76
|
Gielen V, Sykes A, Zhu J, Chan B, Macintyre J, Regamey N, Kieninger E, Gupta A, Shoemark A, Bossley C, Davies J, Saglani S, Walker P, Nicholson SE, Dalpke AH, Kon OM, Bush A, Johnston SL, Edwards MR. Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. J Allergy Clin Immunol 2015; 136:177-188.e11. [PMID: 25630941 PMCID: PMC4541718 DOI: 10.1016/j.jaci.2014.11.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 10/27/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
Background Rhinovirus infections are the dominant cause of asthma exacerbations, and deficient virus induction of IFN-α/β/λ in asthmatic patients is important in asthma exacerbation pathogenesis. Mechanisms causing this interferon deficiency in asthmatic patients are unknown. Objective We sought to investigate the expression of suppressor of cytokine signaling (SOCS) 1 in tissues from asthmatic patients and its possible role in impaired virus-induced interferon induction in these patients. Methods We assessed SOCS1 mRNA and protein levels in vitro, bronchial biopsy specimens, and mice. The role of SOCS1 was inferred by proof-of-concept studies using overexpression with reporter genes and SOCS1-deficient mice. A nuclear role of SOCS1 was shown by using bronchial biopsy staining, overexpression of mutant SOCS1 constructs, and confocal microscopy. SOCS1 levels were also correlated with asthma-related clinical outcomes. Results We report induction of SOCS1 in bronchial epithelial cells (BECs) by asthma exacerbation–related cytokines and by rhinovirus infection in vitro. We found that SOCS1 was increased in vivo in bronchial epithelium and related to asthma severity. SOCS1 expression was also increased in primary BECs from asthmatic patients ex vivo and was related to interferon deficiency and increased viral replication. In primary human epithelium, mouse lung macrophages, and SOCS1-deficient mice, SOCS1 suppressed rhinovirus induction of interferons. Suppression of virus-induced interferon levels was dependent on SOCS1 nuclear translocation but independent of proteasomal degradation of transcription factors. Nuclear SOCS1 levels were also increased in BECs from asthmatic patients. Conclusion We describe a novel mechanism explaining interferon deficiency in asthmatic patients through a novel nuclear function of SOCS1 and identify SOCS1 as an important therapeutic target for asthma exacerbations.
Collapse
|
77
|
Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C, Kieninger E, Jung A, Moeller A, Geiser T, Regamey N, Alves MP. Novel antiviral properties of azithromycin in cystic fibrosis airway epithelial cells. Eur Respir J 2014; 45:428-39. [PMID: 25359346 DOI: 10.1183/09031936.00102014] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Virus-associated pulmonary exacerbations, often associated with rhinoviruses (RVs), contribute to cystic fibrosis (CF) morbidity. Currently, there are only a few therapeutic options to treat virus-induced CF pulmonary exacerbations. The macrolide antibiotic azithromycin has antiviral properties in human bronchial epithelial cells. We investigated the potential of azithromycin to induce antiviral mechanisms in CF bronchial epithelial cells. Primary bronchial epithelial cells from CF and control children were infected with RV after azithromycin pre-treatment. Viral RNA, interferon (IFN), IFN-stimulated gene and pattern recognition receptor expression were measured by real-time quantitative PCR. Live virus shedding was assessed by assaying the 50% tissue culture infective dose. Pro-inflammatory cytokine and IFN-β production were evaluated by ELISA. Cell death was investigated by flow cytometry. RV replication was increased in CF compared with control cells. Azithromycin reduced RV replication seven-fold in CF cells without inducing cell death. Furthermore, azithromycin increased RV-induced pattern recognition receptor, IFN and IFN-stimulated gene mRNA levels. While stimulating antiviral responses, azithromycin did not prevent virus-induced pro-inflammatory responses. Azithromycin pre-treatment reduces RV replication in CF bronchial epithelial cells, possibly through the amplification of the antiviral response mediated by the IFN pathway. Clinical studies are needed to elucidate the potential of azithromycin in the management and prevention of RV-induced CF pulmonary exacerbations.
Collapse
|
78
|
Wong EHC, Porter JD, Edwards MR, Johnston SL. The role of macrolides in asthma: current evidence and future directions. THE LANCET RESPIRATORY MEDICINE 2014; 2:657-70. [PMID: 24948430 DOI: 10.1016/s2213-2600(14)70107-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Macrolides, such as clarithromycin and azithromycin, possess antimicrobial, immunomodulatory, and potential antiviral properties. They represent a potential therapeutic option for asthma, a chronic inflammatory disorder characterised by airway hyper-responsiveness that leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing. Results from clinical trials, however, have been contentious. The findings could be confounded by many factors, including the heterogeneity of asthma, treatment duration, dose, and differing outcome measures. Recent evidence suggests improved effectiveness of macrolides in patients with sub-optimally controlled severe neutrophilic asthma and in asthma exacerbations. We examine the evidence from clinical trials and discuss macrolide properties and their relevance to the pathophysiology of asthma. At present, the use of macrolides in chronic asthma or acute exacerbations is not justified. Further work, including proteomic, genomic, and microbiome studies, will advance our knowledge of asthma phenotypes, and help to identify a macrolide-responsive subgroup. Future clinical trials should target this subgroup and place emphasis on clinically relevant outcomes such as asthma exacerbations.
Collapse
|
79
|
von Pfeil DJF, Edwards MR, Déjardin LM. Less invasive unilateral arytenoid lateralization: a modified technique for treatment of idiopathic laryngeal paralysis in dogs: technique description and outcome. Vet Surg 2014; 43:704-11. [PMID: 24708449 DOI: 10.1111/j.1532-950x.2014.12151.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To (1) describe a modification of conventional unilateral cricoarytenoid lateralization (UCAL), called less-invasive unilateral cricoarytenoid lateralization (LI-UCAL) for treatment of idiopathic laryngeal paralysis (LP); (2) report clinical outcome of LI-UCAL; and (3) describe the effect of early discharge after surgery. STUDY DESIGN Retrospective clinical study. ANIMALS Dogs (n = 22). METHODS Medical records (January 2009 to October 2011) of dogs diagnosed with idiopathic LP that had LI-UCAL were reviewed. Signalment, clinical signs, laboratory tests, imaging, concurrent medical conditions, information from the anesthesia record, and hospitalization time were documented. Follow-up was obtained by direct examination, questionnaire, and review of medical records from referring veterinarians. RESULTS Dogs included in the study had variable degrees and duration of respiratory distress before surgery. Median surgery time was 32 minutes. Median hospitalization was 6 hours, and median follow-up was 427 days. Long-term respiratory function, as reported by owners at last follow-up, improved in 95.5% of dogs after surgery; exercise tolerance improved by 90%. Major complications included death secondary to aspiration pneumonia (9%), aspiration pneumonia from which dogs recovered within 3 days after administration of antimicrobials (9%), and development of right-sided laryngeal collapse that required right sided LI-UCAL (4.5%). At long-term follow-up, 95.5% of owners were satisfied with the surgical outcome. CONCLUSION LI-UCAL is a feasible surgical technique and resulted in improvement of clinical signs related to LP. Calm recoveries without adverse effects such as respiratory distress were associated with early discharge. LI-UCAL could be considered an alternative to conventional UCAL.
Collapse
|
80
|
Reed DM, Foldes G, Gatheral T, Paschalaki KE, Lendvai Z, Bagyura Z, Nemeth T, Skopal J, Merkely B, Telcian AG, Gogsadze L, Edwards MR, Gough PJ, Bertin J, Johnston SL, Harding SE, Mitchell JA. Pathogen sensing pathways in human embryonic stem cell derived-endothelial cells: role of NOD1 receptors. PLoS One 2014; 9:e91119. [PMID: 24690886 PMCID: PMC3972153 DOI: 10.1371/journal.pone.0091119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/07/2014] [Indexed: 01/25/2023] Open
Abstract
Human embryonic stem cell-derived endothelial cells (hESC-EC), as well as other stem cell derived endothelial cells, have a range of applications in cardiovascular research and disease treatment. Endothelial cells sense Gram-negative bacteria via the pattern recognition receptors (PRR) Toll-like receptor (TLR)-4 and nucleotide-binding oligomerisation domain-containing protein (NOD)-1. These pathways are important in terms of sensing infection, but TLR4 is also associated with vascular inflammation and atherosclerosis. Here, we have compared TLR4 and NOD1 responses in hESC-EC with those of endothelial cells derived from other stem cells and with human umbilical vein endothelial cells (HUVEC). HUVEC, endothelial cells derived from blood progenitors (blood outgrowth endothelial cells; BOEC), and from induced pluripotent stem cells all displayed both a TLR4 and NOD1 response. However, hESC-EC had no TLR4 function, but did have functional NOD1 receptors. In vivo conditioning in nude rats did not confer TLR4 expression in hESC-EC. Despite having no TLR4 function, hESC-EC sensed Gram-negative bacteria, a response that was found to be mediated by NOD1 and the associated RIP2 signalling pathways. Thus, hESC-EC are TLR4 deficient but respond to bacteria via NOD1. This data suggests that hESC-EC may be protected from unwanted TLR4-mediated vascular inflammation, thus offering a potential therapeutic advantage.
Collapse
|
81
|
Sykes A, Macintyre J, Edwards MR, Del Rosario A, Haas J, Gielen V, Kon OM, McHale M, Johnston SL. Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 2013; 69:240-6. [PMID: 24127021 DOI: 10.1136/thoraxjnl-2012-202909] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Defective rhinovirus (RV)-induced interferon (IFN)-β and IFN-λ production and increased RV replication have been reported in primary human bronchial epithelial cells (HBECs) from subjects with asthma. How universal this defect is in asthma is unknown. Additionally, the IFN subtypes induced by RV infection in primary HBECs have not been comprehensively investigated. OBJECTIVE To study RV induction of IFN-α, IFN-β and IFN-λ and RV replication in HBECs from subjects with atopic asthma and healthy controls. METHODS HBECs were obtained from subjects with asthma and healthy controls and infected with RV16 and RV1B, and cells and supernatants harvested at 8, 24 and 48h. IFN proteins were analysed by ELISA and IFN mRNA and viral RNA expression by quantitative PCR. Virus release was assessed in cell supernatants. RESULTS IFN-β and IFN-λ were the only IFNs induced by RV in HBECs and IFN-λ protein induction was substantially greater than IFN-β. Induction of IFN-λ1 mRNA by RV16 at 48h was significantly greater in HBECs from subjects with asthma; otherwise there were no significant differences between subjects with asthma and controls in RV replication, or in induction of type I or III IFN protein or mRNA. CONCLUSIONS IFN-λ and, to a lesser degree, IFN-β are the major IFN subtypes induced by RV infection of HBECs. Neither defective IFN induction by RV nor increased RV replication was observed in the HBECs from subjects with well controlled asthma reported in this study.
Collapse
|
82
|
Vareille M, Kieninger E, Alves MP, Kopf BS, Möller A, Geiser T, Johnston SL, Edwards MR, Regamey N. Retraction. Thorax 2013; 68:886. [DOI: 10.1136/thoraxjnl-2011-200405ret] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Edwards MR, Regamey N, Vareille M, Kieninger E, Gupta A, Shoemark A, Saglani S, Sykes A, Macintyre J, Davies J, Bossley C, Bush A, Johnston SL. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013; 6:797-806. [PMID: 23212197 PMCID: PMC3684776 DOI: 10.1038/mi.2012.118] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/22/2012] [Indexed: 02/04/2023]
Abstract
Deficient type I interferon-β and type III interferon-λ induction by rhinoviruses has previously been reported in mild/moderate atopic asthmatic adults. No studies have yet investigated if this occurs in severe therapy resistant asthma (STRA). Here, we show that compared with non-allergic healthy control children, bronchial epithelial cells cultured ex vivo from severe therapy resistant atopic asthmatic children have profoundly impaired interferon-β and interferon-λ mRNA and protein in response to rhinovirus (RV) and polyIC stimulation. Severe treatment resistant asthmatics also exhibited increased virus load, which negatively correlated with interferon mRNA levels. Furthermore, uninfected cells from severe therapy resistant asthmatic children showed lower levels of Toll-like receptor-3 mRNA and reduced retinoic acid inducible gene and melanoma differentiation-associated gene 5 mRNA after RV stimulation. These data expand on the original work, suggesting that the innate anti-viral response to RVs is impaired in asthmatic tissues and demonstrate that this is a feature of STRA.
Collapse
|
84
|
Farley HL, Baumlin KM, Hamedani AG, Cheung DS, Edwards MR, Fuller DC, Genes N, Griffey RT, Kelly JJ, McClay JC, Nielson J, Phelan MP, Shapiro JS, Stone-Griffith S, Pines JM. Quality and safety implications of emergency department information systems. Ann Emerg Med 2013; 62:399-407. [PMID: 23796627 DOI: 10.1016/j.annemergmed.2013.05.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
The Health Information Technology for Economic and Clinical Health Act of 2009 and the Centers for Medicare & Medicaid Services "meaningful use" incentive programs, in tandem with the boundless additional requirements for detailed reporting of quality metrics, have galvanized hospital efforts to implement hospital-based electronic health records. As such, emergency department information systems (EDISs) are an important and unique component of most hospitals' electronic health records. System functionality varies greatly and affects physician decisionmaking, clinician workflow, communication, and, ultimately, the overall quality of care and patient safety. This article is a joint effort by members of the Quality Improvement and Patient Safety Section and the Informatics Section of the American College of Emergency Physicians. The aim of this effort is to examine the benefits and potential threats to quality and patient safety that could result from the choice of a particular EDIS, its implementation and optimization, and the hospital's or physician group's approach to continuous improvement of the EDIS. Specifically, we explored the following areas of potential EDIS safety concerns: communication failure, wrong order-wrong patient errors, poor data display, and alert fatigue. Case studies are presented that illustrate the potential harm that could befall patients from an inferior EDIS product or suboptimal execution of such a product in the clinical environment. The authors have developed 7 recommendations to improve patient safety with respect to the deployment of EDISs. These include ensuring that emergency providers actively participate in selection of the EDIS product, in the design of processes related to EDIS implementation and optimization, and in the monitoring of the system's ongoing success or failure. Our recommendations apply to emergency departments using any type of EDIS: custom-developed systems, best-of-breed vendor systems, or enterprise systems.
Collapse
|
85
|
Sykes A, Edwards MR, Macintyre J, del Rosario A, Gielen V, Haas J, Kon OM, McHale M, Johnston SL. TLR3, TLR4 and TLRs7-9 Induced Interferons Are Not Impaired in Airway and Blood Cells in Well Controlled Asthma. PLoS One 2013; 8:e65921. [PMID: 23824215 PMCID: PMC3688823 DOI: 10.1371/journal.pone.0065921] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022] Open
Abstract
Defective Rhinovirus induced interferon-β and interferon-λ production has been reported in bronchial epithelial cells from asthmatics but the mechanisms of defective interferon induction in asthma are unknown. Virus infection can induce interferon through Toll like Receptors (TLR)3, TLR7 and TLR8. The role of these TLRs in interferon induction in asthma is unclear. This objective of this study was to measure the type I and III interferon response to TLR in bronchial epithelial cells and peripheral blood cells from atopic asthmatics and non-atopic non-asthmatics. Bronchial epithelial cells and peripheral blood mononuclear cells from atopic asthmatic and non-atopic non-asthmatic subjects were stimulated with agonists to TLR3, TLR4 & TLRs7-9 and type I and III interferon and pro-inflammatory cytokine, interleukin(IL)-6 and IL-8, responses assessed. mRNA expression was analysed by qPCR. Interferon proteins were analysed by ELISA. Pro-inflammatory cytokines were induced by each TLR ligand in both cell types. Ligands to TLR3 and TLR7/8, but not other TLRs, induced interferon-β and interferon-λ in bronchial epithelial cells. The ligand to TLR7/8, but not those to other TLRs, induced only type I interferons in peripheral blood mononuclear cells. No difference was observed in TLR induced interferon or pro-inflammatory cytokine production between asthmatic and non-asthmatic subjects from either cell type. TLR3 and TLR7/8,, stimulation induced interferon in bronchial epithelial cells and peripheral blood mononuclear cells. Interferon induction to TLR agonists was not observed to be different in asthmatics and non-asthmatics.
Collapse
|
86
|
Dhariwal J, Edwards MR, Johnston SL. Anti-viral agents: potential utility in exacerbations of asthma. Curr Opin Pharmacol 2013; 13:331-6. [PMID: 23664758 PMCID: PMC7172264 DOI: 10.1016/j.coph.2013.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/30/2023]
Abstract
Respiratory virus infections are the single greatest precipitants of asthma exacerbations. Current treatment options for AE are limited and have developed little in recent years. Development of effective anti-viral treatments remains a key target for therapeutic intervention. Approaches include therapies that either target the virus or boost host response to the virus. New clinical studies are needed to further our understanding of the mechanisms of virus induced asthma exacerbation.
Asthma is the most common chronic respiratory disease and its prevalence is on the increase. Respiratory viral infections in early life have been suggested to increase the risk of development of asthma in later life and virus infection remains the single greatest precipitant of asthma exacerbations. The development of effective anti-viral treatments remains a key target for therapeutic intervention. Here we discuss the role of respiratory viral infection in asthma exacerbation and highlight current and potential anti-viral agents and their mechanisms of action.
Collapse
|
87
|
Almond MH, Edwards MR, Barclay WS, Johnston SL. Obesity and susceptibility to severe outcomes following respiratory viral infection. Thorax 2013; 68:684-6. [PMID: 23436045 DOI: 10.1136/thoraxjnl-2012-203009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the 2009 H1N1 influenza pandemic, obesity was convincingly identified as a novel, independent risk factor for multiple markers of disease severity. Associations between numerous nosocomial and community-acquired clinical infections have previously been established; yet, little is known about the mechanisms underpinning the increased susceptibility to severe outcomes following pandemic H1N1/09 infection in obesity. Here, we present a brief synthesis of the recent advances in our understanding of the immunomodulatory effects of obesity on outcomes following respiratory viral infection, with a particular focus on pandemic influenza.
Collapse
|
88
|
Sykes A, Edwards MR, Macintyre J, Rosario AD, Kon OM, Johnston SL. S119 Roles of TLR3, TLR4- and TLRs7–9 in Interferon Induction in Bronchial Epithelial Cells and Peripheral Blood Mononuclear Cells from Asthmatic and Non-Asthmatic Subjects. Thorax 2012. [DOI: 10.1136/thoraxjnl-2012-202678.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
89
|
Bartlett NW, Slater L, Glanville N, Haas JJ, Caramori G, Casolari P, Clarke DL, Message SD, Aniscenko J, Kebadze T, Zhu J, Mallia P, Mizgerd JP, Belvisi M, Papi A, Kotenko SV, Johnston SL, Edwards MR. Defining critical roles for NF-κB p65 and type I interferon in innate immunity to rhinovirus. EMBO Mol Med 2012; 4:1244-60. [PMID: 23165884 PMCID: PMC3531601 DOI: 10.1002/emmm.201201650] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
The importance of NF-κB activation and deficient anti-viral interferon induction in the pathogenesis of rhinovirus-induced asthma exacerbations is poorly understood. We provide the first in vivo evidence in man and mouse that rhinovirus infection enhanced bronchial epithelial cell NF-κB p65 nuclear expression, NF-κB p65 DNA binding in lung tissue and NF-κB-regulated airway inflammation. In vitro inhibition of NF-κB reduced rhinovirus-induced pro-inflammatory cytokines but did not affect type I/III interferon induction. Rhinovirus-infected p65-deficient mice exhibited reduced neutrophilic inflammation, yet interferon induction, antiviral responses and virus loads were unaffected, indicating that NF-κB p65 is required for pro-inflammatory responses, but redundant in interferon induction by rhinoviruses in vivo. Conversely, IFNAR1−/− mice exhibited enhanced neutrophilic inflammation with impaired antiviral immunity and increased rhinovirus replication, demonstrating that interferon signalling was critical to antiviral immunity. We thus provide new mechanistic insights into rhinovirus infection and demonstrate the therapeutic potential of targeting NF-κB p65 (to suppress inflammation but preserve anti-viral immunity) and type I IFN signalling (to enhance deficient anti-viral immunity) to treat rhinovirus-induced exacerbations of airway diseases.
Collapse
|
90
|
Sermon PA, Worsley MP, Cheng Y, Courtney L, Shinar-Bush V, Ruzimuradov O, Hopwood AJ, Edwards MR, Gashi B, Harrison D, Xu Y. Deterring gun crime materially using forensic coatings. Forensic Sci Int 2012; 221:131-6. [DOI: 10.1016/j.forsciint.2012.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/23/2012] [Indexed: 10/28/2022]
|
91
|
George PM, Badiger R, Shao D, Edwards MR, Wort SJ, Paul-Clark MJ, Mitchell JA. Viral Toll Like Receptor activation of pulmonary vascular smooth muscle cells results in endothelin-1 generation; relevance to pathogenesis of pulmonary arterial hypertension. Biochem Biophys Res Commun 2012; 426:486-91. [PMID: 22960172 DOI: 10.1016/j.bbrc.2012.08.106] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 01/22/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal condition in which raised pulmonary vascular resistance leads to right heart failure and death. Endothelin-1 is a potent endogenous vasoconstrictor, which is considered to be central to many of the events that lead to PAH, and is an important therapeutic target in the treatment of the condition. In many cases of PAH, the aetiology is unknown but inflammation is increasingly thought to play an important role and viruses have been implicated in the development of disease. The Toll Like Receptors (TLRs) play a key role in innate immune responses by initiating specific anti-bacterial and anti-viral defences in recognition of signature molecular motifs on the surface of invading pathogens. In this study, we set out to examine the expression of bacterial and viral TLRs in human pulmonary artery smooth muscle cells and to establish whether their activation could be relevant to PAH. We found that the viral TLR3 and bacterial TLRs 4 and 6 were most abundantly expressed in human pulmonary artery smooth muscle cells. Using specific TLR ligands, we found that activation of TLRs 3 and 4 resulted in IL-8 release by human pulmonary artery smooth muscle cells but that only TLR3 stimulation resulted in IP10 and endothelin-1 release. These data suggest that human pulmonary artery smooth muscle cells express significant levels of viral TLR3 and respond to its activation by releasing endothelin-1. This may have importance in understanding the association between viruses and the development of PAH.
Collapse
|
92
|
Vareille M, Kieninger E, Alves MP, Kopf BS, Möller A, Geiser T, Johnston SL, Edwards MR, Regamey N. Impaired type I and type III interferon induction and rhinovirus control in human cystic fibrosis airway epithelial cells. Thorax 2012; 67:517-25. [PMID: 22213737 DOI: 10.1136/thoraxjnl-2011-200405] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rhinoviruses are important triggers of pulmonary exacerbations and possible contributors to long-term respiratory morbidity in cystic fibrosis (CF), but mechanisms leading to rhinovirus-induced CF exacerbations are poorly understood. It is hypothesised that there is a deficient innate immune response of the airway epithelium towards rhinovirus infection in CF. METHODS Early innate immune responses towards rhinoviruses (RV-16, major-type and RV-1B, minor-type) in CF and non-CF bronchial epithelial cell lines and primary nasal and bronchial epithelial cells from patients with CF (n=13) and healthy controls (n=24) were studied. RESULTS Rhinovirus RNA expression and virus release into supernatants was increased more than tenfold in CF cells compared with controls. CF cells expressed up to 1000 times less interferon (IFN) type I (β) and type III (λ) mRNA and produced less than half of IFN-β and IFN-λ protein compared with controls. In contrast, interleukin 8 production was not impaired, indicating a selective deficiency in the innate antiviral defence system. Deficient IFN production was paralleled by lower expression of IFN-stimulated genes including myxovirus resistance A, 2',5'-oligoadenylate synthetase, viperin and nitric oxide synthase 2. Addition of exogenous type I and III IFNs, particularly IFN-β, restored antiviral pathways and virus control in CF cells, underscoring the crucial role of these molecules. CONCLUSIONS This study describes a novel mechanism to explain the increased susceptibility of patients with CF to rhinovirus infections. A profound impairment of the antiviral early innate response in CF airway epithelial cells was identified, suggesting a potential use of IFNs in the treatment of rhinovirus-induced CF exacerbations.
Collapse
|
93
|
Edwards MR, Johnston SL. Interferon-lambda as a new approach for treatment of allergic asthma? EMBO Mol Med 2011; 3:306-8. [PMID: 21634009 PMCID: PMC3377083 DOI: 10.1002/emmm.201100143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
94
|
Zdrenghea MT, Telcian AG, Laza-Stanca V, Bellettato CM, Edwards MR, Nikonova A, Khaitov MR, Azimi N, Groh V, Mallia P, Johnston SL, Stanciu LA. RSV infection modulates IL-15 production and MICA levels in respiratory epithelial cells. Eur Respir J 2011; 39:712-20. [PMID: 21852331 DOI: 10.1183/09031936.00099811] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The cytokine interleukin (IL)-15, major histocompatibility complex (MHC) class I molecules and MHC class I chain-related proteins (MIC) A and B are involved in cellular immune responses to virus infections but their role in respiratory syncytial virus (RSV) infection has not been studied. We aimed to determine how RSV infection modulates IL-15 production, MHC class I and MICA expression in respiratory epithelial cells, the molecular pathways implicated in virus-induced IL-15 production and how interferon (IFN)-γ alters RSV-induced IL-15 production and MHC class I and MICA expression. We infected respiratory epithelial cell lines (A549 and BEAS-2B cells) and primary bronchial epithelial cells with RSV and measured production of IL-15, expression of MHC I and MICA and the role of the transcription factor nuclear factor (NF)-κB. We report here that RSV increases IL-15 in respiratory epithelial cells via virus replication and NF-κB-dependent mechanisms. Furthermore, RSV infection of epithelial cells upregulated cell surface expression of MICA and levels of soluble MICA. IFN-γ upregulated RSV induction of soluble IL-15 but inhibited induction of MICA. Upregulation of IL-15, MHC I and MICA are likely to be important mechanisms in activating immune responses to RSV by epithelial cells.
Collapse
|
95
|
Ouda R, Onomoto K, Takahasi K, Edwards MR, Kato H, Yoneyama M, Fujita T. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor. J Biol Chem 2011; 286:26210-9. [PMID: 21642441 PMCID: PMC3138319 DOI: 10.1074/jbc.m111.229856] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/02/2011] [Indexed: 12/24/2022] Open
Abstract
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.
Collapse
|
96
|
Laza-Stanca V, Message SD, Edwards MR, Parker HL, Zdrenghea MT, Kebadze T, Kon OM, Mallia P, Stanciu LA, Johnston SL. The role of IL-15 deficiency in the pathogenesis of virus-induced asthma exacerbations. PLoS Pathog 2011; 7:e1002114. [PMID: 21779162 PMCID: PMC3136447 DOI: 10.1371/journal.ppat.1002114] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 04/26/2011] [Indexed: 11/19/2022] Open
Abstract
Rhinovirus infections are the major cause of asthma exacerbations. We hypothesised that IL-15, a cytokine implicated in innate and acquired antiviral immunity, may be deficient in asthma and important in the pathogenesis of asthma exacerbations. We investigated regulation of IL-15 induction by rhinovirus in human macrophages in vitro, IL-15 levels in bronchoalveolar lavage (BAL) fluid and IL-15 induction by rhinovirus in BAL macrophages from asthmatic and control subjects, and related these to outcomes of infection in vivo. Rhinovirus induced IL-15 in macrophages was replication-, NF-κB- and α/β interferon-dependent. BAL macrophage IL-15 induction by rhinovirus was impaired in asthmatics and inversely related to lower respiratory symptom severity during experimental rhinovirus infection. IL-15 levels in BAL fluid were also decreased in asthmatics and inversely related with airway hyperresponsiveness and with virus load during in vivo rhinovirus infection. Deficient IL-15 production in asthma may be important in the pathogenesis of asthma exacerbations. We previously reported deficiency in interferon production in asthma, which correlated with disease severity and viral load during experimental rhinovirus infection. Here we show that macrophages produce IL-15 upon rhinovirus infection and that IFN-β plays an important role in IL-15 production. In asthmatic subjects, there is a deficiency in rhinovirus-induced production of IL-15 by macrophages, which indicates immunodeficiency in asthma is surprisingly broad, also involving IL-15, an important cytokine that bridges innate and acquired immunity. These results show that IFN-β therapy in asthma exacerbations could be effective not only due to direct anti-viral effects of IFN-β, but also by inducing IL-15 production. We also show induction of IFN-β and IL-15 to be NF-kB dependent, an important finding which has implications for NF-kB inhibitor drug development programmes as these drugs have potential to worsen rather than improve asthma exacerbation severity, by further enhancing deficiencies of IL-15 and IFN-β. This study investigating the role of IL-15 in rhinovirus infection and asthma has also major implications in other diseases, for example pandemic influenza, where asthma is a major risk factor for severe disease and death, and COPD and cystic fibrosis where IFN-β deficiency is also present.
Collapse
|
97
|
Kieninger E, Vareille M, Kopf BS, Blank F, Alves MP, Gisler FM, Latzin P, Casaulta C, Geiser T, Johnston SL, Edwards MR, Regamey N. Lack of an exaggerated inflammatory response on virus infection in cystic fibrosis. Eur Respir J 2011; 39:297-304. [PMID: 21719483 DOI: 10.1183/09031936.00054511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Respiratory virus infections play an important role in cystic fibrosis (CF) exacerbations, but underlying pathophysiological mechanisms are poorly understood. We aimed to assess whether an exaggerated inflammatory response of the airway epithelium on virus infection could explain the increased susceptibility of CF patients towards respiratory viruses. We used primary bronchial and nasal epithelial cells obtained from 24 healthy control subjects and 18 CF patients. IL-6, IL-8/CXCL8, IP-10/CXCL10, MCP-1/CCL2, RANTES/CCL5 and GRO-α/CXCL1 levels in supernatants and mRNA expression in cell lysates were measured before and after infection with rhinoviruses (RV-16 and RV-1B) and RSV. Cytotoxicity was assessed by lactate dehydrogenate assay and flow cytometry. All viruses induced strong cytokine release in both control and CF cells. The inflammatory response on virus infection was heterogeneous and depended on cell type and virus used, but was not increased in CF compared with control cells. On the contrary, there was a marked trend towards lower cytokine production associated with increased cell death in CF cells. An exaggerated inflammatory response to virus infection in bronchial epithelial cells does not explain the increased respiratory morbidity after virus infection in CF patients.
Collapse
|
98
|
Mallia P, Message SD, Gielen V, Contoli M, Gray K, Kebadze T, Aniscenko J, Laza-Stanca V, Edwards MR, Slater L, Papi A, Stanciu LA, Kon OM, Johnson M, Johnston SL. Experimental rhinovirus infection as a human model of chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med 2011; 183:734-42. [PMID: 20889904 PMCID: PMC3081284 DOI: 10.1164/rccm.201006-0833oc] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/27/2010] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Respiratory virus infections are associated with chronic obstructive pulmonary disease (COPD) exacerbations, but a causative relationship has not been proven. Studies of naturally occurring exacerbations are difficult and the mechanisms linking virus infection to exacerbations are poorly understood. We hypothesized that experimental rhinovirus infection in subjects with COPD would reproduce the features of naturally occurring COPD exacerbations and is a valid model of COPD exacerbations. OBJECTIVES To evaluate experimental rhinovirus infection as a model of COPD exacerbation and to investigate the mechanisms of virus-induced exacerbations. METHODS We used experimental rhinovirus infection in 13 subjects with COPD and 13 nonobstructed control subjects to investigate clinical, physiologic, pathologic, and antiviral responses and relationships between virus load and these outcomes. MEASUREMENTS AND MAIN RESULTS Clinical data; inflammatory mediators in blood, sputum, and bronchoalveolar lavage; and viral load in nasal lavage, sputum, and bronchoalveolar lavage were measured at baseline and after infection with rhinovirus 16. After rhinovirus infection subjects with COPD developed lower respiratory symptoms, airflow obstruction, and systemic and airway inflammation that were greater and more prolonged compared with the control group. Neutrophil markers in sputum related to clinical outcomes and virus load correlated with inflammatory markers. Virus load was higher and IFN production by bronchoalveolar lavage cells was impaired in the subjects with COPD. CONCLUSIONS We have developed a new model of COPD exacerbation that strongly supports a causal relationship between rhinovirus infection and COPD exacerbations. Impaired IFN production and neutrophilic inflammation may be important mechanisms in virus-induced COPD exacerbations.
Collapse
|
99
|
Telcian AG, Laza-Stanca V, Edwards MR, Harker JA, Wang H, Bartlett NW, Mallia P, Zdrenghea MT, Kebadze T, Coyle AJ, Openshaw PJM, Stanciu LA, Johnston SL. RSV-induced bronchial epithelial cell PD-L1 expression inhibits CD8+ T cell nonspecific antiviral activity. J Infect Dis 2011; 203:85-94. [PMID: 21148500 DOI: 10.1093/infdis/jiq020] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of bronchiolitis in infants. It is also responsible for high morbidity and mortality in the elderly. Programmed death ligands (PD-Ls) on antigen-presenting cells interact with receptors on T cells to regulate immune responses. The programmed death receptor-ligand 1/programmed death receptor 1 (PD-L1-PD-1) pathway is inhibitory in chronic viral infections, but its role in acute viral infections is unclear. We hypothesized that bronchial epithelial cell (BEC) expression of PD-Ls would inhibit local effector CD8(+) T cell function. We report that RSV infection of primary human BECs strongly induces PD-L1 expression. In a co-culture system of BECs with purified CD8(+) T cells, we demonstrated that RSV-infected BECs increased CD8(+) T cell activation, proliferation, and antiviral function. Blocking PD-L1 on RSV-infected BECs co-cultured with CD8(+) T cells enhanced CD8(+) T cell IFN-γ, IL-2, and granzyme B production. It also decreased the virus load of the BECs. Based on our findings, we believe therapeutic strategies that target the PD-L1-PD-1 pathway might increase antiviral immune responses to RSV and other acute virus infections.
Collapse
|
100
|
Slater L, Bartlett NW, Haas JJ, Zhu J, Message SD, Walton RP, Sykes A, Dahdaleh S, Clarke DL, Belvisi MG, Kon OM, Fujita T, Jeffery PK, Johnston SL, Edwards MR. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010; 6:e1001178. [PMID: 21079690 PMCID: PMC2973831 DOI: 10.1371/journal.ppat.1001178] [Citation(s) in RCA: 246] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 10/01/2010] [Indexed: 12/24/2022] Open
Abstract
The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Bronchi/immunology
- Bronchi/metabolism
- Bronchi/virology
- Cells, Cultured
- DEAD Box Protein 58
- DEAD-box RNA Helicases/antagonists & inhibitors
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Epithelium/immunology
- Epithelium/metabolism
- Epithelium/virology
- Female
- Fluorescent Antibody Technique
- HeLa Cells
- Humans
- Immunity, Innate
- Interferon-Induced Helicase, IFIH1
- Mice
- Mice, Knockout
- Picornaviridae Infections/immunology
- Picornaviridae Infections/metabolism
- Picornaviridae Infections/virology
- RNA, Double-Stranded
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- RNA, Viral/genetics
- Receptor, Interferon alpha-beta/physiology
- Receptors, Immunologic
- Reverse Transcriptase Polymerase Chain Reaction
- Rhinovirus/pathogenicity
- Toll-Like Receptor 3/antagonists & inhibitors
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
Collapse
|