76
|
Langner R, Sternkopf MA, Kellermann TS, Grefkes C, Kurth F, Schneider F, Zilles K, Eickhoff SB. Visual working memory for action: Evidence for using motor representations in encoding visuo-spatial stimulus sequences. KLIN NEUROPHYSIOL 2014. [DOI: 10.1055/s-0034-1371298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
77
|
Palomero-Gallagher N, Zilles K, Schleicher A, Vogt BA. Cyto- and receptor architecture of area 32 in human and macaque brains. J Comp Neurol 2014; 521:3272-86. [PMID: 23787873 DOI: 10.1002/cne.23346] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/05/2013] [Indexed: 11/11/2022]
Abstract
Human area 32 plays crucial roles in emotion and memory consolidation. It has subgenual (s32), pregenual (p32), dorsal, and midcingulate components. We seek to determine whether macaque area 32 has subgenual and pregenual subdivisions and the extent to which they are comparable to those in humans by means of NeuN immunohistochemistry and multireceptor analysis of laminar profiles. The macaque has areas s32 and p32. In s32, layer IIIa/b neurons are larger than those of layer IIIc. This relationship is reversed in p32. Layer Va is thicker and Vb thinner in s32. Area p32 contains higher kainate, benzodiazepine (BZ), and serotonin (5-HT)1A but lower N-methyl-D-aspartate (NMDA) and α2 receptor densities. Most differences were found in layers I, II, and VI. Together, these differences support the dual nature of macaque area 32. Comparative analysis of human and macaque s32 and p32 supports equivalences in cyto- and receptor architecture. Although there are differences in mean areal receptor densities, there are considerable similarities at the layer level. Laminar receptor distribution patterns in each area are comparable in the two species in layers III-Va for kainate, NMDA, γ-aminobutyric acid (GABA)B , BZ, and 5-HT1A receptors. Multivariate statistical analysis of laminar receptor densities revealed that human s32 is more similar to macaque s32 and p32 than to human p32. Thus, macaque 32 is more complex than hitherto known. Our data suggest a homologous neural architecture in anterior cingulate s32 and p32 in human and macaque brains.
Collapse
|
78
|
Roland PE, Graufelds CJ, W Hlin J, Ingelman L, Andersson M, Ledberg A, Pedersen J, Akerman S, Dabringhaus A, Zilles K. Human brain atlas: For high-resolution functional and anatomical mapping. Hum Brain Mapp 2014; 1:173-84. [PMID: 24578038 DOI: 10.1002/hbm.460010303] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/1994] [Accepted: 03/07/1994] [Indexed: 11/09/2022] Open
Abstract
We present the new computerized Human Brain Atlas (HBA) for anatomical and functional mapping studies of the human brain. The HBA is based on many high-resolution magnetic resonance images of normal subjects and provides continuous updating of the mean shape and position of anatomical structures of the human brain. The structures are transformable by linear and nonlinear global and local transformations applied anywhere in 3-D pictures to fit the anatomical structures of individual brains, which, by reformatting, are transformed into a high-resolution standard anatomical format. The power of the HBA to reduce anatomical variations was evaluated on a randomized selection of anatomical landmarks in brains of 27 young normal male volunteers who were different from those on whom the standard brain was selected. The HBA, even when based only on standard brain surface and central structures, reduced interindividual anatomical variance to the level of the variance in structure position between the right and left hemisphere in individual brains. © 1994 Wiley-Liss, Inc.
Collapse
|
79
|
Barks SK, Bauernfeind AL, Bonar CJ, Cranfield MR, de Sousa AA, Erwin JM, Hopkins WD, Lewandowski AH, Mudakikwa A, Phillips KA, Raghanti MA, Stimpson CD, Hof PR, Zilles K, Sherwood CC. Variable temporoinsular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas. J Comp Neurol 2014; 522:844-60. [PMID: 23939630 PMCID: PMC4195240 DOI: 10.1002/cne.23448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/09/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
We describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschl's gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) by using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (seven apes, two Old World monkeys, four New World monkeys, and nine strepsirrhines). The temporoinsular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but was seen less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto- and myeloarchitecture within this region and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes.
Collapse
|
80
|
Caspers J, Zilles K, Beierle C, Rottschy C, Eickhoff SB. A novel meta-analytic approach: mining frequent co-activation patterns in neuroimaging databases. Neuroimage 2013; 90:390-402. [PMID: 24365675 DOI: 10.1016/j.neuroimage.2013.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/17/2013] [Accepted: 12/14/2013] [Indexed: 12/11/2022] Open
Abstract
In recent years, coordinate-based meta-analyses have become a powerful and widely used tool to study co-activity across neuroimaging experiments, a development that was supported by the emergence of large-scale neuroimaging databases like BrainMap. However, the evaluation of co-activation patterns is constrained by the fact that previous coordinate-based meta-analysis techniques like Activation Likelihood Estimation (ALE) and Multilevel Kernel Density Analysis (MKDA) reveal all brain regions that show convergent activity within a dataset without taking into account actual within-experiment co-occurrence patterns. To overcome this issue we here propose a novel meta-analytic approach named PaMiNI that utilizes a combination of two well-established data-mining techniques, Gaussian mixture modeling and the Apriori algorithm. By this, PaMiNI enables a data-driven detection of frequent co-activation patterns within neuroimaging datasets. The feasibility of the method is demonstrated by means of several analyses on simulated data as well as a real application. The analyses of the simulated data show that PaMiNI identifies the brain regions underlying the simulated activation foci and perfectly separates the co-activation patterns of the experiments in the simulations. Furthermore, PaMiNI still yields good results when activation foci of distinct brain regions become closer together or if they are non-Gaussian distributed. For the further evaluation, a real dataset on working memory experiments is used, which was previously examined in an ALE meta-analysis and hence allows a cross-validation of both methods. In this latter analysis, PaMiNI revealed a fronto-parietal "core" network of working memory and furthermore indicates a left-lateralization in this network. Finally, to encourage a widespread usage of this new method, the PaMiNI approach was implemented into a publicly available software system.
Collapse
|
81
|
Hensel L, Bzdok D, Müller VI, Zilles K, Eickhoff SB. Neural correlates of explicit social judgments on vocal stimuli. ACTA ACUST UNITED AC 2013; 25:1152-62. [PMID: 24243619 DOI: 10.1093/cercor/bht307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional neuroimaging research on the neural basis of social evaluation has traditionally focused on face perception paradigms. Thus, little is known about the neurobiology of social evaluation processes based on auditory cues, such as voices. To investigate the top-down effects of social trait judgments on voices, hemodynamic responses of 44 healthy participants were measured during social trait (trustworthiness [TR] and attractiveness [AT]), emotional (happiness, HA), and cognitive (age, AG) voice judgments. Relative to HA and AG judgments, TR and AT judgments both engaged the bilateral inferior parietal cortex (IPC; area PGa) and the dorsomedial prefrontal cortex (dmPFC) extending into the perigenual anterior cingulate cortex. This dmPFC activation overlapped with previously reported areas specifically involved in social judgments on 'faces.' Moreover, social trait judgments were expected to share neural correlates with emotional HA and cognitive AG judgments. Comparison of effects pertaining to social, social-emotional, and social-cognitive appraisal processes revealed a dissociation of the left IPC into 3 functional subregions assigned to distinct cytoarchitectonic subdivisions. In total, the dmPFC is proposed to assume a central role in social attribution processes across sensory qualities. In social judgments on voices, IPC activity shifts from rostral processing of more emotional judgment facets to caudal processing of more cognitive judgment facets.
Collapse
|
82
|
Roski C, Caspers S, Langner R, Laird AR, Fox PT, Zilles K, Amunts K, Eickhoff SB. Adult age-dependent differences in resting-state connectivity within and between visual-attention and sensorimotor networks. Front Aging Neurosci 2013; 5:67. [PMID: 24194718 PMCID: PMC3810651 DOI: 10.3389/fnagi.2013.00067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
Healthy aging is accompanied by structural and functional changes in the brain, among which a loss of neural specificity (i.e., dedifferentiation) is one of the most consistent findings. Little is known, however, about changes in interregional integration underlying a dedifferentiation across different functional systems. In a large sample (n = 399) of healthy adults aged from 18 to 85 years, we analyzed age-dependent differences in resting-state (RS) (task-independent) functional connectivity (FC) of a set of brain regions derived from a previous fMRI study. In that study, these regions had shown an age-related loss of activation specificity in visual-attention (superior parietal area 7A and dorsal premotor cortex) or sensorimotor (area OP4 of the parietal operculum) tasks. In addition to these dedifferentiated regions, the FC analysis of the present study included “task-general” regions associated with both attention and sensorimotor systems (rostral supplementary motor area and bilateral anterior insula) as defined via meta-analytical co-activation mapping. Within this network, we observed both selective increases and decreases in RS-FC with age. In line with regional activation changes reported previously, we found diminished anti-correlated FC for inter-system connections (i.e., between sensorimotor-related and visual attention-related regions). Our analysis also revealed reduced FC between system-specific and task-general regions, which might reflect age-related deficits in top-down control possibly leading to dedifferentiation of task-specific brain activity. Together, our results underpin the notion that RS-FC changes concur with regional activity changes in the healthy aging brain, presumably contributing jointly to age-related behavioral changes.
Collapse
|
83
|
Vogt BA, Hof PR, Zilles K, Vogt LJ, Herold C, Palomero-Gallagher N. Cingulate area 32 homologies in mouse, rat, macaque and human: Cytoarchitecture and receptor architecture. J Comp Neurol 2013; 521:4189-204. [DOI: 10.1002/cne.23409] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/01/2013] [Accepted: 06/18/2013] [Indexed: 11/06/2022]
|
84
|
Caspers J, Palomero-Gallagher N, Caspers S, Schleicher A, Amunts K, Zilles K. Receptor architecture of visual areas in the face and word-form recognition region of the posterior fusiform gyrus. Brain Struct Funct 2013; 220:205-19. [DOI: 10.1007/s00429-013-0646-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
|
85
|
Gärtner H, Minnerop M, Pieperhoff P, Schleicher A, Zilles K, Altenmüller E, Amunts K. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players. Front Psychol 2013; 4:636. [PMID: 24069009 PMCID: PMC3779931 DOI: 10.3389/fpsyg.2013.00636] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/27/2013] [Indexed: 12/13/2022] Open
Abstract
To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life.
Collapse
|
86
|
Caspers J, Zilles K, Amunts K, Laird AR, Fox PT, Eickhoff SB. Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus. Hum Brain Mapp 2013; 35:2754-67. [PMID: 24038902 DOI: 10.1002/hbm.22364] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/28/2013] [Accepted: 06/24/2013] [Indexed: 01/01/2023] Open
Abstract
The ventral stream of the human extrastriate visual cortex shows a considerable functional heterogeneity from early visual processing (posterior) to higher, domain-specific processing (anterior). The fusiform gyrus hosts several of those "high-level" functional areas. We recently found a subdivision of the posterior fusiform gyrus on the microstructural level, that is, two distinct cytoarchitectonic areas, FG1 and FG2 (Caspers et al., Brain Structure & Function, 2013). To gain a first insight in the function of these two areas, here we studied their behavioral involvement and coactivation patterns by means of meta-analytic connectivity modeling based on the BrainMap database (www.brainmap.org), using probabilistic maps of these areas as seed regions. The coactivation patterns of the areas support the concept of a common involvement in a core network subserving different cognitive tasks, that is, object recognition, visual language perception, or visual attention. In addition, the analysis supports the previous cytoarchitectonic parcellation, indicating that FG1 appears as a transitional area between early and higher visual cortex and FG2 as a higher-order one. The latter area is furthermore lateralized, as it shows strong relations to the visual language processing system in the left hemisphere, while its right side is stronger associated with face selective regions. These findings indicate that functional lateralization of area FG2 relies on a different pattern of connectivity rather than side-specific cytoarchitectonic features.
Collapse
|
87
|
Weiner KS, Golarai G, Caspers J, Chuapoco MR, Mohlberg H, Zilles K, Amunts K, Grill-Spector K. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage 2013; 84:453-65. [PMID: 24021838 DOI: 10.1016/j.neuroimage.2013.08.068] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022] Open
Abstract
Human ventral temporal cortex (VTC) plays a pivotal role in high-level vision. An under-studied macroanatomical feature of VTC is the mid-fusiform sulcus (MFS), a shallow longitudinal sulcus separating the lateral and medial fusiform gyrus (FG). Here, we quantified the morphological features of the MFS in 69 subjects (ages 7-40), and investigated its relationship to both cytoarchitectonic and functional divisions of VTC with four main findings. First, despite being a minor sulcus, we found that the MFS is a stable macroanatomical structure present in all 138 hemispheres with morphological characteristics developed by age 7. Second, the MFS is the locus of a lateral-medial cytoarchitectonic transition within the posterior FG serving as the boundary between cytoarchitectonic regions FG1 and FG2. Third, the MFS predicts a lateral-medial functional transition in eccentricity bias representations in children, adolescents, and adults. Fourth, the anterior tip of the MFS predicts the location of a face-selective region, mFus-faces/FFA-2. These findings are the first to illustrate that a macroanatomical landmark identifies both cytoarchitectonic and functional divisions of high-level sensory cortex in humans and have important implications for understanding functional and structural organization in the human brain.
Collapse
|
88
|
Bauernfeind AL, de Sousa AA, Avasthi T, Dobson SD, Raghanti MA, Lewandowski AH, Zilles K, Semendeferi K, Allman JM, Craig ADB, Hof PR, Sherwood CC. A volumetric comparison of the insular cortex and its subregions in primates. J Hum Evol 2013; 64:263-79. [PMID: 23466178 DOI: 10.1016/j.jhevol.2012.12.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 11/28/2012] [Accepted: 12/31/2012] [Indexed: 01/30/2023]
Abstract
The neuronal composition of the insula in primates displays a gradient, transitioning from granular neocortex in the posterior-dorsal insula to agranular neocortex in the anterior-ventral insula with an intermediate zone of dysgranularity. Additionally, apes and humans exhibit a distinctive subdomain in the agranular insula, the frontoinsular cortex (FI), defined by the presence of clusters of von Economo neurons (VENs). Studies in humans indicate that the ventral anterior insula, including agranular insular cortex and FI, is involved in social awareness, and that the posterodorsal insula, including granular and dysgranular cortices, produces an internal representation of the body’s homeostatic state.We examined the volumes of these cytoarchitectural areas of insular cortex in 30 primate species, including the volume of FI in apes and humans. Results indicate that the whole insula scales hyperallometrically (exponent=1.13) relative to total brain mass, and the agranular insula (including FI) scales against total brain mass with even greater positive allometry (exponent=1.23), providing a potential neural basis for enhancement of social cognition in association with increased brain size. The relative volumes of the subdivisions of the insular cortex, after controlling for total brain volume, are not correlated with species typical social group size. Although its size is predicted by primate-wide allometric scaling patterns, we found that the absolute volume of the left and right agranular insula and left FI are among the most differentially expanded of the human cerebral cortex compared to our closest living relative, the chimpanzee.
Collapse
|
89
|
Amunts K, Lepage C, Borgeat L, Mohlberg H, Dickscheid T, Rousseau MÉ, Bludau S, Bazin PL, Lewis LB, Oros-Peusquens AM, Shah NJ, Lippert T, Zilles K, Evans AC. BigBrain: an ultrahigh-resolution 3D human brain model. Science 2013; 340:1472-5. [PMID: 23788795 DOI: 10.1126/science.1235381] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reference brains are indispensable tools in human brain mapping, enabling integration of multimodal data into an anatomically realistic standard space. Available reference brains, however, are restricted to the macroscopic scale and do not provide information on the functionally important microscopic dimension. We created an ultrahigh-resolution three-dimensional (3D) model of a human brain at nearly cellular resolution of 20 micrometers, based on the reconstruction of 7404 histological sections. "BigBrain" is a free, publicly available tool that provides considerable neuroanatomical insight into the human brain, thereby allowing the extraction of microscopic data for modeling and simulation. BigBrain enables testing of hypotheses on optimal path lengths between interconnected cortical regions or on spatial organization of genetic patterning, redefining the traditional neuroanatomy maps such as those of Brodmann and von Economo.
Collapse
|
90
|
Geisler S, Willuweit A, Schroeter M, Zilles K, Hamacher K, Galldiks N, Shah NJ, Coenen HH, Langen KJ. Detection of remote neuronal reactions in the Thalamus and Hippocampus induced by rat glioma using the PET tracer cis-4-[¹⁸F]fluoro-D-proline. J Cereb Blood Flow Metab 2013; 33:724-31. [PMID: 23385199 PMCID: PMC3652687 DOI: 10.1038/jcbfm.2013.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/03/2013] [Accepted: 01/12/2013] [Indexed: 12/16/2022]
Abstract
After cerebral ischemia or trauma, secondary neurodegeneration may occur in brain regions remote from the lesion. Little is known about the capacity of cerebral gliomas to induce secondary neurodegeneration. A previous study showed that cis-4-[(18)F]fluoro-D-proline (D-cis-[(18)F]FPro) detects secondary reactions of thalamic nuclei after cortical infarction with high sensitivity. Here we investigated the potential of D-cis-[(18)F]FPro to detect neuronal reactions in remote brain areas in the F98 rat glioma model using ex vivo autoradiography. Although the tumor tissue of F98 gliomas showed no significant D-cis-[(18)F]FPro uptake, we observed prominent tracer uptake in 7 of 10 animals in the nuclei of the ipsilateral thalamus, which varied with the specific connectivity with the cortical areas affected by the tumor. In addition, strong D-cis-[(18)F]FPro accumulation was noted in the hippocampal area CA1 in two animals with ipsilateral F98 gliomas involving hippocampal subarea CA3 rostral to that area. Furthermore, focal D-cis-[(18)F]FPro uptake was present in the necrotic center of the tumors. Cis-4-[(18)F]fluoro-D-proline uptake was accompanied by microglial activation in the thalamus, in the hippocampus, and in the necrotic center of the tumors. The data suggest that brain tumors induce secondary neuronal reactions in remote brain areas, which may be detected by positron emission tomography (PET) using D-cis-[(18)F]FPro.
Collapse
|
91
|
Caspers S, Eickhoff SB, Zilles K, Amunts K. Microstructural grey matter parcellation and its relevance for connectome analyses. Neuroimage 2013; 80:18-26. [PMID: 23571419 DOI: 10.1016/j.neuroimage.2013.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 12/12/2022] Open
Abstract
The human brain connectome is closely linked to the anatomical framework provided by the structural segregation of the cortex into distinct cortical areas. Therefore, a thorough anatomical reference for the analysis and interpretation of connectome data is indispensable to understand the structure and function of different regions of the cortex, the white matter fibre architecture connecting them, and the interplay between these different entities. This article focuses on parcellation schemes of the cerebral grey matter and their relevance for connectome analyses. In particular, benefits and limitations of using different available atlases and parcellation schemes are reviewed. It is furthermore discussed how atlas information is currently used in connectivity analyses with major focus on seed-based and seed-target analyses, connectivity-based parcellation results, and the robust anatomical interpretation of connectivity data. Particularly this last aspect opens the possibility of integrating connectivity information into given anatomical frameworks, paving the way to multi-modal atlases of the human brain for a thorough understanding of structure-function relationships.
Collapse
|
92
|
Zilles K, Amunts K. Individual variability is not noise. Trends Cogn Sci 2013; 17:153-5. [DOI: 10.1016/j.tics.2013.02.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/09/2023]
|
93
|
Langner R, Cieslik EC, Behrwind SD, Roski C, Caspers S, Zilles K, Eickhoff SB. Altern und kognitive Handlungskontrolle: Veränderungen der Performanz und funktionellen Konnektivität. KLIN NEUROPHYSIOL 2013. [DOI: 10.1055/s-0033-1337211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
94
|
Bzdok D, Laird A, Zilles K, Fox P, Eickhoff S. Subregionale Spezialisierung der menschlichen Amygdala: Struktur, Konnektivität und Funktion. KLIN NEUROPHYSIOL 2013. [DOI: 10.1055/s-0033-1337198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
95
|
Hensel L, Danilo B, Müller V, Zilles K, Eickhoff S. Neurobiologische Korrelate expliziter sozialer Urteile über Stimmen. KLIN NEUROPHYSIOL 2013. [DOI: 10.1055/s-0033-1337260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
96
|
de Sousa AA, Sherwood CC, Hof PR, Zilles K. Lamination of the lateral geniculate nucleus of catarrhine primates. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:93-108. [PMID: 23467282 DOI: 10.1159/000346495] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/10/2012] [Indexed: 11/19/2022]
Abstract
The lateral geniculate nucleus (LGN) of catarrhine primates - with the exception of gibbons - is typically described as a 6-layered structure, comprised of 2 ventral magnocellular layers, and 4 dorsal parvocellular layers. The parvocellular layers of the LGN are involved in color vision. Therefore, it is hypothesized that a 6-layered LGN is a shared-derived trait among catarrhines. This might suggest that in gibbons the lack of further subdivisions of the parvocellular layers is a recent change, and could be related to specializations of visual information processing in this taxon. To address these hypotheses, the lamination of the LGN was investigated in a range of catarrhine species, including several taxa not previously described, and the evolution of the LGN was reconstructed using phylogenetic information. The findings indicate that while all catarrhine species have 4 parvocellular leaflets, two main patterns of LGN parvocellular lamination occur: 2 undivided parvocellular layers in some species, and 4 parvocellular leaflets (with occasional subleaflets) in other species. LGN size was not found to be related to lamination pattern. Both patterns were found to occur in divergent clades, which is suggestive of homoplasy within the catarrhines in LGN morphology.
Collapse
|
97
|
Palomero-Gallagher N, Zilles K. Neurotransmitter receptor alterations in hepatic encephalopathy: a review. Arch Biochem Biophys 2013; 536:109-21. [PMID: 23466244 DOI: 10.1016/j.abb.2013.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/07/2023]
Abstract
Hepatic encephalopathy (HE), a complex neuropsychiatric syndrome with symptoms ranging from subtle neuropsychiatric and motor disturbances to deep coma and death, is thought to be a clinical manifestation of a low-grade cerebral oedema associated with an altered neuron-astrocyte crosstalk and exacerbated by hyperammonemia and oxidative stress. These events are tightly coupled with alterations in neurotransmission, either in a causal or a causative manner, resulting in a net increase of inhibitory neurotransmission. Therefore, research focussed mainly on the potential role of γ-aminobutyric acid-(GABA) or glutamate-mediated neurotransmission in the pathophysiology of HE, though roles for other neurotransmitters (e.g. serotonin, dopamine, adenosine and histamine) or for neurosteroids or endogenous benzodiazepines have also been suggested. Therefore, we here review HE-related alterations in neurotransmission, focussing on changes in the levels of classical neurotransmitters and the neuromodulator adenosine, variations in the activity and/or concentrations of key enzymes involved in their metabolism, as well as in the densities of their receptors.
Collapse
|
98
|
Zilles K, Palomero-Gallagher N, Amunts K. Development of cortical folding during evolution and ontogeny. Trends Neurosci 2013; 36:275-84. [PMID: 23415112 DOI: 10.1016/j.tins.2013.01.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 12/23/2022]
Abstract
Cortical folding is a hallmark of many, but not all, mammalian brains. The degree of folding increases with brain size across mammals, but at different scales between orders and families. In this review we summarize recent studies that have shed light on cortical folding and discuss new models that arise from these data. Genetic analyses argue for an independent development of brain volume and gyrification, but more recent data on the cellular development of the cortex and its connectivity highlight the role of these processes in cortical folding (grey matter hypothesis). This, and the widely discussed tension hypothesis, further tested by analyzing the mechanical properties of maturing nerve fibers, synapses, and dendrites, can provide the basis for a future integrative view on cortical folding.
Collapse
|
99
|
Kellermann TS, Caspers S, Fox PT, Zilles K, Roski C, Laird AR, Turetsky BI, Eickhoff SB. Task- and resting-state functional connectivity of brain regions related to affection and susceptible to concurrent cognitive demand. Neuroimage 2013; 72:69-82. [PMID: 23370055 DOI: 10.1016/j.neuroimage.2013.01.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 12/04/2012] [Accepted: 01/13/2013] [Indexed: 01/26/2023] Open
Abstract
A recent fMRI-study revealed neural responses for affective processing of stimuli for which overt attention irrespective of stimulus valence was required in the orbitofrontal cortex (OFC) and bilateral amygdala (AMY): activation decreased with increasing cognitive demand. To further characterize the network putatively related to this attenuation, we here characterized these regions with respect to their functional properties and connectivity patterns in task-dependent and task-independent states. All experiments of the BrainMap database activating the seed regions OFC and bilateral AMY were identified. Their functional characteristics were quantitatively inferred using the behavioral meta-data of the retrieved experiments. Task-dependent functional connectivity was characterized by meta-analytic connectivity modeling (MACM) of significant co-activations with these seed regions. Task-independent resting-state functional connectivity analysis in a sample of 100 healthy subjects complemented these analyses. All three seed regions co-activated with subgenual cingulum (SGC), precuneus (PCu) and nucleus accumbens (NAcc) in the task-dependent MACM analysis. Task-independent resting-state connectivity revealed significant coupling of the seeds only with the SGC, but not the PCu and the NAcc. The former region (SGC) moreover was shown to feature significant resting-state connectivity with all other regions implicated in the network connected to regions where emotional processing may be modulated by a cognitive distractor. Based on its functional profile and connectivity pattern, we suggest that the SGC might serve as a key hub in the identified network, as such linking autobiographic information [PCu], reward [NAcc], (reinforce) values [OFC] and emotional significance [AMY]. Such a role, in turn, may allow the SGC to influence the OFC and AMY to modulate affective processing.
Collapse
|
100
|
Oishi K, Huang H, Yoshioka T, Ying SH, Zee DS, Zilles K, Amunts K, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans AC, van Zijl PCM, Mazziotta JC, Mori S. Superficially located white matter structures commonly seen in the human and the macaque brain with diffusion tensor imaging. Brain Connect 2013; 1:37-47. [PMID: 22432953 DOI: 10.1089/brain.2011.0005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The white matter of the brain consists of fiber tracts that connect different regions of the brain. Among these tracts, the intrahemispheric cortico-cortical connections are called association fibers. The U-fibers are short association fibers that connect adjacent gyri. These fibers were thought to work as part of the cortico-cortical networks to execute associative brain functions. However, their anatomy and functions have not been documented in detail for the human brain. In past studies, U-fibers have been characterized in the human brain with diffusion tensor imaging (DTI). However, the validity of such findings remains unclear. In this study, DTI of the macaque brain was performed, and the anatomy of U-fibers was compared with that of the human brain reported in a previous study. The macaque brain was chosen because it is the most commonly used animal model for exploring cognitive functions and the U-fibers of the macaque brain have been already identified by axonal tracing studies, which makes it an ideal system for confirming the DTI findings. Ten U-fibers found in the macaque brain were also identified in the human brain, with a similar organization and topology. The delineation of these species-conserved white matter structures may provide new options for understanding brain anatomy and function.
Collapse
|