76
|
Dos Remedios CG, Lal SP, Li A, McNamara J, Keogh A, Macdonald PS, Cooke R, Ehler E, Knöll R, Marston SB, Stelzer J, Granzier H, Bezzina C, van Dijk S, De Man F, Stienen GJM, Odeberg J, Pontén F, Linke WA, Linke W, van der Velden J. The Sydney Heart Bank: improving translational research while eliminating or reducing the use of animal models of human heart disease. Biophys Rev 2017; 9:431-441. [PMID: 28808947 DOI: 10.1007/s12551-017-0305-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
The Sydney Heart Bank (SHB) is one of the largest human heart tissue banks in existence. Its mission is to provide high-quality human heart tissue for research into the molecular basis of human heart failure by working collaboratively with experts in this field. We argue that, by comparing tissues from failing human hearts with age-matched non-failing healthy donor hearts, the results will be more relevant than research using animal models, particularly if their physiology is very different from humans. Tissue from heart surgery must generally be used soon after collection or it significantly deteriorates. Freezing is an option but it raises concerns that freezing causes substantial damage at the cellular and molecular level. The SHB contains failing samples from heart transplant patients and others who provided informed consent for the use of their tissue for research. All samples are cryopreserved in liquid nitrogen within 40 min of their removal from the patient, and in less than 5-10 min in the case of coronary arteries and left ventricle samples. To date, the SHB has collected tissue from about 450 failing hearts (>15,000 samples) from patients with a wide range of etiologies as well as increasing numbers of cardiomyectomy samples from patients with hypertrophic cardiomyopathy. The Bank also has hearts from over 120 healthy organ donors whose hearts, for a variety of reasons (mainly tissue-type incompatibility with waiting heart transplant recipients), could not be used for transplantation. Donor hearts were collected by the St Vincent's Hospital Heart and Lung transplantation team from local hospitals or within a 4-h jet flight from Sydney. They were flushed with chilled cardioplegic solution and transported to Sydney where they were quickly cryopreserved in small samples. Failing and/or donor samples have been used by more than 60 research teams around the world, and have resulted in more than 100 research papers. The tissues most commonly requested are from donor left ventricles, but right ventricles, atria, interventricular system, and coronary arteries vessels have also been reported. All tissues are stored for long-term use in liquid N or vapor (170-180 °C), and are shipped under nitrogen vapor to avoid degradation of sensitive molecules such as RNAs and giant proteins. We present evidence that the availability of these human heart samples has contributed to a reduction in the use of animal models of human heart failure.
Collapse
|
77
|
Müller I, Pappritz K, Savvatis K, Puhl K, Dong F, El-Shafeey M, Hamdani N, Hamann I, Noutsias M, Infante-Duarte C, Linke WA, Van Linthout S, Tschöpe C. CX3CR1 knockout aggravates Coxsackievirus B3-induced myocarditis. PLoS One 2017; 12:e0182643. [PMID: 28800592 PMCID: PMC5553786 DOI: 10.1371/journal.pone.0182643] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/22/2017] [Indexed: 11/19/2022] Open
Abstract
Studies on inflammatory disorders elucidated the pivotal role of the CX3CL1/CX3CR1 axis with respect to the pathophysiology and diseases progression. Coxsackievirus B3 (CVB3)-induced myocarditis is associated with severe cardiac inflammation, which may progress to heart failure. We therefore investigated the influence of CX3CR1 ablation in the model of acute myocarditis, which was induced by inoculation with 5x105 plaque forming units of CVB3 (Nancy strain) in either CX3CR1-/- or C57BL6/j (WT) mice. Seven days after infection, myocardial inflammation, remodeling, and titin expression and phosphorylation were examined by immunohistochemistry, real-time PCR and Pro-Q diamond stain. Cardiac function was assessed by tip catheter. Compared to WT CVB3 mice, CX3CR1-/- CVB3 mice exhibited enhanced left ventricular expression of inflammatory cytokines and chemokines, which was associated with an increase of immune cell infiltration/presence. This shift towards a pro-inflammatory immune response further resulted in increased cardiac fibrosis and cardiomyocyte apoptosis, which was reflected by an impaired cardiac function in CX3CR1-/- CVB3 compared to WT CVB3 mice. These findings demonstrate a cardioprotective role of CX3CR1 in CVB3-infected mice and indicate the relevance of the CX3CL1/CX3CR1 system in CVB3-induced myocarditis.
Collapse
MESH Headings
- Animals
- Apoptosis
- CX3C Chemokine Receptor 1
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/immunology
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/immunology
- Coxsackievirus Infections/genetics
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/pathology
- Coxsackievirus Infections/virology
- Disease Models, Animal
- Enterovirus B, Human/growth & development
- Enterovirus B, Human/pathogenicity
- Gene Expression Regulation
- Heart Function Tests
- Host-Pathogen Interactions/immunology
- Humans
- Interleukins/genetics
- Interleukins/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myocarditis/genetics
- Myocarditis/immunology
- Myocarditis/pathology
- Myocarditis/virology
- Myocytes, Cardiac/immunology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Protein Kinases/genetics
- Protein Kinases/immunology
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
Collapse
|
78
|
Tiburcy M, Hudson JE, Balfanz P, Schlick S, Meyer T, Chang Liao ML, Levent E, Raad F, Zeidler S, Wingender E, Riegler J, Wang M, Gold JD, Kehat I, Wettwer E, Ravens U, Dierickx P, van Laake LW, Goumans MJ, Khadjeh S, Toischer K, Hasenfuss G, Couture LA, Unger A, Linke WA, Araki T, Neel B, Keller G, Gepstein L, Wu JC, Zimmermann WH. Defined Engineered Human Myocardium With Advanced Maturation for Applications in Heart Failure Modeling and Repair. Circulation 2017; 135:1832-1847. [PMID: 28167635 DOI: 10.1161/circulationaha.116.024145] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to β-adrenergic stimulation mediated via canonical β1- and β2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.
Collapse
|
79
|
Li Y, Linke WA. Mechanically Unfolded Titin Immunoglobulin Domains Refold Faster and More Accurately in Presence of Chaperone Alpha-B-Crystallin. Biophys J 2017. [DOI: 10.1016/j.bpj.2016.11.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
80
|
Eisenberg T, Abdellatif M, Zimmermann A, Schroeder S, Pendl T, Harger A, Stekovic S, Schipke J, Magnes C, Schmidt A, Ruckenstuhl C, Dammbrueck C, Gross AS, Herbst V, Carmona-Gutierrez D, Pietrocola F, Pieber TR, Sigrist SJ, Linke WA, Mühlfeld C, Sadoshima J, Dengjel J, Kiechl S, Kroemer G, Sedej S, Madeo F. Dietary spermidine for lowering high blood pressure. Autophagy 2017; 13:767-769. [PMID: 28118075 PMCID: PMC5381711 DOI: 10.1080/15548627.2017.1280225] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Loss of cardiac macroautophagy/autophagy impairs heart function, and evidence accumulates that an increased autophagic flux may protect against cardiovascular disease. We therefore tested the protective capacity of the natural autophagy inducer spermidine in animal models of aging and hypertension, which both represent major risk factors for the development of cardiovascular disease. Dietary spermidine elicits cardioprotective effects in aged mice through enhancing cardiac autophagy and mitophagy. In salt-sensitive rats, spermidine supplementation also delays the development of hypertensive heart disease, coinciding with reduced arterial blood pressure. The high blood pressure-lowering effect likely results from improved global arginine bioavailability and protection from hypertension-associated renal damage. The polyamine spermidine is naturally present in human diets, though to a varying amount depending on food type and preparation. In humans, high dietary spermidine intake correlates with reduced blood pressure and decreased risk of cardiovascular disease and related death. Altogether, spermidine represents a cardio- and vascular-protective autophagy inducer that can be readily integrated in common diets.
Collapse
|
81
|
Unger A, Dekomien G, Güttsches A, Dreps T, Kley R, Tegenthoff M, Ferbert A, Weis J, Heyer C, Linke WA, Martinez-Carrera L, Storbeck M, Wirth B, Hoffjan S, Vorgerd M. Expanding the phenotype of
BICD2
mutations toward skeletal muscle involvement. Neurology 2016; 87:2235-2243. [DOI: 10.1212/wnl.0000000000003360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/12/2016] [Indexed: 11/15/2022] Open
|
82
|
Zakeri R, Moulay G, Chai Q, Ogut O, Hussain S, Takahama H, Lu T, Wang XL, Linke WA, Lee HC, Redfield MM. Left Atrial Remodeling and Atrioventricular Coupling in a Canine Model of Early Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2016; 9:CIRCHEARTFAILURE.115.003238. [PMID: 27758811 DOI: 10.1161/circheartfailure.115.003238] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/16/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Left atrial (LA) compliance and contractility influence left ventricular stroke volume. We hypothesized that diminished LA compliance and contractile function occur early during the development of heart failure with preserved ejection fraction (HFpEF) and impair overall cardiac performance. METHODS AND RESULTS Cardiac magnetic resonance imaging, echocardiography, left ventricular and LA pressure-volume studies, and tissue analyses were performed in a model of early HFpEF (elderly dogs, renal wrap-induced hypertension, exogenous aldosterone; n=9) and young control dogs (sham surgery; n=13). Early HFpEF was associated with LA enlargement, cardiomyocyte hypertrophy, and enhanced LA contractile function (median active emptying fraction 16% [95% confidence interval, 13-24]% versus 12 [10-14]%, P=0.008; end-systolic pressure-volume relationship slope 2.4 [1.9-3.2]mm Hg/mL HFpEF versus 1.5 [1.2-2.2]mm Hg/mL controls, P=0.01). However, atrioventricular coupling was impaired and the curvilinear LA end-reservoir pressure-volume relationship was shifted upward/leftward in HFpEF (LA stiffness constant [βLA] 0.16 [0.11-0.18]mm Hg/mL versus 0.06 [0.04-0.10]mm Hg/mL controls; P=0.002), indicating reduced LA compliance. Impaired atrioventricular coupling and lower LA compliance correlated with lower left ventricular stroke volume. Total fibrosis and titin isoform composition were similar between groups; however, titin was hyperphosphorylated in HFpEF and correlated with βLA. LA microvascular reactivity was diminished in HFpEF versus controls. LA microvascular density tended to be lower in HFpEF and inversely correlated with βLA. CONCLUSIONS In early-stage hypertensive HFpEF, LA cardiomyocyte hypertrophy, titin hyperphosphorylation, and microvascular dysfunction occur in association with increased systolic and diastolic LA chamber stiffness, impaired atrioventricular coupling, and decreased left ventricular stroke volume. These data indicate that maladaptive LA remodeling occurs early during HFpEF development, supporting a concept of global myocardial remodeling.
Collapse
|
83
|
Perez-Pomares JM, Gaertner-Rommel A, Lazzarini E, Cano E, Carmona R, Ruiz-Villalba A, Rojas A, Chau YY, Wagner KD, Wagner N, Hastie ND, Munoz-Chapuli R, Klauke B, Linke WA, Schulz U, Laser KT, Gummert J, Milting H, Bauce B, Cason M, Celeghin R, Rigato I, Carturan E, Rizzo S, Thiene G, Basso C, Pilichou K. Developmental Basis of Cardiac Inherited Diseases470Extracardiac endothelium patterns embryonic coronary arterio-venous connections471DCM-associated RBM20-mutations lead to aberrant splicing of titin and ryanodin receptor 2 in the human myocardium472The impact of missense versus nonsense mutations in arrhythmogenic cardiomyopathy phenotype. Cardiovasc Res 2016. [DOI: 10.1093/cvr/cvw141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
84
|
Keul P, van Borren MMGJ, Ghanem A, Müller FU, Baartscheer A, Verkerk AO, Stümpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJA, Hiller KH, Herr D, Heusch G, Schäfers M, Peters SLM, Chun J, Levkau B. Sphingosine-1-Phosphate Receptor 1 Regulates Cardiac Function by Modulating Ca2+ Sensitivity and Na+/H+ Exchange and Mediates Protection by Ischemic Preconditioning. J Am Heart Assoc 2016; 5:JAHA.116.003393. [PMID: 27207969 PMCID: PMC4889204 DOI: 10.1161/jaha.116.003393] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Sphingosine‐1‐phosphate plays vital roles in cardiomyocyte physiology, myocardial ischemia–reperfusion injury, and ischemic preconditioning. The function of the cardiomyocyte sphingosine‐1‐phosphate receptor 1 (S1P1) in vivo is unknown. Methods and Results Cardiomyocyte‐restricted deletion of S1P1 in mice (S1P1αMHCCre) resulted in progressive cardiomyopathy, compromised response to dobutamine, and premature death. Isolated cardiomyocytes from S1P1αMHCCre mice revealed reduced diastolic and systolic Ca2+ concentrations that were secondary to reduced intracellular Na+ and caused by suppressed activity of the sarcolemmal Na+/H+ exchanger NHE‐1 in the absence of S1P1. This scenario was successfully reproduced in wild‐type cardiomyocytes by pharmacological inhibition of S1P1 or sphingosine kinases. Furthermore, Sarcomere shortening of S1P1αMHCCre cardiomyocytes was intact, but sarcomere relaxation was attenuated and Ca2+ sensitivity increased, respectively. This went along with reduced phosphorylation of regulatory myofilament proteins such as myosin light chain 2, myosin‐binding protein C, and troponin I. In addition, S1P1 mediated the inhibitory effect of exogenous sphingosine‐1‐phosphate on β‐adrenergic–induced cardiomyocyte contractility by inhibiting the adenylate cyclase. Furthermore, ischemic precondtioning was abolished in S1P1αMHCCre mice and was accompanied by defective Akt activation during preconditioning. Conclusions Tonic S1P1 signaling by endogenous sphingosine‐1‐phosphate contributes to intracellular Ca2+ homeostasis by maintaining basal NHE‐1 activity and controls simultaneously myofibril Ca2+ sensitivity through its inhibitory effect on adenylate cyclase. Cardioprotection by ischemic precondtioning depends on intact S1P1 signaling. These key findings on S1P1 functions in cardiac physiology may offer novel therapeutic approaches to cardiac diseases.
Collapse
|
85
|
Li Y, Lang P, Linke WA. Titin stiffness modifies the force-generating region of muscle sarcomeres. Sci Rep 2016; 6:24492. [PMID: 27079135 PMCID: PMC4832248 DOI: 10.1038/srep24492] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The contractile units of striated muscle, the sarcomeres, comprise the thick (myosin) and thin (actin) filaments mediating active contraction and the titin filaments determining "passive" elasticity. We hypothesized that titin may be more active in muscle contraction by directly modulating thick-filament properties. We used single-myofibril mechanical measurements and atomic force microscopy of individual sarcomeres to quantify the effects of sarcomere strain and titin spring length on both the inter-filament lattice spacing and the lateral stiffness of the actin-myosin overlap zone (A-band). We found that strain reduced the lattice spacing similarly in sarcomeres with stiff (rabbit psoas) or compliant titin (rabbit diaphragm), but increased A-band lateral stiffness much more in psoas than in diaphragm. The strain-induced alterations in A-band stiffness that occur independently of lattice spacing effects may be due to titin stiffness-sensing by A-band proteins. This mechanosensitivity could play a role in the physiologically important phenomenon of length-dependent activation of striated muscle.
Collapse
|
86
|
Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 2016; 349:982-6. [PMID: 26315439 DOI: 10.1126/science.aaa5458] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human mutations that truncate the massive sarcomere protein titin [TTN-truncating variants (TTNtvs)] are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtvs, diminish contractile performance and are pathogenic. By combining functional analyses with RNA sequencing, we explain why truncations in the A-band domain of TTN cause DCM, whereas truncations in the I band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS cell-derived cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodeling.
Collapse
|
87
|
Krysiak J, Unger A, Hamdani N, Boknik P, Linke WA. A Novel Role for PP5 in Regulating Titin Phosphorylation and Function in the Heart. Biophys J 2016. [DOI: 10.1016/j.bpj.2015.11.1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
88
|
Hamdani N, Herwig M, Heopler S, Koesling D, Kreuger M, Kuhn M, Linke WA. Impact of cGMP-PKG Pathway Modulation on Titin Phosphorylation and Titin-Based Myocardial Passive Stiffness. Biophys J 2016. [DOI: 10.1016/j.bpj.2015.11.2812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
89
|
Mohamed BA, Schnelle M, Khadjeh S, Lbik D, Herwig M, Linke WA, Hasenfuss G, Toischer K. Molecular and structural transition mechanisms in long-term volume overload. Eur J Heart Fail 2015; 18:362-71. [PMID: 26694078 PMCID: PMC5064674 DOI: 10.1002/ejhf.465] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/08/2015] [Accepted: 11/14/2015] [Indexed: 01/09/2023] Open
Abstract
Aim We have previously reported that early phase (1 week) of experimental volume overload (VO) has an adaptive phenotype while wall stress‐matched pressure overload (PO) is maladaptive. Here we investigate the transition from adaptation to heart failure (HF) in long‐term VO. Methods and results FVB/N wild‐type mice were subjected to VO induced by aortocaval shunt, and were followed by serial echocardiography until in vivo left ventricular ejection fraction was below <50% (135 ± 35 days). Heart failure was evident from increased lung and liver weight and increased mortality compared with sham. Maladaptive remodelling resulted in significantly reduced sarcomeric titin phosphorylation (causing increased sarcomeric stiffness), whereas interstitial fibrosis was not increased. This was paralleled by re‐expression of the fetal gene program, activation of calcium/calmodulin‐dependent protein kinase II (CaMKII), decreased protein kinase B (Akt) phosphorylation, high oxidative stress, and increased apoptosis. Consistently, development of HF and mortality were significantly aggravated in Akt‐deficient mice. Conclusion Transition to HF in VO is associated with decreased Akt and increased CaMKII signalling pathways together with increased oxidative stress and apoptosis. Lack of interstitial fibrosis together with sarcomeric titin hypophosphorylation indicates an increased stiffness at the sarcomeric but not matrix level in VO‐induced HF (in contrast to PO). Transition to HF may result from myocyte loss and myocyte dysfunction owing to increased stiffness.
Collapse
|
90
|
Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, Leite-Moreira AF, Musters R, Niessen HWM, Linke WA, Paulus WJ, Hamdani N. Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. JACC-HEART FAILURE 2015; 4:312-24. [PMID: 26682792 DOI: 10.1016/j.jchf.2015.10.007] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/21/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The present study investigated whether systemic, low-grade inflammation of metabolic risk contributed to diastolic left ventricular (LV) dysfunction and heart failure with preseved ejection fraction (HFpEF) through coronary microvascular endothelial activation, which alters paracrine signalling to cardiomyocytes and predisposes them to hypertrophy and high diastolic stiffness. BACKGROUND Metabolic risk is associated with diastolic LV dysfunction and HFpEF. METHODS We explored inflammatory endothelial activation and its effects on oxidative stress, nitric oxide (NO) bioavailability, and cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) signalling in myocardial biopsies of HFpEF patients and validated our findings by comparing obese Zucker diabetic fatty/Spontaneously hypertensive heart failure F1 hybrid (ZSF1)-HFpEF rats to ZSF1-Control (Ctrl) rats. RESULTS In myocardium of HFpEF patients and ZSF1-HFpEF rats, we observed the following: 1) E-selectin and intercellular adhesion molecule-1 expression levels were upregulated; 2) NADPH oxidase 2 expression was raised in macrophages and endothelial cells but not in cardiomyocytes; and 3) uncoupling of endothelial nitric oxide synthase, which was associated with reduced myocardial nitrite/nitrate concentration, cGMP content, and PKG activity. CONCLUSIONS HFpEF is associated with coronary microvascular endothelial activation and oxidative stress. These lead to a reduction of NO-dependent signalling from endothelial cells to cardiomyocytes, which can contribute to the high cardiomyocyte stiffness and hypertrophy observed in HFpEF.
Collapse
|
91
|
Chevessier F, Schuld J, Orfanos Z, Plank AC, Wolf L, Maerkens A, Unger A, Schlötzer-Schrehardt U, Kley RA, Von Hörsten S, Marcus K, Linke WA, Vorgerd M, van der Ven PFM, Fürst DO, Schröder R. Myofibrillar instability exacerbated by acute exercise in filaminopathy. Hum Mol Genet 2015; 24:7207-20. [PMID: 26472074 DOI: 10.1093/hmg/ddv421] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates.
Collapse
|
92
|
Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S, Zirngast B, Kirsch A, Steendijk P, Verderber J, Zweiker D, Eller P, Höfler G, Schauer S, Eller K, Maechler H, Pieske BM, Linke WA, Casadei B, Post H. A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2015; 309:H1407-18. [PMID: 26342070 DOI: 10.1152/ajpheart.00542.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/25/2015] [Indexed: 01/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFPEF) evolves with the accumulation of risk factors. Relevant animal models to identify potential therapeutic targets and to test novel therapies for HFPEF are missing. We induced hypertension and hyperlipidemia in landrace pigs (n = 8) by deoxycorticosteroneacetate (DOCA, 100 mg/kg, 90-day-release subcutaneous depot) and a Western diet (WD) containing high amounts of salt, fat, cholesterol, and sugar for 12 wk. Compared with weight-matched controls (n = 8), DOCA/WD-treated pigs showed left ventricular (LV) concentric hypertrophy and left atrial dilatation in the absence of significant changes in LV ejection fraction or symptoms of heart failure at rest. The LV end-diastolic pressure-volume relationship was markedly shifted leftward. During simultaneous right atrial pacing and dobutamine infusion, cardiac output reserve and LV peak inflow velocities were lower in DOCA/WD-treated pigs at higher LV end-diastolic pressures. In LV biopsies, we observed myocyte hypertrophy, a shift toward the stiffer titin isoform N2B, and reduced total titin phosphorylation. LV superoxide production was increased, in part attributable to nitric oxide synthase (NOS) uncoupling, whereas AKT and NOS isoform expression and phosphorylation were unchanged. In conclusion, we developed a large-animal model in which loss of LV capacitance was associated with a titin isoform shift and dysfunctional NOS, in the presence of preserved LV ejection fraction. Our findings identify potential targets for the treatment of HFPEF in a relevant large-animal model.
Collapse
|
93
|
Almeida-Coelho J, Leite-Moreira AM, Neves JS, Neiva-Sousa M, Castro-Ferreira R, Hamdani N, Linke WA, Falcão-Pires I, Lourenço AP, Leite-Moreira AF. Abstract 210: Titin Phosphorylation by Protein Kinase G as a Novel Mechanism of Diastolic Adaptation to Acute Hemodynamic Overload. Circ Res 2015. [DOI: 10.1161/res.117.suppl_1.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titin is the main determinant of myocardial passive tension and its distensibility is increased via phosphorylation by protein kinase G (PKG), activated by nitric oxide (NO) and natriuretic peptides (NP) upon acute overload. We hypothesized whether myocardial stretch led to decreased stiffness, optimizing diastolic filling along with the usual increase in contractility.
Intact rat Langendorff hearts, strips dissected from the LV or right atrium of cardiac surgery patients and rabbit papillary muscles were acutely stretched for 15min. Passive tension (PT) was measured in skinned cardiomyocytes extracted from the LV of control and stretched rat hearts for sarcomere lengths (SL) 1.8-2.3μm before and after incubation with PKG. Rabbit muscles were incubated with a PKG inhibitor or, simultaneously, a NO synthase inhibitor, a NO scavenger, a NP receptor A antagonist. All-total titin phosphorylation was stained with Pro-Q Diamond and indexed to total-protein signals using SYPRO Ruby. Values are given as mean±SEM and statistical significance was set to p<0.05.
After acute stretch there was a progressive decrease in passive tension/diastolic pressure over 15min: 27±8% and 27±6% in human atrium and ventricular muscles, respectively, and 43±2% in rabbit papillary muscles and isolated hearts. This decrease in myocardial stiffness was significantly blunted by PKG inhibition (40%) and NO/NP pathway inhibition (29%). PT of cardiomyocytes was significantly lower (≈60%) in the previously stretched group for all SL. A similar effect, only significant in the control group, was observed after incubation with PKG. Titin phosphorylation increased markedly 15 minutes after acute myocardial stretch in human (atrial: 11±1% vs 41±8%; LV: 27±8% vs 71±21%) and rabbit (13±2% vs 23±3%) myocardium.
The progressive decrease in myocardial stiffness after acute hemodynamic overload is preserved at the myofilamental level and seems to depend on PKG activity, representing a potential therapeutic target in patients with pathologically rigid myocardium. Moreover, blocking PKG activation seems to attenuate this adaptive diastolic response. Therefore, titin phosphorylation by this kinase is probably involved in this new myocardial response to stretch in both animals and humans.
Collapse
|
94
|
Herum KM, Lunde IG, Skrbic B, Louch WE, Hasic A, Boye S, Unger A, Brorson SH, Sjaastad I, Tønnessen T, Linke WA, Gomez MF, Christensen G. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc Res 2015; 106:217-26. [DOI: 10.1093/cvr/cvv002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/20/2014] [Indexed: 01/02/2023] Open
|
95
|
Linke WA. Posttranslational Modification of Titin Domains as a Main Regulator of Myocardial Stiffness. Biophys J 2015. [DOI: 10.1016/j.bpj.2014.11.214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
96
|
Li Y, Linke WA. Direct Evidence for the Effect of Titin Stiffness on Thick-Filament Mechanical Properties in Stretched Muscle Sarcomeres. Biophys J 2015. [DOI: 10.1016/j.bpj.2014.11.3220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
97
|
Beckendorf L, Linke WA. Emerging importance of oxidative stress in regulating striated muscle elasticity. J Muscle Res Cell Motil 2014; 36:25-36. [PMID: 25373878 PMCID: PMC4352196 DOI: 10.1007/s10974-014-9392-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/03/2014] [Indexed: 12/11/2022]
Abstract
The contractile function of striated muscle cells is altered by oxidative/nitrosative stress, which can be observed under physiological conditions but also in diseases like heart failure or muscular dystrophy. Oxidative stress causes oxidative modifications of myofilament proteins and can impair myocyte contractility. Recent evidence also suggests an important effect of oxidative stress on muscle elasticity and passive stiffness via modifications of the giant protein titin. In this review we provide a short overview of known oxidative modifications in thin and thick filament proteins and then discuss in more detail those oxidative stress-related modifications altering titin stiffness directly or indirectly. Direct modifications of titin include reversible disulfide bonding within the cardiac-specific N2-Bus domain, which increases titin stiffness, and reversible S-glutathionylation of cryptic cysteines in immunoglobulin-like domains, which only takes place after the domains have unfolded and which reduces titin stiffness in cardiac and skeletal muscle. Indirect effects of oxidative stress on titin can occur via reversible modifications of protein kinase signalling pathways (especially the NO-cGMP-PKG axis), which alter the phosphorylation level of certain disordered titin domains and thereby modulate titin stiffness. Oxidative stress also activates proteases such as matrix-metalloproteinase-2 and (indirectly via increasing the intracellular calcium level) calpain-1, both of which cleave titin to irreversibly reduce titin-based stiffness. Although some of these mechanisms require confirmation in the in vivo setting, there is evidence that oxidative stress-related modifications of titin are relevant in the context of biomarker design and represent potential targets for therapeutic intervention in some forms of muscle and heart disease.
Collapse
|
98
|
Friedrich FW, Reischmann S, Schwalm A, Unger A, Ramanujam D, Münch J, Müller OJ, Hengstenberg C, Galve E, Charron P, Linke WA, Engelhardt S, Patten M, Richard P, van der Velden J, Eschenhagen T, Isnard R, Carrier L. FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Res Cardiol 2014; 109:451. [PMID: 25358972 PMCID: PMC4215105 DOI: 10.1007/s00395-014-0451-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/04/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022]
Abstract
Based on evidence that FHL2 (four and a half LIM domains protein 2) negatively regulates cardiac hypertrophy we tested whether FHL2 altered expression or variants could be associated with hypertrophic cardiomyopathy (HCM). HCM is a myocardial disease characterized by left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis and is mainly caused by mutations in genes coding for sarcomeric proteins. FHL2 mRNA level, FHL2 protein level and I-band-binding density were lower in HCM patients than control individuals. Screening of 121 HCM patients without mutations in established disease genes identified 2 novel (T171M, V187L) and 4 known (R177Q, N226N, D268D, P273P) FHL2 variants in unrelated HCM families. We assessed the structural and functional consequences of the nonsynonymous substitutions after adeno-associated viral-mediated gene transfer in cardiac myocytes and in 3D-engineered heart tissue (EHT). Overexpression of FHL2 wild type or nonsynonymous substitutions in cardiac myocytes markedly down-regulated α-skeletal actin and partially blunted hypertrophy induced by phenylephrine or endothelin-1. After gene transfer in EHTs, force and velocity of both contraction and relaxation were higher with T171M and V187L FHL2 variants than wild type under basal conditions. Finally, chronic phenylephrine stimulation depressed EHT function in all groups, but to a lower extent in T171M-transduced EHTs. These data suggest that (1) FHL2 is down-regulated in HCM, (2) both FHL2 wild type and variants partially protected phenylephrine- or endothelin-1-induced hypertrophy in cardiac myocytes, and (3) FHL2 T171M and V187L nonsynonymous variants induced altered EHT contractility. These findings provide evidence that the 2 novel FHL2 variants could increase cardiac function in HCM.
Collapse
|
99
|
Savvatis K, Müller I, Fröhlich M, Pappritz K, Zietsch C, Hamdani N, Grote K, Schieffer B, Klingel K, Van Linthout S, Linke WA, Schultheiss HP, Tschöpe C. Interleukin-6 receptor inhibition modulates the immune reaction and restores titin phosphorylation in experimental myocarditis. Basic Res Cardiol 2014; 109:449. [PMID: 25344085 DOI: 10.1007/s00395-014-0449-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 01/18/2023]
Abstract
Increased levels of interleukin-6 (IL-6) have been observed in patients with acute myocarditis and are associated with poor prognosis. This study was designed to examine whether treatment with anti-IL-6 receptor antibody improves cardiac dysfunction and left ventricular (LV) remodeling in experimental Coxsackie virus B3 (CVB3)-induced myocarditis. C57BL6/J mice were subjected to acute CVB3 infection. One day after viral infection mice were treated with a single injection of an anti-IL-6 receptor antibody (MR16-1, tocilizumab) or control IgG. Seven days after viral infection, LV function was examined by conductance catheter technique, cardiac remodeling assessed by estimation of titin phosphorylation, cardiac fibrosis, and inflammatory and antiviral response by immunohistochemistry, RT-PCR and cell culture experiments. Compared to controls, infected mice displayed an impaired systolic and diastolic LV function associated with an increase in cardiac inflammation, fibrosis and impaired titin phosphorylation. IL-6 receptor blockade led to a shift of the immune response to a Th1 direction and significant reduction of viral load. In addition, cardiac immune response, extracellular matrix regulation and titin function improved, resulting in a preserved LV function. IL-6 receptor blockade exerts cardiac beneficial effects by antiviral and immunomodulatory actions after induction of an acute murine CVB3 virus myocarditis.
Collapse
|
100
|
Hamdani N, Hervent AS, Vandekerckhove L, Matheeussen V, Demolder M, Baerts L, De Meester I, Linke WA, Paulus WJ, De Keulenaer GW. Left ventricular diastolic dysfunction and myocardial stiffness in diabetic mice is attenuated by inhibition of dipeptidyl peptidase 4. Cardiovasc Res 2014; 104:423-31. [PMID: 25341892 DOI: 10.1093/cvr/cvu223] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIMS Obesity and Type 2 diabetes mellitus (DM) induce left ventricular (LV) diastolic dysfunction, which contributes to an increasing prevalence of heart failure with a preserved LV ejection fraction. We investigated the effects of sitagliptin (SITA), an inhibitor of dipeptidylpeptidase-4 (DPP-4) and anti-diabetic drug, on LV structure and function of obese mice with Type 2 DM. METHODS AND RESULTS Obese Type 2 diabetic mice (Lepr(db/db), BKS.Cg-Dock7(m)+/+ Lepr(db)/J), displaying increased cardiomyocyte and LV stiffness at the age of 16 weeks, were treated with SITA (300 mg/kg/day) or vehicle for 8 weeks. SITA severely impaired serum DPP-4 activity, but had no effect on glycaemia. Invasive haemodynamic recordings showed that SITA reduced LV passive stiffness and increased LV stroke volume; LV end-systolic elastance remained unchanged. In addition, SITA reduced resting tension of isolated single cardiomyocytes and intensified phosphorylation of the sarcomeric protein titin. SITA also increased LV concentrations of cGMP and increased activity of protein kinase G (PKG). In vitro activation of PKG decreased resting tension of cardiomyocytes from vehicle-treated mice, but had no effect on resting tension of cardiomyocytes from SITA-treated mice. CONCLUSIONS In obese Type 2 diabetic mice, in the absence of hypoglycaemic effects, inhibition of DPP-4 decreases LV passive stiffness and improves global LV performance. These effects seem at least partially mediated by stimulatory effects on the myocardial cGMP-PKG pathway and, hence, on the phosphorylation status of titin and the hereto coupled cardiomyocyte stiffness modulus.
Collapse
|