between cyclodextrin (CD) and divalent metal cations drew growing attentions due to their applications in the pharmaceutical industry for molecular recognition. In this study, gas-phase binding of noncovalent complexes between α-, or γ-CD and divalent metal cations was investigated by electrospray ionization mass spectrometry (ESI-MS), demonstrating the formation of 1:1 stoichiometric noncovalent complexes. The binding of the complexes were furtherly confirmed by collision-induced dissociation (CID) with tandem mass spectrometry. The CID revealed the fragmentation pattern were strongly dependent on the electronic configuration of the cations and the charge separation reaction frequently took place in the cyclodextrin-complexes with transition metal cations. For the non-covalent complexes of α-CD with Mg2+, Ca2+, Sr2+ or Ba2+ at a collision energy of 25 eV, the fragments attributed to [α-CD + cation-nGlucose unit]2+ were observed (named series A). However, for the γ-CD complexes with transition metal cations Co2+, Ni2+, Cu2+ or Zn2+, apart from fragments of series A, it were observed fragment ions of [γ-CD + cation-nGlucose unit]+ (named series B), together with the Glucose unit (m/z 163.2) and its products with loss of H2O (m/z 145.2 and 126.8). The CID performed at a collision energy from 10 to 50 eV showed that the binding strength of complexes increase in the order of [α-CD + Mg]2+, [α-CD + Ca]2+, [α-CD + Sr]2+ and [α-CD + Ba]2+. Through mass spectrometric titrations, the values of dissociation constant Kd (in μmol•L-1) for the complexes of α-CD with Ca2+ or Ni2+ were obtained, which were 4.30 and 4.26, respectively.
Collapse
|
92
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Postsynthesis of zwitterionic hydrophilic composites for enhanced enrichment of N-linked glycopeptides from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8607. [PMID: 31657490 DOI: 10.1002/rcm.8607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Glycosylation of proteins plays an important role in life activities, but the concentration of naturally occurring glycopeptides is usually relatively low, and glycosylation has microfacies heterogeneity, so direct mass spectrometry is not feasible. Therefore, selective enrichment of glycopeptides before mass spectrometry has turned into an urgent problem to be resolved. METHODS Herein, the zwitterionic L-cysteine functionalized hydrophilic graphene oxide composite (GO@PDA@MIL-125-NH2 @Au@L-Cys) was prepared via a postsynthetic method. The obtained material was used for glycopeptide enrichment. The enriched peptides were then detected using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOFMS) to demonstrate the enrichment performance of the material. RESULTS In the actual enrichment process, GO@PDA@MIL-125-NH2 @Au@L-Cys nanomaterials exhibited high selectivity (1:1000), outstanding sensitivity (0.5 fmol), and excellent repeatability for the enrichment of glycopeptides. In addition, the proposed material showed good performance in the enrichment of glycopeptides from complex biosamples; 56 glycopeptides were detected from 2 μL of human serum using MALDI-TOFMS. CONCLUSIONS The experimental results showed that GO@PDA@MIL-125-NH2 @Au@L-Cys exhibited excellent performance on glycopeptide analysis. It has great potential in the enrichment of glycopeptides and provides new ideas for synthetic materials with better enrichment properties in the future.
Collapse
|
93
|
Wu F, Huang Y, Yu F, Li Z, Ding CF. Effect of Transition-Metal Ions on the Conformation of Encephalin Investigated by Hydrogen/Deuterium Exchange and Theoretical Calculations. J Phys Chem B 2020; 124:101-109. [PMID: 31829598 DOI: 10.1021/acs.jpcb.9b09919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the effects of different 3d orbitals in divalent transition-metal ions [G2+ = Mn2+ (d5), Fe2+ (d6), Co2+ (d7), Ni2+ (d8), Cu2+ (d9), or Zn2+ (d10)] on the conformations of leucine encephalin (LE) and methionine encephalin (ME) in the gas phase using hydrogen/deuterium exchange mass spectrometry (HDX-MS) and theoretical calculations at the molecular level. The HDX-MS reveals a 1:1 stoichiometric monovalent complex of [LE/ME + G - H]+ and observed that the different HDX reactivities follow the trend Fe2+ < Co2+ < Ni2+ < Mn2+ < Cu2+ ≈ Zn2+ and that [ME + Mn/Cu/Zn - H]+ > [LE + Mn/Cu/Zn - H]+, while [LE + Fe/Co/Ni - H]+ > [ME + Fe/Co/Ni - H]+. We cross-correlated the collision-induced dissociation energies of the complexes with the HDX results and found that the more stable the complex, the harder it is for it to undergo HDX. Furthermore, we used theoretical calculations to optimize the favorable conformations of the complexes and found the same interaction structure of G2+ coordination with the five carbonyl oxygens of LE/ME that have different bond lengths. Finally, we calculated the proton affinity (PA) values of the optimized complexes in order to interpret the HDX observations that the higher the PA values, the more difficult it is for the complex to undergo HDX. Overall, both the experiments and the theoretical calculations show that the six metal ions have different effects on the LE/ME conformation, with the low-energy stability of the G2+ 3d orbitals corresponding to more dramatic effects on the LE/ME conformation. In addition, the hardness of the ionic acid corresponding to the fully filled Mn2+ and half-filled Zn2+ orbitals also contributes strongly to the coordination effect; the conformation effect of Fe2+/Co2+/Ni2+ on LE is greater than that on ME, whereas the conformation effect of Mn2+/Cu2+/Zn2+ on ME is greater than that on LE.
Collapse
|
94
|
Gao Y, Wang Y, Yan Y, Tang K, Ding CF. Self-assembly of poly(ionic liquid) functionalized mesoporous magnetic microspheres for the solid-phase extraction of preservatives from milk samples. J Sep Sci 2019; 43:766-773. [PMID: 31746547 DOI: 10.1002/jssc.201900851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
In this work, a novel, rapid, and simple analytical method was proposed for the detection of parabens in milk sample by gas chromatography coupled with mass spectrometry. At the same time, milk sample was pretreated by magnetic solid phase extraction, which detected up to five parabens. A series of important parameters of magnetic solid phase extraction were investigated and optimized, such as pH value of loading buffer, amount of material, adsorption time, ionic strength, eluting solvents, and eluting time. Under the optimized conditions, the corresponding values were more than 0.9991, limits of detection and the limit of quantification were 0.1 and 0.5 ng/mL, respectively. In addition, the recoveries were achieved in range of 95-105%, the liner range were within 0.1-600 ng/mL, and the relative standard deviations were even lower than 5%.
Collapse
|
95
|
Wang B, Liu B, Yan Y, Tang K, Ding CF. Binary magnetic metal-organic frameworks composites: a promising affinity probe for highly selective and rapid enrichment of mono- and multi-phosphopeptides. Mikrochim Acta 2019; 186:832. [DOI: 10.1007/s00604-019-3916-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022]
|
96
|
Wu F, Yang S, Wang L, Wei W, Ding CF. Simultaneous enrichment and analysis of tobacco alkaloids by microextraction coupled with mass spectrometry using a poly (N-isopropyl-acrylamide-co-divinyl-benzene-co-N, N'-methylene diacrylamide) monolithic column. Talanta 2019; 198:118-127. [PMID: 30876539 DOI: 10.1016/j.talanta.2019.01.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 02/02/2023]
Abstract
Herein, we realized the simultaneous online detection of six tobacco alkaloids (TAs) by in-tube solid-phase microextraction (In-tube SPME) coupled with mass spectrometry by a rapid, sensitive, and matrix effect-free method requiring no chromatographic separation and only minimal sample pre-treatment. A poly (N-isopropylacrylamide-co-divinylbenzene-co-N, N'-methylenediacrylamide) [Poly (NIPAAm-co-DVB-co-MBAA)] monolithic column was designed according to the chemical structures of selected TAs and used as an extraction medium engaging in hydrophobic, π-π, and hydrogen bonding interactions with analytes, allowing them to be effectively extracted. A number of important parameters were systematically optimized to achieve maximal extraction efficiency. The ion intensity of the TAs signals obtained by in-tube SPME-MS were higher than the direct MS mode by about 400 folds with the signal-to-noise ratio improved by 2-7 folds. The detection limits of the six TAs were determined as 1.99-4.06 ng g-1, with good linearity with correlation coefficients exceeding 0.99 obtained under optimal extraction conditions. Besides, TA recoveries in cigarette tobacco spiked at three concentration levels were in the range of 76.4-100.2%, and the corresponding RSDs (n = 5) were obtained as 4.32-7.16%. The extraction performance of the poly (NIPAAm-co-DVB-co-MBAA) monolithic column was well reproducible, with intra- or inter-day precision RSDs determined not to exceed 7.38%. Finally, no marked matrix effects were observed when the developed method was applied to the analysis of both high-abundance and trace-level TAs in practical samples, and the above technique was therefore concluded to be well suited for the detection of TAs in cigarette tobacco or other products.
Collapse
|
97
|
Zhang Z, Li L, Li ZK, Wu F, Hang BY, Cai BY, Weng ZF, Zhao L, Ding CF, Du YG. [Effect and mechanism of mulberry leaf polysaccharide on type 1 diabetic nephropathy in rats]. ZHONGHUA YI XUE ZA ZHI 2018; 98:1792-1796. [PMID: 29925161 DOI: 10.3760/cma.j.issn.0376-2491.2018.22.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To observe the effects of mulberry leaf polysaccharide (MLP) on insulin-like growth factor 1 (IGF-1) and insulin-like growth factor blinding protein 3 (IGFBP-3) as well as the expression of IGF-1 and IGFBP-3 mRNA in the kidney of type 1 Diabetic Nephropathy (DN) rats, and to investigate its therapeutic effects and underlying mechanisms. Methods: Type 1 DN rat model was established by intraperitoneally injecting streptozocin (STZ). SD rats were randomly divided into the control, model, insulin and MLP groups, with eight rats in each group. Rats in MLP group were given orally with MLP 200 mg/kg daily for 8 weeks and insulin group rats were given subcutaneously injection of short acting insulin 1 U daily for 8 weeks. The changes in body weight, blood and urine parameters were recorded. Extracellular matrix (ECM) was calculated. The contents of IGF-1 and IGFBP-3 in blood serum were evaluated by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of IGF-1 and IGFBP-3 in the kidney were evaluated by fluorescence quantitative PCR. Results: Compared with rats in control group, blood glucose, triglyceride, total cholesterol, low density lipoprotein, very low density lipoprotein, 24 h urine protein, serum creatinine and urea nitrogen in the model group rats were significantly increased (all P<0.01), and these parameters of MLP group were significantly lower than the model group (all P<0.01). The contents of IGF-1 and IGFBP-3 in the blood serum of the model group were significantly higher than those in the control group (both P<0.001), while in the MLP group they were lower than the model group[IGF-1: (0.777±0.018) ng/ml vs (0.864±0.022) ng/ml, P<0.001; IGFBP-3: (0.759±0.016) ng/ml vs (0.846±0.021) ng/ml, P<0.001]. The mRNA expressions of IGF-1 and IGFBP-3 in the kidney of the model group were significantly higher than those in the control group (both P<0.001), while in the MLP group they were lower than in the model group (IGF-1: 1.450±0.032 vs 1.810±0.090, P<0.001; IGFBP-3: 1.684±0.018 vs 1.968±0.044, P<0.001). Compared with the model group rats, there were fewer pathological changes of kidney in MLP group rats. Conclusion: MLP has a certain therapeutic effect on DN, which may be achieved by decreasing the contents of IGF-1 and IGFBP-3 in the blood serum and down-regulating the over-expression of IGF-1 and IGFBP-3 mRNA in the kidney.
Collapse
|
98
|
Wu F, Chu YQ, Wang L, Xu F, Ding CF. Antibiotic analysis using Electro-Filtering Paper Spray Ionization. Talanta 2018; 190:110-118. [PMID: 30172486 DOI: 10.1016/j.talanta.2018.07.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/06/2018] [Accepted: 07/19/2018] [Indexed: 01/21/2023]
Abstract
In this work, we analyzed the performance of the Electro-Filtering Paper Spray Ionization (EFSI) method for detecting compounds in unprocessed samples. A relatively rigid and electrically conductive copper filter was used as a substrate to insure sufficient and efficient sample-solvent extraction and to increase the conductivity for paper spraying. The method was demonstrated as applicable for indirect high-throughput analysis of large-volume unprocessed samples, which is not possible with conventional nanoESI or direct paper spray methods. The new method can generate different desired ion signals for a wide range of compounds by selecting different extraction solvents. Moreover, key parameters related to extraction efficiency were optimized in detail to obtain the most satisfactory extraction efficiency during antibiotic analysis. Finally, under optimal conditions, the EFSI method was successfully used to detect four antibiotics in animal products of egg, chicken, and chicken liver, exhibiting good reproducibility with calibration curves between 81.6% and 96.3%, and R2 values above 0.99. Recoveries of 75.0%ᅳ94.6% were obtained for the four antibiotics. Hence, the proposed EFSI-MS is a successful, economical, rapid, and high-throughput method that is effective for both unknown and targeted extraction of unprocessed samples by mass spectrometric analysis.
Collapse
|
99
|
Chen Y, Zuo Z, Dai X, Xiao P, Fang X, Wang X, Wang W, Ding CF. Gas-phase complexation of α-/β-cyclodextrin with amino acids studied by ion mobility-mass spectrometry and molecular dynamics simulations. Talanta 2018; 186:1-7. [DOI: 10.1016/j.talanta.2018.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 01/11/2023]
|
100
|
Xu C, He N, Li Z, Chu Y, Ding CF. Exploring halide anion affinities to native cyclodextrins by mass spectrometry and molecular modelling. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2018; 24:269-278. [PMID: 29271243 DOI: 10.1177/1469066717748658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The binding affinities of cyclodextrins complexation with chlorine (Cl-), bromine (Br-) and iodine (I-), were measured by mass spectrometric titrimetry, and the fitting of the binding constants was based on the concentration measurement of the cyclodextrin equilibrium. The binding constants (lg Ka) for α-, β- or γ-cyclodextrin with Cl- were 3.99, 4.03 and 4.11, respectively. The gas-phase binding affinity of halide anions for native cyclodextrins was probed by collision-induced dissociation. In collision-induced dissociation, the centre-of-mass frame energy results revealed that in the gas phase, for the same type of cyclodextrin, the stability of the complexes decreased in order: Cl > Br > I, and for the same halide anion, the binding stability of the complex with α-, β- or γ-cyclodextrin decreased in the order: γ-cyclodextrin >β-cyclodextrin > α-cyclodextrin. The density functional theory calculations showed that halide anion binding on the primary face had a lower energy than the secondary face and hydrogen bonding was the main driving force for complex formation. The higher stability of the γ-cyclodextrin complex with the Cl anion can be attributed to the higher charge density of the Cl anion and better flexibility of γ-cyclodextrin.
Collapse
|