76
|
Abstract
PURPOSE OF REVIEW The first monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have been approved for clinical use. This timely review highlights recent developments. RECENT FINDINGS Low-density lipoprotein cholesterol (LDL-C) is the primary driver of atherosclerosis and the key target for intervention. Yet despite best treatment including statins, attaining sufficient LDL-C lowering can be problematic for high cardiovascular risk patients. The development of PCSK9 inhibitors, driven by novel genetic and mechanistic insights, offers an answer. Removal of circulating PCSK9 increases LDL receptor availability, and thus markedly decreases plasma LDL-C levels (by ∼50-60%), and is additive to the lipid lowering effects of statins and ezetimibe. PCSK9 inhibition also reduces (by 25-30%) plasma levels of lipoprotein(a), a causal factor in atherosclerotic vascular disease, suggestive of partial catabolism of lipoprotein(a) by LDL receptors. The ODYSSEY and PROFICIO (Programme to Reduce LDL-C and Cardiovascular Outcomes Following Inhibition of PCSK9 In Different Populations) clinical trial programmes involving a wide range of high-risk patients, including statin intolerant patients, have confirmed the consistency of the LDL response, even with concomitant high-intensity statin or nonstatin therapy. Extensive evidence to date attests to a favourable safety and tolerability profile for these innovative agents. SUMMARY The new pharmacotherapeutic era of PCSK9 inhibition is upon us, promising major reduction in cardiovascular events across a wide spectrum of high-risk patients.
Collapse
|
77
|
Darabi M, Guillas-Baudouin I, Le Goff W, Chapman MJ, Kontush A. Therapeutic applications of reconstituted HDL: When structure meets function. Pharmacol Ther 2015; 157:28-42. [PMID: 26546991 DOI: 10.1016/j.pharmthera.2015.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reconstituted forms of HDL (rHDL) are under development for infusion as a therapeutic approach to attenuate atherosclerotic vascular disease and to reduce cardiovascular risk following acute coronary syndrome and ischemic stroke. Currently available rHDL formulations developed for clinical use contain apolipoprotein A-I (apoA-I) and one of the major lipid components of HDL, either phosphatidylcholine or sphingomyelin. Recent data have established that quantitatively minor molecular constituents of HDL particles can strongly influence their anti-atherogenic functionality. Novel rHDL formulations displaying enhanced biological activities, including cellular cholesterol efflux, may therefore offer promising prospects for the development of HDL-based, anti-atherosclerotic therapies. Indeed, recent structural and functional data identify phosphatidylserine as a bioactive component of HDL; the content of phosphatidylserine in HDL particles displays positive correlations with all metrics of their functionality. This review summarizes current knowledge of structure-function relationships in rHDL formulations, with a focus on phosphatidylserine and other negatively-charged phospholipids. Mechanisms potentially underlying the atheroprotective role of these lipids are discussed and their potential for the development of HDL-based therapies highlighted.
Collapse
|
78
|
Meikle PJ, Wong G, Tan R, Giral P, Robillard P, Orsoni A, Hounslow N, Magliano DJ, Shaw JE, Curran JE, Blangero J, Kingwell BA, Chapman MJ. Statin action favors normalization of the plasma lipidome in the atherogenic mixed dyslipidemia of MetS: potential relevance to statin-associated dysglycemia. J Lipid Res 2015; 56:2381-92. [PMID: 26486974 PMCID: PMC4655992 DOI: 10.1194/jlr.p061143] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 01/14/2023] Open
Abstract
The impact of statin treatment on the abnormal plasma lipidome of mixed dyslipidemic patients with metabolic syndrome (MetS), a group at increased risk of developing diabetes, was evaluated. Insulin-resistant hypertriglyceridemic hypertensive obese males (n = 12) displaying MetS were treated with pitavastatin (4 mg/day) for 180 days; healthy normolipidemic age-matched nonobese males (n = 12) acted as controls. Statin treatment substantially normalized triglyceride (−41%), remnant cholesterol (−55%), and LDL-cholesterol (−39%), with minor effect on HDL-cholesterol (+4%). Lipidomic analysis, normalized to nonHDL-cholesterol in order to probe statin-induced differences in molecular composition independently of reduction in plasma cholesterol, revealed increment in 132 of 138 lipid species that were subnormal at baseline and significantly shifted toward the control group on statin treatment. Increment in alkyl- and alkenylphospholipids (plasmalogens) was prominent, and consistent with significant statin-induced increase in plasma polyunsaturated fatty acid levels. Comparison of the statin-mediated lipidomic changes in MetS with the abnormal plasma lipidomic profile characteristic of prediabetes and T2D in the Australian Diabetes, Obesity, and Lifestyle Study and San Antonio Family Heart Study cohorts by hypergeometric analysis revealed a significant shift toward the lipid profile of controls, indicative of a marked trend toward a normolipidemic phenotype. Pitavastatin attenuated the abnormal plasma lipidome of MetS patients typical of prediabetes and T2D.
Collapse
|
79
|
Hussein H, Saheb S, Couturier M, Atassi M, Orsoni A, Carrié A, Therond P, Chantepie S, Robillard P, Bruckert E, Chapman MJ, Kontush A. Small, dense high-density lipoprotein 3 particles exhibit defective antioxidative and anti-inflammatory function in familial hypercholesterolemia: Partial correction by low-density lipoprotein apheresis. J Clin Lipidol 2015; 10:124-33. [PMID: 26892129 DOI: 10.1016/j.jacl.2015.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) features elevated oxidative stress and accelerated atherosclerosis driven by elevated levels of atherogenic lipoproteins relative to subnormal levels of atheroprotective high-density lipoprotein (HDL). Small, dense HDL3 potently protects low-density lipoprotein (LDL) against proinflammatory oxidative damage. OBJECTIVE To determine whether antioxidative and/or anti-inflammatory activities of HDL are defective in FH and whether such defects are corrected by LDL apheresis. METHODS Antioxidative and antiinflammatory activities of HDL were evaluated as protection of reference LDL from oxidative stress and capacity to prevent accumulation of proinflammatory oxidised lipids, respectively. Lipid surface rigidity of HDL was assessed using a fluorescent probe. HDL components were measured by analytical approaches. Systemic oxidative stress was characterized as plasma 8-isoprostanes. RESULTS Pre-LDL-apheresis, FH patients (n = 10) exhibited elevated systemic oxidative stress (3.3-fold, P < 0.001) vs. sex- and age-matched normolipidemic controls (n = 10). Both antioxidative and antiinflammatory activity of HDL3 were impaired (up to -91%, P < 0.01) in FH. Sphingomyelin and saturated fatty acid contents were elevated in FH HDL3, resulting in enhanced lipid surface rigidity. The surface lipid content (phospholipids, free cholesterol) was reduced in FH (up to -15%, P < 0.001), whereas content of core lipids (cholesteryl esters, triglycerides) was elevated (up to +17%, P < 0.001). Molar apolipoprotein A-I content of HDL3 was subnormal in FH. A single LDL-apheresis session partially corrected (by up to 76%) deficient HDL antiatherogenic activities, attenuated systemic oxidative stress and partially normalised both the lipid composition and surface rigidity of HDL particles. CONCLUSIONS FH features elevated oxidative stress and deficient antioxidative and anti-inflammatory activities of small, dense HDL3; such functional deficiency is intimately linked to anomalies in lipid and protein composition, which may impair the capacity of HDL to acquire and inactivate oxidized lipids.
Collapse
|
80
|
Sundararajan K, Milne D, Edwards S, Chapman MJ, Shakib S. Anti-seizure prophylaxis in critically ill patients with traumatic brain injury in an intensive care unit. Anaesth Intensive Care 2015; 43:646-51. [PMID: 26310417 DOI: 10.1177/0310057x1504300515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objectives of this prospective observational study were to determine the proportion of patients with traumatic brain injury who received effective anti-seizure prophylaxis. The study was conducted in a tertiary level ICU of a major trauma referral centre between February 2012 and August 2013. A total of 2361 patients were admitted to the ICU in this study period, of whom125 patients (index) with traumatic head injury were included in this study. The patients had a mean age of 45 years (SD=19), a mean score on the Glasgow Coma Scale of 9 (SD=4), a mean injury severity score of 27 (SD=13) and a mean APACHE III score of 55 (SD=27). Only 13.6 % (17 of 125) of patients were given anti-seizure prophylaxis and phenytoin levels were measured in 9.6% (12 of 125). Although all 12 patients achieved an effective concentration for phenytoin therapy (>40 µmol/l) after the loading dose, no patient had their target concentration consistently maintained in the recommended therapeutic range (40 to 80 µmol/l) throughout the seven-day monitoring period. There was wide fluctuation in phenytoin levels in the patients in this study. Twenty-two (18%) of the index patients had post-traumatic seizures, indicating a high prevalence for this study. Poor compliance with guidelines could possibly explain this phenomenon. Future studies are needed to look at the dosing and monitoring of phenytoin and/or alternative anti-seizure prophylaxis in patients with traumatic brain injury.
Collapse
|
81
|
Maiden MJ, Otto S, Brearly J, Chapman MJ, Nash CH, Edwards J, Kuchel TR, Bellomo R. Structure and function of the kidney in septic shock - a prospective controlled study. Intensive Care Med Exp 2015. [PMCID: PMC4797103 DOI: 10.1186/2197-425x-3-s1-a838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
82
|
Selvanderan SP, Summers MJ, Plummer MP, Finnis ME, Ali Abdelhamid Y, Anderson MB, Chapman MJ, Rayner CK, Deane AM. Withholding Stress Ulcer Prophylaxis To Mechanically Ventilated Enterally-Fed Critically Ill Patients Appears Safe: A Randomised Double-Blind Placebo Controlled Pilot Study. Intensive Care Med Exp 2015. [PMCID: PMC4797000 DOI: 10.1186/2197-425x-3-s1-a41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
83
|
Lee JS, Chapman MJ, Piraino P, Lamerz J, Schindler T, Cutler P, Dernick G. Remodeling of plasma lipoproteins in patients with rheumatoid arthritis: Interleukin-6 receptor-alpha inhibition with tocilizumab. Proteomics Clin Appl 2015. [PMID: 26201085 DOI: 10.1002/prca.201500036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Rheumatoid arthritis (RA) is associated with increased cardiovascular risk, mediated in part by elevated circulating interleukin-6 levels and proinflammatory changes in plasma lipoproteins. We hypothesized that RA patients acquire inflammation-induced modifications to the protein cargo of circulating lipoproteins that may be reversed by tocilizumab, an interleukin-6 receptor-alpha inhibitor. EXPERIMENTAL DESIGN Size-exclusion chromatography and reverse-phase protein arrays using 29 antibodies against 26 proteins were applied at baseline and after tocilizumab treatment to analyze the distributions of apolipoproteins, enzymes, lipid transfer proteins, and other associated proteins in plasma lipoprotein fractions from 20 women with RA. RESULTS A 30% reduction in high-density lipoprotein (HDL)-associated serum amyloid A4 and complement C4 occurred with tocilizumab. Levels of C-reactive protein, associated or comigrating with HDL and low-density lipoprotein (LDL) peaks, were reduced on treatment by approximately 80% and 24%, respectively. Reductions in lipoprotein-associated phospholipase A2, lipoprotein (a), and cholesteryl ester transfer protein in the LDL fraction suggest reductions in LDL-associated proatherogenic factors. Elevations in very low-density lipoprotein (VLDL) enriched with apolipoprotein E were equally observed. CONCLUSIONS AND CLINICAL RELEVANCE Tocilizumab treatment led to reductions in proinflammatory components and proatherogenic proteins associated with HDL. Whether changes in the proteome of VLDL, LDL, and HDL induced by anti-inflammatory tocilizumab treatment in RA patients modify cardiovascular disease risk requires further investigation.
Collapse
|
84
|
Gómez Rosso L, Lhomme M, Meroño T, Sorroche P, Catoggio L, Soriano E, Saucedo C, Malah V, Dauteuille C, Boero L, Lesnik P, Robillard P, John Chapman M, Brites F, Kontush A. Erratum to ‘Altered lipidome and antioxidative activity of small, dense HDL in normolipidemic rheumatoid arthritis: Relevance of inflammation’ [Atherosclerosis 237 (2014) 652–660]. Atherosclerosis 2015. [DOI: 10.1016/j.atherosclerosis.2015.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
85
|
Nenke MA, Rankin W, Chapman MJ, Stevens NE, Diener KR, Hayball JD, Lewis JG, Torpy DJ. Depletion of high-affinity corticosteroid-binding globulin corresponds to illness severity in sepsis and septic shock; clinical implications. Clin Endocrinol (Oxf) 2015; 82:801-7. [PMID: 25409953 DOI: 10.1111/cen.12680] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 09/23/2014] [Accepted: 11/17/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Corticosteroid-binding globulin (CBG) is cleaved by neutrophil elastase converting the high-affinity (haCBG) conformation of CBG to a low-affinity (laCBG) conformation with a ninefold reduced cortisol-binding affinity. These in vitro data suggest that cortisol release by CBG cleavage results in the targeted delivery of cortisol to areas of inflammation. Our objective was to determine whether CBG cleavage alters circulating levels of haCBG and laCBG in vivo in proportion to sepsis severity. DESIGN Prospective, observational cohort study in an adult tertiary level Intensive Care Unit in Adelaide, Australia. PATIENTS Thirty-three patients with sepsis or septic shock grouped by illness severity [sepsis, septic shock survivors, septic shock nonsurvivors and other shock]. MEASUREMENTS Plasma levels of haCBG and laCBG were assessed using a recently developed in-house assay in patients. Plasma total and free cortisol levels were also measured. RESULTS Plasma total CBG and haCBG levels fell significantly, in proportion to disease severity (P < 0·0001 for both). There was a nonsignificant increase in free and total cortisol as illness severity worsened (P = 0·19 and P = 0·39, respectively). Illness severity was better correlated with haCBG levels than either free or total cortisol levels. CONCLUSIONS Increasing illness severity in sepsis and septic shock is associated with markedly reduced circulating haCBG concentrations in vivo. We propose that low levels of haCBG in chronic inflammation may limit the availability of cortisol to inflammatory sites, perpetuating the inflammatory process.
Collapse
|
86
|
Rached F, Lhomme M, Camont L, Gomes F, Dauteuille C, Robillard P, Santos RD, Lesnik P, Serrano CV, Chapman MJ, Kontush A. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: Relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1254-61. [PMID: 26037829 DOI: 10.1016/j.bbalip.2015.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Low plasma levels of high-density lipoprotein-cholesterol (HDL-C) are typical of acute myocardial infarction (MI) and predict risk of recurrent cardiovascular events. The potential relationships between modifications in the molecular composition and the functionality of HDL subpopulations in acute MI however remain indeterminate. METHODS AND RESULTS ST segment elevation MI (STEMI) patients were recruited within 24h after diagnosis (n=16) and featured low HDL-C (-31%, p<0.05) and acute-phase inflammation (determined as marked elevations in C-reactive protein, serum amyloid A (SAA) and interleukin-6) as compared to age- and sex-matched controls (n=10). STEMI plasma HDL and its subpopulations (HDL2b, 2a, 3a, 3b, 3c) displayed attenuated cholesterol efflux capacity from THP-1 cells (up to -32%, p<0.01, on a unit phospholipid mass basis) vs. CONTROLS Plasma HDL and small, dense HDL3b and 3c subpopulations from STEMI patients exhibited reduced anti-oxidative activity (up to -68%, p<0.05, on a unit HDL mass basis). HDL subpopulations in STEMI were enriched in two proinflammatory bioactive lipids, lysophosphatidylcholine (up to 3.0-fold, p<0.05) and phosphatidic acid (up to 8.4-fold, p<0.05), depleted in apolipoprotein A-I (up to -23%, p<0.05) and enriched in SAA (up to +10.2-fold, p<0.05); such changes were most marked in the HDL3b subfraction. In vitro HDL enrichment in both lysophosphatidylcholine and phosphatidic acid exerted deleterious effects on HDL functionality. CONCLUSIONS In the early phase of STEMI, HDL particle subpopulations display marked, concomitant alterations in both lipidome and proteome which are implicated in impaired HDL functionality. Such modifications may act synergistically to confer novel deleterious biological activities to STEMI HDL. SIGNIFICANCE Our present data highlight complex changes in the molecular composition and functionality of HDL particle subpopulations in the acute phase of STEMI, and for the first time, reveal that concomitant modifications in both the lipidome and proteome contribute to functional deficiencies in cholesterol efflux and antioxidative activities of HDL particles. These findings may provide new biomarkers and new insights in therapeutic strategy to reduce cardiovascular risk in this clinical setting where such net deficiency in HDL function, multiplied by low circulating HDL concentrations, can be expected to contribute to accelerated atherogenesis.
Collapse
|
87
|
Wiegman A, Gidding SS, Watts GF, Chapman MJ, Ginsberg HN, Cuchel M, Ose L, Averna M, Boileau C, Borén J, Bruckert E, Catapano AL, Defesche JC, Descamps OS, Hegele RA, Hovingh GK, Humphries SE, Kovanen PT, Kuivenhoven JA, Masana L, Nordestgaard BG, Pajukanta P, Parhofer KG, Raal FJ, Ray KK, Santos RD, Stalenhoef AFH, Steinhagen-Thiessen E, Stroes ES, Taskinen MR, Tybjærg-Hansen A, Wiklund O. Familial hypercholesterolaemia in children and adolescents: gaining decades of life by optimizing detection and treatment. Eur Heart J 2015; 36:2425-37. [PMID: 26009596 PMCID: PMC4576143 DOI: 10.1093/eurheartj/ehv157] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/19/2015] [Indexed: 12/27/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a common genetic cause of premature coronary heart disease (CHD). Globally, one baby is born with FH every minute. If diagnosed and treated early in childhood, individuals with FH can have normal life expectancy. This consensus paper aims to improve awareness of the need for early detection and management of FH children. Familial hypercholesterolaemia is diagnosed either on phenotypic criteria, i.e. an elevated low-density lipoprotein cholesterol (LDL-C) level plus a family history of elevated LDL-C, premature coronary artery disease and/or genetic diagnosis, or positive genetic testing. Childhood is the optimal period for discrimination between FH and non-FH using LDL-C screening. An LDL-C ≥5 mmol/L (190 mg/dL), or an LDL-C ≥4 mmol/L (160 mg/dL) with family history of premature CHD and/or high baseline cholesterol in one parent, make the phenotypic diagnosis. If a parent has a genetic defect, the LDL-C cut-off for the child is ≥3.5 mmol/L (130 mg/dL). We recommend cascade screening of families using a combined phenotypic and genotypic strategy. In children, testing is recommended from age 5 years, or earlier if homozygous FH is suspected. A healthy lifestyle and statin treatment (from age 8 to 10 years) are the cornerstones of management of heterozygous FH. Target LDL-C is <3.5 mmol/L (130 mg/dL) if >10 years, or ideally 50% reduction from baseline if 8–10 years, especially with very high LDL-C, elevated lipoprotein(a), a family history of premature CHD or other cardiovascular risk factors, balanced against the long-term risk of treatment side effects. Identifying FH early and optimally lowering LDL-C over the lifespan reduces cumulative LDL-C burden and offers health and socioeconomic benefits. To drive policy change for timely detection and management, we call for further studies in the young. Increased awareness, early identification, and optimal treatment from childhood are critical to adding decades of healthy life for children and adolescents with FH.
Collapse
|
88
|
Stroes ES, Thompson PD, Corsini A, Vladutiu GD, Raal FJ, Ray KK, Roden M, Stein E, Tokgözoğlu L, Nordestgaard BG, Bruckert E, De Backer G, Krauss RM, Laufs U, Santos RD, Hegele RA, Hovingh GK, Leiter LA, Mach F, März W, Newman CB, Wiklund O, Jacobson TA, Catapano AL, Chapman MJ, Ginsberg HN. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur Heart J 2015; 36:1012-22. [PMID: 25694464 PMCID: PMC4416140 DOI: 10.1093/eurheartj/ehv043] [Citation(s) in RCA: 896] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 12/14/2022] Open
Abstract
Statin-associated muscle symptoms (SAMS) are one of the principal reasons for statin non-adherence and/or discontinuation, contributing to adverse cardiovascular outcomes. This European Atherosclerosis Society (EAS) Consensus Panel overviews current understanding of the pathophysiology of statin-associated myopathy, and provides guidance for diagnosis and management of SAMS. Statin-associated myopathy, with significant elevation of serum creatine kinase (CK), is a rare but serious side effect of statins, affecting 1 per 1000 to 1 per 10 000 people on standard statin doses. Statin-associated muscle symptoms cover a broader range of clinical presentations, usually with normal or minimally elevated CK levels, with a prevalence of 7-29% in registries and observational studies. Preclinical studies show that statins decrease mitochondrial function, attenuate energy production, and alter muscle protein degradation, thereby providing a potential link between statins and muscle symptoms; controlled mechanistic and genetic studies in humans are necessary to further understanding. The Panel proposes to identify SAMS by symptoms typical of statin myalgia (i.e. muscle pain or aching) and their temporal association with discontinuation and response to repetitive statin re-challenge. In people with SAMS, the Panel recommends the use of a maximally tolerated statin dose combined with non-statin lipid-lowering therapies to attain recommended low-density lipoprotein cholesterol targets. The Panel recommends a structured work-up to identify individuals with clinically relevant SAMS generally to at least three different statins, so that they can be offered therapeutic regimens to satisfactorily address their cardiovascular risk. Further research into the underlying pathophysiological mechanisms may offer future therapeutic potential.
Collapse
|
89
|
Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, Kuivenhoven JA, Nordestgaard BG, Descamps OS, Steinhagen-Thiessen E, Tybjaerg-Hansen A, Watts GF, Averna M, Boileau C, Borén J, Catapano AL, Defesche JC, Hovingh GK, Humphries SE, Kovanen PT, Masana L, Pajukanta P, Parhofer KG, Ray KK, Stalenhoef AFH, Stroes E, Taskinen MR, Wiegman A, Wiklund O, Chapman MJ. [Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society]. Turk Kardiyol Dern Ars 2015; 43 Suppl 1:1-14. [PMID: 27326442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
|
90
|
Rached FH, Chapman MJ, Kontush A. HDL particle subpopulations: Focus on biological function. Biofactors 2015; 41:67-77. [PMID: 25809447 DOI: 10.1002/biof.1202] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 12/12/2022]
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) constitute an independent biomarker of cardiovascular morbi-mortality. However, recent advances have drastically modified the classical and limited view of HDL as a carrier of 'good cholesterol', and have revealed unexpected levels of complexity in the circulating HDL particle pool. HDL particles are indeed highly heterogeneous in structure, intravascular metabolism and biological activity. This review describes recent progress in our understanding of HDL subpopulations and their biological activities, and focuses on relationships between the structural, compositional and functional heterogeneity of HDL particles.
Collapse
|
91
|
Frisdal E, Le Lay S, Hooton H, Poupel L, Olivier M, Alili R, Plengpanich W, Villard EF, Gilibert S, Lhomme M, Superville A, Miftah-Alkhair L, Chapman MJ, Dallinga-Thie GM, Venteclef N, Poitou C, Tordjman J, Lesnik P, Kontush A, Huby T, Dugail I, Clement K, Guerin M, Le Goff W. Adipocyte ATP-binding cassette G1 promotes triglyceride storage, fat mass growth, and human obesity. Diabetes 2015; 64:840-55. [PMID: 25249572 DOI: 10.2337/db14-0245] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The role of the ATP-binding cassette G1 (ABCG1) transporter in human pathophysiology is still largely unknown. Indeed, beyond its role in mediating free cholesterol efflux to HDL, the ABCG1 transporter equally promotes lipid accumulation in a triglyceride (TG)-rich environment through regulation of the bioavailability of lipoprotein lipase (LPL). Because both ABCG1 and LPL are expressed in adipose tissue, we hypothesized that ABCG1 is implicated in adipocyte TG storage and therefore could be a major actor in adipose tissue fat accumulation. Silencing of Abcg1 expression by RNA interference in 3T3-L1 preadipocytes compromised LPL-dependent TG accumulation during the initial phase of differentiation. Generation of stable Abcg1 knockdown 3T3-L1 adipocytes revealed that Abcg1 deficiency reduces TG storage and diminishes lipid droplet size through inhibition of Pparγ expression. Strikingly, local inhibition of adipocyte Abcg1 in adipose tissue from mice fed a high-fat diet led to a rapid decrease of adiposity and weight gain. Analysis of two frequent ABCG1 single nucleotide polymorphisms (rs1893590 [A/C] and rs1378577 [T/G]) in morbidly obese individuals indicated that elevated ABCG1 expression in adipose tissue was associated with increased PPARγ expression and adiposity concomitant to increased fat mass and BMI (haplotype AT>GC). The critical role of ABCG1 in obesity was further confirmed in independent populations of severe obese and diabetic obese individuals. This study identifies for the first time a major role of adipocyte ABCG1 in adiposity and fat mass growth and suggests that adipose ABCG1 might represent a potential therapeutic target in obesity.
Collapse
|
92
|
Du XM, Kim MJ, Hou L, Le Goff W, Chapman MJ, Van Eck M, Curtiss LK, Burnett JR, Cartland SP, Quinn CM, Kockx M, Kontush A, Rye KA, Kritharides L, Jessup W. HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export. Circ Res 2015; 116:1133-42. [PMID: 25589556 DOI: 10.1161/circresaha.116.305485] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-density lipoprotein (HDL) is a heterogeneous population of particles. Differences in the capacities of HDL subfractions to remove cellular cholesterol may explain variable correlations between HDL-cholesterol and cardiovascular risk and inform future targets for HDL-related therapies. The ATP binding cassette transporter A1 (ABCA1) facilitates cholesterol efflux to lipid-free apolipoprotein A-I, but the majority of apolipoprotein A-I in the circulation is transported in a lipidated state and ABCA1-dependent efflux to individual HDL subfractions has not been systematically studied. OBJECTIVE Our aims were to determine which HDL particle subfractions are most efficient in mediating cellular cholesterol efflux from foam cell macrophages and to identify the cellular cholesterol transporters involved in this process. METHODS AND RESULTS We used reconstituted HDL particles of defined size and composition, isolated subfractions of human plasma HDL, cell lines stably expressing ABCA1 or ABCG1, and both mouse and human macrophages in which ABCA1 or ABCG1 expression was deleted. We show that ABCA1 is the major mediator of macrophage cholesterol efflux to HDL, demonstrating most marked efficiency with small, dense HDL subfractions (HDL3b and HDL3c). ABCG1 has a lesser role in cholesterol efflux and a negligible role in efflux to HDL3b and HDL3c subfractions. CONCLUSIONS Small, dense HDL subfractions are the most efficient mediators of cholesterol efflux, and ABCA1 mediates cholesterol efflux to small dense HDL and to lipid-free apolipoprotein A-I. HDL-directed therapies should target increasing the concentrations or the cholesterol efflux capacity of small, dense HDL species in vivo.
Collapse
|
93
|
Summers MJ, Selvanderan SP, Plummer MP, Finnis ME, Ali Abdelhamid Y, Anderson MB, Chapman MJ, Rayner CK, Deane AM. COMPARISON OF MACROSCOPIC ABNORMALITIES IN PATIENTS RECEIVING ROUTINE PANTOPRAZOLE WHEN COMPARED TO PLACEBO. Intensive Care Med Exp 2015. [PMCID: PMC4796955 DOI: 10.1186/2197-425x-3-s1-a980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
94
|
Kontush A, Lindahl M, Lhomme M, Calabresi L, Chapman MJ, Davidson WS. Structure of HDL: particle subclasses and molecular components. Handb Exp Pharmacol 2015; 224:3-51. [PMID: 25522985 DOI: 10.1007/978-3-319-09665-0_1] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A molecular understanding of high-density lipoprotein (HDL) will allow a more complete grasp of its interactions with key plasma remodelling factors and with cell-surface proteins that mediate HDL assembly and clearance. However, these particles are notoriously heterogeneous in terms of almost every physical, chemical and biological property. Furthermore, HDL particles have not lent themselves to high-resolution structural study through mainstream techniques like nuclear magnetic resonance and X-ray crystallography; investigators have therefore had to use a series of lower resolution methods to derive a general structural understanding of these enigmatic particles. This chapter reviews current knowledge of the composition, structure and heterogeneity of human plasma HDL. The multifaceted composition of the HDL proteome, the multiple major protein isoforms involving translational and posttranslational modifications, the rapidly expanding knowledge of the HDL lipidome, the highly complex world of HDL subclasses and putative models of HDL particle structure are extensively discussed. A brief history of structural studies of both plasma-derived and recombinant forms of HDL is presented with a focus on detailed structural models that have been derived from a range of techniques spanning mass spectrometry to molecular dynamics.
Collapse
|
95
|
Giral P, Simon D, Chapman MJ. Letter by Giral et al regarding article, "lipoprotein(a) concentrations, rosuvastatin therapy, and residual vascular risk: an analysis from the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin)". Circulation 2014; 130:e151. [PMID: 25332284 DOI: 10.1161/circulationaha.114.009590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
96
|
Puri R, Nissen SE, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nicholls SJ. Antiatherosclerotic Effects of Long-Term Maximally Intensive Statin Therapy After Acute Coronary Syndrome. Arterioscler Thromb Vasc Biol 2014; 34:2465-72. [PMID: 25212234 DOI: 10.1161/atvbaha.114.303932] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
97
|
Stegman B, Puri R, Cho L, Shao M, Ballantyne CM, Barter PJ, Chapman MJ, Erbel R, Libby P, Raichlen JS, Uno K, Kataoka Y, Nissen SE, Nicholls SJ. High-intensity statin therapy alters the natural history of diabetic coronary atherosclerosis: insights from SATURN. Diabetes Care 2014; 37:3114-20. [PMID: 25190674 DOI: 10.2337/dc14-1121] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Although statins can induce coronary atheroma regression, this benefit has yet to be demonstrated in diabetic individuals. We tested the hypothesis that high-intensity statin therapy may promote coronary atheroma regression in patients with diabetes. RESEARCH DESIGN AND METHODS The Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin (SATURN) used serial intravascular ultrasound measures of coronary atheroma volume in patients treated with rosuvastatin 40 mg or atorvastatin 80 mg for 24 months. This analysis compared changes in biochemistry and coronary percent atheroma volume (PAV) in patients with (n = 159) and without (n = 880) diabetes. RESULTS At baseline, patients with diabetes had lower LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C) levels but higher triglyceride and CRP levels compared with patients without diabetes. At follow-up, diabetic patients had lower levels of LDL-C (61.0 ± 20.5 vs. 66.4 ± 22.9 mg/dL, P = 0.01) and HDL-C (46.3 ± 10.6 vs. 49.9 ± 12.0 mg/dL, P < 0.001) but higher levels of triglycerides (127.6 [98.8, 163.0] vs. 113.0 mg/dL [87.6, 151.9], P = 0.001) and CRP (1.4 [0.7, 3.3] vs. 1.0 [0.5, 2.1] mg/L, P = 0.001). Both patients with and without diabetes demonstrated regression of coronary atheroma as measured by change in PAV (-0.83 ± 0.13 vs. -1.15 ± 0.13%, P = 0.08). PAV regression was less in diabetic compared with nondiabetic patients when on-treatment LDL-C levels were >70 mg/dL (-0.31 ± 0.23 vs. -1.01 ± 0.21%, P = 0.03) but similar when LDL-C levels were ≤70 mg/dL (-1.09 ± 0.16 vs. -1.24 ± 0.16%, P = 0.50). CONCLUSIONS High-intensity statin therapy alters the progressive nature of diabetic coronary atherosclerosis, yielding regression of disease in diabetic and nondiabetic patients.
Collapse
|
98
|
|
99
|
Rached F, Santos RD, Camont L, Miname MH, Lhomme M, Dauteuille C, Lecocq S, Serrano CV, Chapman MJ, Kontush A. Defective functionality of HDL particles in familial apoA-I deficiency: relevance of alterations in HDL lipidome and proteome. J Lipid Res 2014; 55:2509-20. [PMID: 25341944 DOI: 10.1194/jlr.m051631] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to -25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to -48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.
Collapse
|
100
|
Gómez Rosso L, Lhomme M, Meroño T, Sorroche P, Catoggio L, Soriano E, Saucedo C, Malah V, Dauteuille C, Boero L, Lesnik P, Robillard P, John Chapman M, Brites F, Kontush A. Altered lipidome and antioxidative activity of small, dense HDL in normolipidemic rheumatoid arthritis: relevance of inflammation. Atherosclerosis 2014; 237:652-60. [PMID: 25463101 DOI: 10.1016/j.atherosclerosis.2014.09.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/02/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) particles exert potent antiatherogenic activities, including antioxidative actions, which are relevant to attenuation of atherosclerosis progression. Such activities are enriched in small, dense HDL and can be compromised under conditions of chronic inflammation like rheumatoid arthritis (RA). However, structure-function relationships of HDL largely remain indeterminate. METHODS The relationships between HDL structure and function were evaluated in normolipidemic patients with active RA (DAS28 > 3.2; n = 12) and in normolipidemic age-matched controls (n = 10). Small, dense HDL3b and 3c particles were isolated from plasma or serum by density gradient ultracentrifugation and their physicochemical characteristics, lipidome (by LC/MS/MS) and antioxidative function (as protection of normolipidemic LDL from free radical-induced oxidation) were evaluated. RESULTS As expected, active RA patients featured significantly elevated plasma levels of high-sensitivity C-reactive protein (hsCRP; p < 0.001) and serum amyloid A (SAA; p < 0.01) relative to controls. Antioxidative activity and weight % chemical composition of small, dense HDL did not differ between RA patients and controls (p > 0.05), whereas HDL phosphosphingolipidome was significantly altered in RA. Subgroup analyses revealed that RA patients featuring high levels of inflammation (hsCRP>10 mg/l) possessed small, dense HDL with reduced antioxidative activities (p < 0.01). Furthermore, antioxidative activity of HDL was inversely correlated with plasma hsCRP (p < 0.01). CONCLUSIONS These data revealed that (i) despite normolipidemic state, the lipidome of small, dense HDL was altered in RA and (ii) high levels of inflammation can be responsible for the functional deficiency of small, dense HDL in RA.
Collapse
|