76
|
Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford, H, Feldman RJ, Mitsuya H, George C, Barchi JJ. HIV-1 Reverse Transcriptase Can Discriminate between Two Conformationally Locked Carbocyclic AZT Triphosphate Analogues. J Am Chem Soc 1998. [DOI: 10.1021/ja973535+] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Huang X, Barchi JJ, Lung FD, Roller PP, Nara PL, Muschik J, Garrity RR. Glycosylation affects both the three-dimensional structure and antibody binding properties of the HIV-1IIIB GP120 peptide RP135. Biochemistry 1997; 36:10846-56. [PMID: 9312273 DOI: 10.1021/bi9703655] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have prepared glycosylated analogues of the principal neutralizing determinant of gp120 and studied their conformations by NMR and circular dichroism spectroscopies. The 24-residue peptide from the HIV-1IIIB isolate (residues 308-331) designated RP135, which contains the immunodominant tip of the V3 loop, was glycosylated with both N- and O-linked sugars. The structures of two glycopeptides, one with an N-linked beta-glucosamine (RP135NG) and the other with two O-linked alpha-galactosamine units (RP135digal), were studied by NMR and circular dichroism spectroscopies. Molecular dynamics calculations based on the NMR data obtained in water solutions were performed to explore the conformational substates sampled by the glycopeptides. The data showed that covalently linking a carbohydrate to the peptide has a major effect on the local conformation and imparts additional minor changes at more distant sites of partially defined secondary structure. In particular, the transient beta-type turn comprised of the -Gly-Pro-Gly-Arg- segment at the "tip" of the V3 loop is more highly populated in RP135digal that in the native peptide and N-linked analogue. Binding data for the glycopeptides with 0.5beta, a monoclonal antibody mapped to the RP135 sequence, revealed a significant enhancement in binding for RP135digal as compared with the native peptide, whereas binding was reduced for the N-linked glycopeptide. These data show that glycosylation of V3 loop peptides can affect their conformations as well as their interactions with antibodies. The design of more ordered and biologically relevant conformations of immunogenic regions from gp120 may aid in the design of more effective immunogens for HIV-1 vaccine development.
Collapse
|
78
|
Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ, Gellman SH. Residue-based control of helix shape in beta-peptide oligomers. Nature 1997; 387:381-4. [PMID: 9163422 DOI: 10.1038/387381a0] [Citation(s) in RCA: 519] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins and RNA are unique among known polymers in their ability to adopt compact and well-defined folding patterns. These two biopolymers can perform complex chemical operations such as catalysis and highly selective recognition, and these functions are linked to folding in that the creation of an active site requires proper juxtaposition of reactive groups. So the development of new types of polymeric backbones with well-defined and predictable folding propensities ('foldamers') might lead to molecules with useful functions. The first step in foldamer development is to identify synthetic oligomers with specific secondary structural preferences. Whereas alpha-amino acids can adopt the well-known alpha-helical motif of proteins, it was shown recently that beta-peptides constructed from carefully chosen beta-amino acids can adopt a different, stable helical conformation defined by interwoven 14-membered-ring hydrogen bonds (a 14-helix; Fig. 1a). Here we report that beta-amino acids can also be used to design beta-peptides with a very different secondary structure, a 12-helix (Fig. 1a). This demonstrates that by altering the nature of beta-peptide residues, one can exert rational control over the secondary structure.
Collapse
|
79
|
Barchi JJ, Jeong LS, Siddiqui MA, Marquez VE. Conformational analysis of the complete series of 2' and 3' monofluorinated dideoxyuridines. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1997; 34:11-29. [PMID: 9089381 DOI: 10.1016/s0165-022x(96)00032-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The solution conformations of a set of uridine 2',3'-dideoxynucleosides, where each of the hydrogens at the 2'- and 3'-positions of the sugar ring were individually replaced with a fluorine atom, were studied by nuclear magnetic resonance spectroscopy and pseudorotational analysis. The distribution of the north/south (N/S) puckering equilibrium for each compound was calculated by coupling constant analysis aided by the program PSEUROT. The data confirmed that the pseudorotational equilibrium of the fluorinated glycones is governed by the position of the fluorine atom. The preferred rotamer populations about the C4'-C5' (gamma) and C1'-N1' (chi) bonds calculated from coupling constant and NOE analysis, respectively, were also influenced by the presence of fluorine. Proton coupling to the fluorine atom was also used to qualitatively estimate the N/S equilibrium population. Through space, long range 1H-19F coupling constants were observed in compounds where the fluorine atom was above the plane of the ring ('up'). The pseudorotational parameters of the compounds described were tempered by the anomeric effect which drives the pseudorotational equilibrium towards the 2'-exo/3'-endo (northern) pucker. Ab initio calculations using the 3-21 G* basis set yielded a measure of the energy differences between the N and S local minima in each compound. These results agree with previous conformational studies of other fluorinated nucleoside analogues and prove that the furanose ring pucker is governed by the highly electronegative fluorine atom. However, the competing anomeric effect plays a major role in determining the mole fraction of the minor conformer of these compounds in solution.
Collapse
|
80
|
Huang X, Smith MC, Berzofsky JA, Barchi JJ. Structural comparison of a 15 residue peptide from the V3 loop of HIV-1IIIb and an O-glycosylated analogue. FEBS Lett 1996; 393:280-6. [PMID: 8814305 DOI: 10.1016/0014-5793(96)00912-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As part of a program to study the effect of glycosylation on the three-dimensional structures of HIV-1IIIB V3 peptide constructs, we have examined the solution structures of a 15 residue peptide (RIQRGPGRAFVTIGK, P18IIIB)- originally mapped as an epitope recognized by CD8+ Dd class I MHC-restricted murine cytotoxic T-lymphocytes (CTL), and an analogue (P18IIIB-g), O-glycosylated with an alpha-galactosamine on Thr-12, using NMR, circular dichroism and molecular modeling methods. Our studies show that the peptides sample mainly random conformations in aqueous solution near 25 degrees C and become more ordered by the addition of trifluoroethanol. Upon decreasing the temperature to 5 degrees C, a reverse turn is formed around the immunodominant tip (G5-R8). Glycosylation on T12 'tightens' the turn slightly as suggested by NOE and CD analysis. In addition, the sugar has a defined conformation with respect to the peptide backbone and influences the local peptide conformation. These data suggest that simple glycosylation may influence the conformational equilibrium of a V3 peptide which contains a domain critical for antibody recognition and virus neutralization. We also show that the ability of cytotoxic T-lymphocytes (CTL) to lyse tumor cells presenting P18IIIB was completely abrogated by threonine glycosylation.
Collapse
|
81
|
Barchi JJ, Cooney DA, Ahluwalia GS, Gharehbaghi K, Covey JM, Hochman I, Paull KD, Jayaram HN. Studies on the mechanism of action of 1-beta-D-arabinofuranosyl-5-azacytosine (fazarabine) in mammalian lymphoblasts. JOURNAL OF EXPERIMENTAL THERAPEUTICS AND ONCOLOGY 1996; 1:191-203. [PMID: 9414404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Fazarabine has shown activity in the panel of 60 cultured human tumor lines of the National Cancer Institute. COMPARE analyses relating correlation coefficients of other anticancer drugs with those of fazarabine suggest that this agent operates through a similar mode of action to that of cytarabine. Studies have been carried out both in culture and in vivo to examine the mechanism of action of fazarabine in P388 murine and Molt-4 human lymphoblasts. Authentic fazarabine nucleotide standards were prepared by chemical and enzymatic methods and characterized on HPLC by comparison to related pyrimidine nucleoside-5'-phosphates as well as by enzymatic digestion. Fazarabine inhibited the incorporation of labeled thymidine into DNA without influencing the synthesis of RNA or protein. Deoxycytidine overcomes this inhibition of DNA synthesis and also prevents the cytotoxicity of the drug to lymphoblasts, probably by competing for fazarabine uptake and metabolism. Fazarabine was rapidly phosphorylated in both cell lines; in P388 cells it was incorporated into DNA, where it continued to undergo the same type of ring opening and degradation as the free nucleoside. Alkaline elution studies demonstrated that exposure to the agent resulted in the formation of alkaline labile sites. Fazarabine also inhibited the methylation of deoxycytidine residues in DNA, but this effect was less pronounced than that produced by 5-azacytidine. Taken together, these studies suggest that fazarabine probably acts by arresting the synthesis and/or altering the structural integrity or functional competence of DNA.
Collapse
|
82
|
Barchi JJ, Nomizu M, Otaka A, Roller PP, Burke TR. Conformational analysis of cyclic hexapeptides designed as constrained ligands for the SH2 domain of the p85 subunit of phosphatidylinositol-3-OH kinase. Biopolymers 1996; 38:191-208. [PMID: 8589253 DOI: 10.1002/(sici)1097-0282(199602)38:2<191::aid-bip6>3.0.co;2-q] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structures of the cyclic hexapeptide cyclo(-Gly-Tyr-Val-Pro-Met-Leu-) (1) and its phosphotyrosyl (pTyr) derivative cyclo[-Gly-Tyr(PO3H2)-Val-Pro-Met-Leu-] (2), designed as constrained models of a sequence that interacts with the src homology 2 (SH2) region of the p85 subunit of phosphatidylinositol-3-OH kinase (PI-3 kinase), were studied in methanol/water solutions by 500 MHz nmr spectroscopy. Compound 1 was found to exist as a 2:1 mixture of isomers about the Val-Pro bond (trans and cis prolyl) between 292-330 K in 75% CD3O(D,H)/(D,H)2O solutions. A third species of undetermined structure (ca. 5%) was also observed. Compound 2, a model of phosphorylated peptide ligand that binds to the PI-3 kinase SH2 domain, exhibited similar conformational isomerism. When either compound was dissolved in pure solvent [i.e., 100% CD3O(H,D) or (H,D)2O] the ratio of cis to trans isomers was ca 1:1. A battery of one- and two-dimensional nmr experiments at different temperatures and solvent compositions allowed a complete assignment of both the cis and trans forms of 1 and indicated the trans compound to be the major isomer. The spectral properties of the phophorylated derivative 2 paralleled those of 1, indicating like conformations for the two compounds. Analysis of rotating frame Overhauser spectroscopy data, coupling constants, amide proton temperature dependence, and amide proton exchange rates generated a set of constraints that were employed in energy minimization and molecular dynamics calculations using the CHARMM force field. The trans isomer exists with the tyrosine and C-terminal Tyr(+3) (Met) residues at opposite corners of the 18-membered ring separated by a distance of 16-18 A, in contrast with the cis isomer where the side chains of these residues are much closer in space (7-14 A). It was previously shown that the pTyr and the third amino acid C-terminal to this residue are the critical recognition elements for pTyr-peptide binding to the PI-3 kinase SH2 domain. Such cyclic structures may offer appropriate scaffolding for positioning important amino acid side chains of pTyr-containing peptides as a means of increasing their binding affinities to SH2 domains, and in turn provide a conceptual approach toward the design of SH2 domain directed peptidomimetics.
Collapse
|
83
|
Kazanietz MG, Barchi JJ, Omichinski JG, Blumberg PM. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids. J Biol Chem 1995; 270:14679-84. [PMID: 7782331 DOI: 10.1074/jbc.270.24.14679] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination.
Collapse
|
84
|
Burke TR, Barchi JJ, George C, Wolf G, Shoelson SE, Yan X. Conformationally constrained phosphotyrosyl mimetics designed as monomeric Src homology 2 domain inhibitors. J Med Chem 1995; 38:1386-96. [PMID: 7537333 DOI: 10.1021/jm00008a017] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inhibitors of specific src homology 2 (SH2) domain binding interactions could potentially afford new therapeutic approaches toward a variety of diseases, including several cancers. To date SH2 domain inhibitors have been confined to small phosphotyrosyl (pTyr)-containing peptides that appear to bind along the surface of SH2 domains with specific recognition features protruding into the protein. Among these protrusions is the pTyr residue itself, which is inserted into a well-formed binding pocket. In the present study monomeric pTyr mimetics were prepared having key aspects of their structure constrained to conformations of the bound pTyr residue observed in the previously reported X-ray structure of a pTyr-peptide bound to the Lck SH2 domain. The resulting constrained pTyr mimetics were examined for inhibitory potency in six SH2 domain constructs: Lck, Src, Grb2, and the C-terminal SH2 domains of PLC gamma (PLC gamma-C) and the p85 subunit of PI-3 kinase (p85-C), as well as the N-terminal SH2 domain of SH PTP2. Although inhibition constants were in the millimolar range, it was observed that capping pTyr as its N alpha-acetyl carboxamide [(L)-1] provided a roughly 2-3-fold increase in potency relative to free pTyr. Diastereomeric indanylglycine-based analogues (+/-)-3a,b were essentially inactive. Of note was methanobenzazocine (+/-)-2. While being racemic and a partial pTyr structure, this analogue retained full binding potency of the enantiomerically pure N alpha-acetyl pTyr amide (L)-1. Modification and elaboration of 2 could potentially result in small molecule inhibitors having greater potency.
Collapse
|
85
|
Ezzitouni A, Barchi JJ, Marquez VE. A simple approach to 1′,1′a-methano carbocyclic thymidine. ACTA ACUST UNITED AC 1995. [DOI: 10.1039/c39950001345] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
86
|
Barchi JJ, Cooney DA, Hao Z, Weinberg ZH, Taft C, Marquez VE, Ford H. Improved synthesis of zebularine [1-(beta-D-ribofuranosyl)-dihydropyrimidin-2-one] nucleotides as inhibitors of human deoxycytidylate deaminase. JOURNAL OF ENZYME INHIBITION 1995; 9:147-62. [PMID: 8583252 DOI: 10.3109/14756369509042814] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The 2'-deoxy (2a) and 2'-ara-fluoro (3a) derivatives of zebularine [1-(beta-D-ribofuranosyl)-dihydropyrimidin-2-one, 1a] were phosphorylated in high yield to the 5'-nucleotides 2b and 3b, respectively, and characterized by HPLC, enzyme degradation, 1H, 13C and 31P NMR, and high resolution mass spectral analysis. Their inhibitory activity against partially purified MOLT-4 deoxycytidylate deaminase (dCMPD) in the presence of the allosteric effector deoxycytidine triphosphate (dCTP) and Mg+2 ion was examined. Compounds 2b and 3b inhibited dCMPD with Ki values of 2.1 x 10(-8) M and 1.2 x 10(-8) M, respectively. The parent nucleotide, zebularine monophosphate 1b was ineffective at concentrations > 100 mumol. The effect of the nucleosides, 1a-3a, as well as tetrahydrouridine (THU) and 2'-deoxy THU (dTHU), on the cellular production of DNA precursors was examined in human MOLT-4 peripheral lymphoblasts. It was shown that 1a, 2a and 3a all elevated intracellular dCTP and TTP levels in whole cells with the most powerful effect elicited by 1a. The 2'-fluoro derivative 3a was chemically phosphorylated much more cleanly and higher yield than 2a, without the formation of diphosphorylated by-products. This compound was found to be infinitely less sensitive to acid-catalyzed degradation than 2a. Since the substitution of fluorine for hydrogen had a slight potentiating effect on the dCMPD inhibitory activity while stabilizing the compound toward acid-catalyzed and enzymatic depyrimidination, compound 3b emerges as a very attractive tool for the pharmacological modulation of pyrimidine deaminase activity.
Collapse
|
87
|
Rodriguez JB, Marquez VE, Nicklaus MC, Mitsuya H, Barchi JJ. Conformationally locked nucleoside analogues. Synthesis of dideoxycarbocyclic nucleoside analogues structurally related to neplanocin C. J Med Chem 1994; 37:3389-99. [PMID: 7932567 DOI: 10.1021/jm00046a024] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The glycon moiety of nucleosides in solution is known to exist in a rapid dynamic equilibrium between extreme northern and southern conformations as defined by the pseudorotation cycle. The concept of preparing rigid nucleoside analogues with the glycon conformation locked in one of these two extremes was tested with the synthesis of some cyclopropane-fused dideoxycarbocyclic nucleosides, similar to the well-known class of anti-HIV active dideoxynucleosides. The new compounds described here are dideoxynucleoside analogues of the fermentation product neplanocin C (6) which exhibits a typical northern geometry for its 6-oxabicyclo[3.1.0]hexane pseudosugar moiety. However, in view of the lability of the epoxide ring in this system, the equivalent cyclopropane-fused bicyclo[3.1.0]hexane system was used instead to prepare the corresponding dideoxynucleoside analogues bearing all the common bases [(+/-)-9-13]. Due to the well-documented preference of unrestricted bicyclo[3.1.0]hexane systems to exist exclusively in a boat conformation, the resulting nucleosides are structurally locked in a typical northern conformation similar to that of neplanocin C. The locked northern conformation in these nucleosides remained unchanged in solution in the 20-80 degrees C temperature range according to variable temperature 1H NMR studies. For the synthesis of these compounds, racemic trans-1-[(benzyloxy)methyl]-4-hydroxybicyclo[3.1.0]hexane [(+/-)-18] was prepared by a samarium-promoted cyclopropanation reaction with the antecedent cyclopentenol. All of the bases were incorporated under Mitsunobu conditions and converted to the desired final products following a standard methodology. Anti-HIV evaluation revealed that only the adenosine analogue (+/-)-9 possessed enough activity to warrant resolution into its optical antipodes. This was realized by chiral HPLC chromatography to give the individual enantiomers (-)-32 and (+)-33. Adenosine deaminase was used to identify isomer (+)-33 as the enantiomer with the "natural" configuration which was solely responsible for the observed biological activity and toxicity of (+/-)-9. It is possible that the exclusive northern conformation adopted by these nucleosides reduces their substrate affinity for the various activating kinases, except in the case of the adenosine analogue.
Collapse
|
88
|
Roller PP, Otaka A, Nomizu M, Smyth MS, Barchi JJ, Burke TR, Case RD, Wolf G, Shoelson SE. Norleucine as a replacement for methionine in phosphatase-resistant linear and cyclic peptides which bind to p85 SH2 domains. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
89
|
Siddiqui MA, Marquez VE, Driscoll JS, Barchi JJ. A diastereoselective synthesis of (S,S)-α-fluoro-2,2-dimethyl-1,3-dioxolane-4-propanoic acid methyl ester, a key intermediate for the preparation of anti-HIV effective fluorodideoxynucleosides. Tetrahedron Lett 1994. [DOI: 10.1016/s0040-4039(00)76880-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Gharehbaghi K, Paull KD, Kelley JA, Barchi JJ, Marquez VE, Cooney DA, Monks A, Scudiero D, Krohn K, Jayaram HN. Cytotoxicity and characterization of an active metabolite of benzamide riboside, a novel inhibitor of IMP dehydrogenase. Int J Cancer 1994; 56:892-9. [PMID: 7907081 DOI: 10.1002/ijc.2910560623] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Benzamide riboside exhibits significant cytotoxicity against a variety of human tumor cells in culture. On the basis of metabolic studies, the primary target of this drug's action appears to be IMP dehydrogenase (IMPDH). Incubation of human myelogenous leukemia K562 cells with an IC50 concentration of benzamide riboside resulted in an expansion of IMP pools (5.9-fold), with a parallel reduction in the concentration of GMP (90%), GDP (63%), GTP (55%) and dGTP (40%). On kinetic grounds, it was deduced that benzamide riboside (whose Ki versus IMPDH is 6.4 mM, while that of its 5'-monophosphate is 3.9 mM) or its 5'-monophosphate were unlikely to be responsible for inhibition of this target enzyme, IMPDH, since only micromolar concentrations of benzamide riboside were needed to exert potent inhibition of tumor-cell growth. Studies on the metabolism of this C-nucleoside have revealed the presence of a new peak eluting in the nucleoside diphosphate area on HPLC. Treatment of this peak with venom phosphodiesterase degraded it and concurrently nullified its inhibitory activity versus IMPDH; alkaline phosphatase, on the other hand, totally failed to digest the anabolite. These results suggest that the metabolite in question is the phosphodiester, benzamide adenine dinucleotide (BAD). Evidence that the inhibitor was an analog of NAD, wherein the nicotinamide moiety has been replaced by benzamide, was provided by both NMR and mass spectrometric analysis and confirmed by enzymatic synthesis. Further insight into the nature of the active principle was obtained from kinetic studies, which established that BAD competitively inhibited NAD utilization by partially purified IMPDH from K562 cells with a Ki of 0.118 microM. In concert, these studies establish that benzamide riboside exhibits potent antiproliferative activity by inhibiting IMPDH through BAD.
Collapse
|
91
|
Barchi JJ, Grasberger B, Gronenborn AM, Clore GM. Investigation of the backbone dynamics of the IgG-binding domain of streptococcal protein G by heteronuclear two-dimensional 1H-15N nuclear magnetic resonance spectroscopy. Protein Sci 1994; 3:15-21. [PMID: 8142892 PMCID: PMC2142475 DOI: 10.1002/pro.5560030103] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The backbone dynamics of the immunoglobulin-binding domain (B1) of streptococcal protein G, uniformly labeled with 15N, have been investigated by two-dimensional inverse detected heteronuclear 1H-15N NMR spectroscopy at 500 and 600 MHz. 15N T1, T2, and nuclear Overhauser enhancement data were obtained for all 55 backbone NH vectors of the B1 domain at both field strengths. The overall correlation time obtained from an analysis of the T1/T2 ratios was 3.3 ns at 26 degrees C. Overall, the B1 domain is a relatively rigid protein, consistent with the fact that over 95% of the residues participate in secondary structure, comprising a four-stranded sheet arranged in a -1, +3x, -1 topology, on top of which lies a single helix. Residues in the turns and loops connecting the elements of secondary structure tend to exhibit a higher degree of mobility on the picosecond time scale, as manifested by lower values of the overall order parameter. A number of residues at the ends of the secondary structure elements display two distinct internal motions that are faster than the overall rotational correlation time: one is fast (< 20 ps) and lies in the extreme narrowing limit, whereas the other is one to two orders of magnitude slower (1-3 ns) and lies outside the extreme narrowing limit. The slower motion can be explained by large-amplitude (20-40 degrees) jumps in the N-H vectors between states with well-defined orientations that are stabilized by hydrogen bonds.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
92
|
Rodriguez JB, Marquez VE, Nicklaus MC, Barchi JJ. Synthesis of cyclopropane-fused dideoxycarbocyclic nucleosides structurally related to neplanocin C. Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)73718-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
93
|
Barchi JJ, Haces A, Marquez VE, McCormack JJ. Inhibition of Cytidine Deaminase by Derivatives of 1-(β-D-Ribofuranosyl)-Dihydropyrimidin-2-One (Zebularine). ACTA ACUST UNITED AC 1992. [DOI: 10.1080/07328319208017823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
94
|
Barchi JJ, Musser S, Marquez VE. The decomposition of 1-.beta.-(D-ribofuranosyl)-1,2-dihydropyrimidin-2-one (zebularine) in alkali: mechanism and products [Erratum to document cited in CA116(5):41960v]. J Org Chem 1992. [DOI: 10.1021/jo00047a052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
95
|
Russ PL, Hegedus L, Kelley JA, Barchi JJ, Marquez VE. The Controlled Stereospecific Reduction of Cyclopentenyl Cytosine (CPE-C) to Carbodine and Isocarbodine. ACTA ACUST UNITED AC 1992. [DOI: 10.1080/07328319208021709] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
96
|
Driscoll JS, Marquez VE, Plowman J, Liu PS, Kelley JA, Barchi JJ. Antitumor properties of 2(1H)-pyrimidinone riboside (zebularine) and its fluorinated analogues. J Med Chem 1991; 34:3280-4. [PMID: 1956046 DOI: 10.1021/jm00115a017] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
2(1H)-Pyrimidinone riboside (zebularine, 1b) and its 5-fluoro (6b) and 2'-ara-fluoro (7b) analogues have been synthesized and evaluated in vivo as antitumor agents. Zebularine provides increase in life span (ILS) values of ca. 70% against intraperitoneal (ip) murine B16 melanoma and 50% against P388 leukemia. This compound is active when administered either ip or orally against ip or subcutaneously implanted L1210 leukemia, producing ILS values of about 100% at an optimum dose of 400 mg/kg. 1b is also active (60% ILS) against ara-C-resistant L1210. The analogous unsubstituted purine riboside nebularine (2) has modest activity against P388 leukemia (60% ILS). While 2'-ara-fluorozebularine (7b) is only marginally active (40% ILS) at high doses against L1210 leukemia, 5-fluoro analogue 6b is more active than zebularine and is ca. 100 times more potent. Although the activity of 6b is about the same as that of 1b against P388 leukemia, greater potency also is realized in this model. Zebularine is a strong inhibitor of cytidine deaminase, but in contrast to tetrahydrouridine, 1b is acid-stable. In an attempt to use this property to advantage in oral administration, 1b and ara-C have been orally coadministered to mice with ip L1210 leukemia. When zebularine is given in divided doses, up to a 2-fold increase in activity is realized, relative to treatment with the same dose of ara-C alone.
Collapse
|
97
|
Barchi JJ, Marquez VE, Driscoll JS, Ford H, Mitsuya H, Shirasaka T, Aoki S, Kelley JA. Potential anti-AIDS drugs. Lipophilic, adenosine deaminase-activated prodrugs. J Med Chem 1991; 34:1647-55. [PMID: 2033591 DOI: 10.1021/jm00109a018] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Selected acid-stable (2'-fluoro-2',3'-dideoxyarabinofuranosyl)adenine nucleosides containing methyl groups and other lipophilic functions at various positions in the adenine ring were prepared and evaluated as anti-HIV agents. The N6-methyl (1f), N6-benzoyl (1g), and 6-chloro (1i) analogues had modest activity, giving 30-50% protection to ATH8 cells infected with HIV. 2-Methyl (1d), 8-methyl (1h), and 2,N6-dimethyl (1e) substitution, as well as N1-oxide (21) formation, abolished the activity of the parent compound (1a). Several of these compounds, originally designed as agents for treating HIV in the central nervous system, were further investigated as substrates for adenosine deaminase (ADA). Kinetic experiments showed that ADA catalyzed the formation of the anti-HIV active inosine compound 1b from the N6-methyl analogue 1f in a quantitative manner. The anti-HIV activity of 1f and 1i was abolished when the ADA inhibitor, 2'-deoxycoformycin, was added to the test mixture. In contrast, the activity of 1f was significantly enhanced when ADA was added to the test system. These data indicate that 1f and 1i are prodrug forms of 1b in systems containing ADA.
Collapse
|