76
|
Kadoya N, Ichiji K, Uchida T, Nakajima Y, Ikeda R, Uozumi Y, Zhang X, Bukovsky I, Yamamoto T, Takeda K, Takai Y, Jingu K, Homma N. Dosimetric evaluation of MLC-based dynamic tumor tracking radiotherapy using digital phantom: Desired setup margin for tracking radiotherapy. Med Dosim 2017; 43:74-81. [PMID: 28958471 DOI: 10.1016/j.meddos.2017.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/12/2017] [Accepted: 08/22/2017] [Indexed: 12/24/2022]
Abstract
The purpose of this study is to evaluate the dosimetric impact of the margin on the multileaf collimator-based dynamic tumor tracking plan. Furthermore, an equivalent setup margin (EM) of the tracking plan was determined according to the gated plan. A 4-dimensional extended cardiac-torso was used to create 9 digital phantom datasets of different tumor diameters (TDs) of 1, 3, and 5 cm and motion ranges (MRs) of 1, 2, and 3 cm. For each dataset, respiratory gating (30% to 70% phase) and tumor tracking treatment plans were prepared using 8-field 3-dimensional conformal radiation therapy by 4-dimensional dose calculation. The total lung V20 was calculated to evaluate the dosimetric impact for each case and to estimate the EM with the same impact on lung V20 obtained with the gating plan with a setup margin of 5 mm. The EMs for {TD = 1 cm, MR = 1 cm}, {TD = 1 cm, MR = 2 cm}, and {TD = 1 cm, MR = 3 cm} were estimated as 5.00, 4.16, and 4.24 mm, respectively. The EMs for {TD = 5 cm, MR = 1 cm}, {TD = 5 cm, MR = 2 cm}, and {TD = 5 cm, MR = 3 cm} were estimated as 4.24 mm, 6.35 mm, and 7.49 mm, respectively. This result showed that with a larger MR, the EM was found to be increased. In addition, with a larger TD, the EM became smaller. Our result showing the EMs provided the desired accuracy for multileaf collimator-based dynamic tumor tracking radiotherapy.
Collapse
|
77
|
Kadoya N, Miyasaka Y, Yamamoto T, Kuroda Y, Ito K, Chiba M, Nakajima Y, Takahashi N, Kubozono M, Umezawa R, Dobashi S, Takeda K, Jingu K. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. JOURNAL OF RADIATION RESEARCH 2017; 58:720-728. [PMID: 28595311 PMCID: PMC5737357 DOI: 10.1093/jrr/rrx028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 05/12/2023]
Abstract
We evaluated dose-volume histogram (DVH) parameters based on deformable image registration (DIR) between brachytherapy (BT) and external beam radiotherapy (EBRT) that included a center-shielded (CS) plan. Eleven cervical cancer patients were treated with BT, and their pelvic and CS EBRT were studied. Planning CT images for EBRT and BT (except for the first BT, used as the reference image) were deformed with DIR to reference image. We used two DIR parameter settings: intensity-based and hybrid. Mean Dice similarity coefficients (DSCs) comparing EBRT with the reference for the uterus, rectum and bladder were 0.81, 0.77 and 0.83, respectively, for hybrid DIR and 0.47, 0.37 and 0.42, respectively, for intensity-based DIR (P < 0.05). D1 cm3 for hybrid DIR, intensity-based DIR and DVH addition were 75.1, 81.2 and 78.2 Gy, respectively, for the rectum, whereas they were 93.5, 92.3 and 94.3 Gy, respectively, for the bladder. D2 cm3 for hybrid DIR, intensity-based DIR and DVH addition were 70.1, 74.0 and 71.4 Gy, respectively, for the rectum, whereas they were 85.4, 82.8 and 85.4 Gy, respectively, for the bladder. Overall, hybrid DIR obtained higher DSCs than intensity-based DIR, and there were moderate differences in DVH parameters between the two DIR methods, although the results varied among patients. DIR is only experimental, and extra care should be taken when comparing DIR-based dose values with dose-effect curves established using DVH addition. Also, a true evaluation of DIR-based dose accumulation would require ground truth data (e.g. measurement with physical phantom).
Collapse
|
78
|
Meemook K, Nakajima Y, Nakamura M, Hussaini A, Kar S. P1368Anaemia is a predictor of mortality in patients with mitral regurgitation undergoing transcatheter edge-to-edge mitral valve repair. Eur Heart J 2017. [DOI: 10.1093/eurheartj/ehx502.p1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
79
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chan YL, Chang JF, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hsiung YB, Hu BZ, Hu T, Huang EC, Huang HX, Huang XT, Huang YB, Huber P, Huo W, Hussain G, Jaffe DE, Jen KL, Ji XP, Ji XL, Jiao JB, Johnson RA, Jones D, Kang L, Kettell SH, Khan A, Kohn S, Kramer M, Kwan KK, Kwok MW, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JL, Liu JC, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Ma XY, Ma XB, Ma YQ, Malyshkin Y, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Qiu RM, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Stoler P, Sun JL, Tang W, Taychenachev D, Treskov K, Tsang KV, Tull CE, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JL, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Yang YZ, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang CC, Zhang HH, Zhang JW, Zhang QM, Zhang R, Zhang XT, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhou L, Zhuang HL, Zou JH. Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2017; 118:251801. [PMID: 28696753 DOI: 10.1103/physrevlett.118.251801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 06/07/2023]
Abstract
The Daya Bay experiment has observed correlations between reactor core fuel evolution and changes in the reactor antineutrino flux and energy spectrum. Four antineutrino detectors in two experimental halls were used to identify 2.2 million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles for each of six 2.9 GW_{th} reactor cores at the Daya Bay and Ling Ao nuclear power plants. Using detector data spanning effective ^{239}Pu fission fractions F_{239} from 0.25 to 0.35, Daya Bay measures an average IBD yield σ[over ¯]_{f} of (5.90±0.13)×10^{-43} cm^{2}/fission and a fuel-dependent variation in the IBD yield, dσ_{f}/dF_{239}, of (-1.86±0.18)×10^{-43} cm^{2}/fission. This observation rejects the hypothesis of a constant antineutrino flux as a function of the ^{239}Pu fission fraction at 10 standard deviations. The variation in IBD yield is found to be energy dependent, rejecting the hypothesis of a constant antineutrino energy spectrum at 5.1 standard deviations. While measurements of the evolution in the IBD spectrum show general agreement with predictions from recent reactor models, the measured evolution in total IBD yield disagrees with recent predictions at 3.1σ. This discrepancy indicates that an overall deficit in the measured flux with respect to predictions does not result from equal fractional deficits from the primary fission isotopes ^{235}U, ^{239}Pu, ^{238}U, and ^{241}Pu. Based on measured IBD yield variations, yields of (6.17±0.17) and (4.27±0.26)×10^{-43} cm^{2}/fission have been determined for the two dominant fission parent isotopes ^{235}U and ^{239}Pu. A 7.8% discrepancy between the observed and predicted ^{235}U yields suggests that this isotope may be the primary contributor to the reactor antineutrino anomaly.
Collapse
|
80
|
Mukai K, Zhu W, Nakajima Y, Kobayashi M, Nakatani T. Non-invasive longitudinal monitoring of angiogenesis in a murine full-thickness cutaneous wound healing model using high-resolution three-dimensional ultrasound imaging. Skin Res Technol 2017; 23:581-587. [DOI: 10.1111/srt.12374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
|
81
|
Eguchi H, Horita N, Ushio R, Kato I, Nakajima Y, Ota E, Kaneko T. Diagnostic test accuracy of antigenaemia assay for PCR-proven cytomegalovirus infection-systematic review and meta-analysis. Clin Microbiol Infect 2017; 23:907-915. [PMID: 28506786 DOI: 10.1016/j.cmi.2017.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/21/2017] [Accepted: 05/07/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We aimed to assess diagnostic test accuracy of antigenaemia assay for PCR-proven cytomegalovirus (CMV) infection. METHODS We systematically searched studies that provide data both on sensitivity and specificity of the CMV antigenaemia assay using the PCR as the reference standard. Adults, children, infants, individuals who were immunocompromised for any reason, symptomatic patients and asymptomatic individuals were all included. A hierarchical summary receiver operating characteristics model was used for diagnostic meta-analysis. Study quality was assessed by Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Protocol registration identification is CRD42016035892. RESULTS We identified 75 eligible articles including 9058 CMV PCR-positive individuals and 22 232 PCR-negative individuals. The diagnostic odds ratio for positive antigenaemia was 30 (95% CI 24-38, I2 = 28%) and the area under the hierarchical summary receiver operating characteristic curve was 0.86 (95% CI 0.83-0.88). The summary estimates of sensitivity and specificity were 0.65 (95% CI 0.59-0.70) and 0.94 (95% CI 0.93-0.95), respectively. The positive likelihood ratio of 10.9 (95% CI 8.5-14.0) suggested that a positive result from the antigenaemia assay greatly increased the probability of PCR-proven CMV infection, but a negative likelihood ratio of 0.38 (95% CI 0.32-0.44) indicated that a negative result led to a small decrease in the probability of PCR-proven CMV infection. Sensitivity and subgroup analyses replicated these results. CONCLUSIONS The antigenaemia assay overlooked 35% of PCR-proven CMV infections; hence, a negative result of an antigenaemia assay could not rule out a CMV infection.
Collapse
|
82
|
Kadoya N, Miyasaka Y, Nakajima Y, Kuroda Y, Ito K, Chiba M, Sato K, Dobashi S, Yamamoto T, Takahashi N, Kubozono M, Takeda K, Jingu K. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys 2017; 44:1445-1455. [PMID: 28214368 DOI: 10.1002/mp.12168] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/13/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE In this study, we developed a 3D-printed deformable pelvis phantom for evaluating spatial DIR accuracy. We then evaluated the spatial DIR accuracies of various DIR settings for cervical cancer. METHODS A deformable female pelvis phantom was created based on patient CT data using 3D printing. To create the deformable uterus phantom, we first 3D printed both a model of uterus and a model of the internal cavities of the vagina and uterus. We then made a mold using the 3D printed uterus phantom. Finally, urethane was poured into the mold with the model of the internal cavities in place, creating the deformable uterus phantom with a cavity into which an applicator could be inserted. To create the deformable bladder phantom, we first 3D printed models of the bladder and of the same bladder scaled down by 2 mm. We then made a mold using the larger bladder model. Finally, silicone was poured into the mold with the smaller bladder model in place to create the deformable bladder phantom with a wall thickness of 2 mm. To emulate the anatomical bladder, water was poured into the created bladder. We acquired phantom image without applicator for EBRT. Then, we inserted the applicator into the phantom to simulate BT. In this situation, we scanned the phantom again to obtain the phantom image for BT. We performed DIR using the two phantom images in two cases: Case A, with full bladder (170 ml) in both EBRT and BT images; and Case B with full bladder in the BT image and half-full bladder (100 ml) in the EBRT image. DIR was evaluated using Dice similarity coefficients (DSCs) and 31 landmarks for the uterus and 25 landmarks for the bladder. A hybrid intensity and structure DIR algorithm implemented in RayStation with four DIR settings was evaluated. RESULTS On visual inspection, reasonable agreement in shape of the uterus between the phantom and patient CT images was observed for both EBRT and BT, although some regional disagreements in shape of the bladder and rectum were apparent. The created phantom could reproduce the actual patient's uterus deformation by the applicator. For both Case A and B, large variation was seen in landmark error among the four DIR parameters. In addition, although DSCs were comparable, moderate differences in landmark error existed between the two different DIR parameters selected from the four DIR parameters (i.e., DSC = 0.96, landmark error = 13.2 ± 5.7 mm vs. DSC = 0.97, landmark error = 9.7 ± 4.0 mm). This result suggests that landmark error evaluation might thus be more effective than DSC for evaluating DIR accuracy. CONCLUSIONS Our developed phantom enabled the evaluation of spatial DIR accuracy for the female pelvic region for the first time. Although the DSCs are high, the spatial errors can still be significant and our developed phantom facilitates their quantification. Our results showed that optimization is needed to identify suitable DIR settings. For determining suitable DIR settings, our method of evaluating spatial DIR accuracy using the 3D-printed phantom may prove helpful.
Collapse
|
83
|
Wakuri S, Yamakage K, Kazuki Y, Kazuki K, Oshimura M, Aburatani S, Yasunaga M, Nakajima Y. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase. Anal Biochem 2017; 522:18-29. [PMID: 28111305 DOI: 10.1016/j.ab.2017.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay.
Collapse
|
84
|
Ito K, Kadoya N, Nakajima Y, Saito M, Sato K, Nagasaka T, Yamanaka K, Dobashi S, Takeda K, Matsushita H, Jingu K. Feasibility of a Direct-Conversion Method from Magnetic Susceptibility to Relative Electron Density for Radiation Therapy Treatment Planning. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ijmpcero.2017.63023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
85
|
Koyama S, Fujisawa S, Watanabe R, Itabashi M, Ishibashi D, Ishii Y, Hattori Y, Nakajima Y, Motohashi K, Takasaki H, Kawasaki R, Hashimoto C, Yamazaki E, Koharazawa H, Takemura S, Tomita N, Sakai R, Motomura S, Nakajima H. Serum ferritin level is a prognostic marker in patients with peripheral T-cell lymphoma. Int J Lab Hematol 2016; 39:112-117. [PMID: 27885817 DOI: 10.1111/ijlh.12592] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/10/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The prognostic value of serum ferritin level in patients with peripheral T-cell lymphoma (PTCL) remains unknown. METHODS We retrospectively analyzed clinical data from 78 consecutive patients with newly diagnosed PTCL that were treated with anthracycline-containing regimens between 1998 and 2011. RESULTS The patients consisted of 50 males and 28 females with a median age of 64 years (range, 16-83 years). The subtypes of PTCL were 39 PTCL, not otherwise specified and 39 angioimmunoblastic T-cell lymphoma (AITL). The median observation period for the surviving patients was 50 months. The overall survival (OS) was poorer in patients with serum ferritin level above the upper normal limit (n = 28), compared with patients with serum ferritin level within normal range (n = 50; 4-year OS: 23% vs. 72%; P < 0.001). In the multivariate analysis, poor performance status (P = 0.006) and elevated serum ferritin level (P = 0.018) were independent risk factors for poor OS. CONCLUSION Serum ferritin level is a useful prognostic marker for PTCL.
Collapse
|
86
|
Nishimura H, Okuda I, Kunizawa N, Inoue T, Nakajima Y, Amano S. Analysis of morphological changes after facial massage by a novel approach using three-dimensional computed tomography. Skin Res Technol 2016; 23:369-375. [DOI: 10.1111/srt.12345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
|
87
|
Kiyomi A, Hirano T, Fujiwara N, Banba M, Rokugawa N, Nakajima Y, Sugiura M. Effects of supernatant of three-dimensional cultured breast cancer cells on regulatory T cells and programmed cell death-1 positive T cells. Ann Oncol 2016. [DOI: 10.1093/annonc/mdw525.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
88
|
Adamson P, An FP, Anghel I, Aurisano A, Balantekin AB, Band HR, Barr G, Bishai M, Blake A, Blyth S, Bock GJ, Bogert D, Cao D, Cao GF, Cao J, Cao SV, Carroll TJ, Castromonte CM, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen R, Chen SM, Chen Y, Chen YX, Cheng J, Cheng JH, Cheng YP, Cheng ZK, Cherwinka JJ, Childress S, Chu MC, Chukanov A, Coelho JAB, Corwin L, Cronin-Hennessy D, Cummings JP, de Arcos J, De Rijck S, Deng ZY, Devan AV, Devenish NE, Ding XF, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Escobar CO, Evans JJ, Falk E, Feldman GJ, Flanagan W, Frohne MV, Gabrielyan M, Gallagher HR, Germani S, Gill R, Gomes RA, Gonchar M, Gong GH, Gong H, Goodman MC, Gouffon P, Graf N, Gran R, Grassi M, Grzelak K, Gu WQ, Guan MY, Guo L, Guo RP, Guo XH, Guo Z, Habig A, Hackenburg RW, Hahn SR, Han R, Hans S, Hartnell J, Hatcher R, He M, Heeger KM, Heng YK, Higuera A, Holin A, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu W, Huang EC, Huang HX, Huang J, Huang XT, Huber P, Huo W, Hussain G, Hylen J, Irwin GM, Isvan Z, Jaffe DE, Jaffke P, James C, Jen KL, Jensen D, Jetter S, Ji XL, Ji XP, Jiao JB, Johnson RA, de Jong JK, Joshi J, Kafka T, Kang L, Kasahara SMS, Kettell SH, Kohn S, Koizumi G, Kordosky M, Kramer M, Kreymer A, Kwan KK, Kwok MW, Kwok T, Lang K, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Litchfield PJ, Littenberg L, Littlejohn BR, Liu DW, Liu JC, Liu JL, Loh CW, Lu C, Lu HQ, Lu JS, Lucas P, Luk KB, Lv Z, Ma QM, Ma XB, Ma XY, Ma YQ, Malyshkin Y, Mann WA, Marshak ML, Martinez Caicedo DA, Mayer N, McDonald KT, McGivern C, McKeown RD, Medeiros MM, Mehdiyev R, Meier JR, Messier MD, Miller WH, Mishra SR, Mitchell I, Mooney M, Moore CD, Mualem L, Musser J, Nakajima Y, Naples D, Napolitano J, Naumov D, Naumova E, Nelson JK, Newman HB, Ngai HY, Nichol RJ, Ning Z, Nowak JA, O'Connor J, Ochoa-Ricoux JP, Olshevskiy A, Orchanian M, Pahlka RB, Paley J, Pan HR, Park J, Patterson RB, Patton S, Pawloski G, Pec V, Peng JC, Perch A, Pfützner MM, Phan DD, Phan-Budd S, Pinsky L, Plunkett RK, Poonthottathil N, Pun CSJ, Qi FZ, Qi M, Qian X, Qiu X, Radovic A, Raper N, Rebel B, Ren J, Rosenfeld C, Rosero R, Roskovec B, Ruan XC, Rubin HA, Sail P, Sanchez MC, Schneps J, Schreckenberger A, Schreiner P, Sharma R, Moed Sher S, Sousa A, Steiner H, Sun GX, Sun JL, Tagg N, Talaga RL, Tang W, Taychenachev D, Thomas J, Thomson MA, Tian X, Timmons A, Todd J, Tognini SC, Toner R, Torretta D, Treskov K, Tsang KV, Tull CE, Tzanakos G, Urheim J, Vahle P, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang ZM, Webb RC, Weber A, Wei HY, Wen LJ, Whisnant K, White C, Whitehead L, Whitehead LH, Wise T, Wojcicki SG, Wong HLH, Wong SCF, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JL, Xu JY, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang XT, Zhang YM, Zhang YX, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao QW, Zhao YB, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments. PHYSICAL REVIEW LETTERS 2016; 117:151801. [PMID: 27768356 DOI: 10.1103/physrevlett.117.151801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin^{2}2θ_{μe} are set over 6 orders of magnitude in the sterile mass-squared splitting Δm_{41}^{2}. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm_{41}^{2}<0.8 eV^{2} at 95% CL_{s}.
Collapse
|
89
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dolgareva M, Dove J, Dwyer DA, Edwards WR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo RP, Guo XH, Guo Z, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Huo W, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Joshi J, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li DJ, Li F, Li GS, Li QJ, Li S, Li SC, Li WD, Li XN, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Lin SK, Lin YC, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu JL, Liu JC, Loh CW, Lu C, Lu HQ, Lu JS, Luk KB, Lv Z, Ma QM, Ma XY, Ma XB, Ma YQ, Malyshkin Y, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mooney M, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Treskov K, Tsang KV, Tull CE, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu CH, Wu Q, Wu WJ, Xia DM, Xia JK, Xing ZZ, Xu JY, Xu JL, Xu Y, Xue T, Yang CG, Yang H, Yang L, Yang MS, Yang MT, Ye M, Ye Z, Yeh M, Young BL, Yu ZY, Zeng S, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang XT, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YB, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment. PHYSICAL REVIEW LETTERS 2016; 117:151802. [PMID: 27768341 DOI: 10.1103/physrevlett.117.151802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 06/06/2023]
Abstract
This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2×10^{-4}≲|Δm_{41}^{2}|≲0.3 eV^{2} mass range. The resulting limits on sin^{2}2θ_{14} are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δm_{41}^{2}|≲0.2 eV^{2} region.
Collapse
|
90
|
Kadoya N, Nakajima Y, Saito M, Miyabe Y, Kurooka M, Kito S, Fujita Y, Sasaki M, Arai K, Tani K, Yagi M, Wakita A, Tohyama N, Jingu K. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images. Int J Radiat Oncol Biol Phys 2016; 96:422-431. [DOI: 10.1016/j.ijrobp.2016.05.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
|
91
|
Nakajima Y, Kadoya N, Kanai T, Ito K, Sato K, Dobashi S, Yamamoto T, Ishikawa Y, Matsushita H, Takeda K, Jingu K. Comparison of visual biofeedback system with a guiding waveform and abdomen-chest motion self-control system for respiratory motion management. JOURNAL OF RADIATION RESEARCH 2016; 57:387-392. [PMID: 26922090 PMCID: PMC4973639 DOI: 10.1093/jrr/rrv106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 11/17/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
Irregular breathing can influence the outcome of 4D computed tomography imaging and cause artifacts. Visual biofeedback systems associated with a patient-specific guiding waveform are known to reduce respiratory irregularities. In Japan, abdomen and chest motion self-control devices (Abches) (representing simpler visual coaching techniques without a guiding waveform) are used instead; however, no studies have compared these two systems to date. Here, we evaluate the effectiveness of respiratory coaching in reducing respiratory irregularities by comparing two respiratory management systems. We collected data from 11 healthy volunteers. Bar and wave models were used as visual biofeedback systems. Abches consisted of a respiratory indicator indicating the end of each expiration and inspiration motion. Respiratory variations were quantified as root mean squared error (RMSE) of displacement and period of breathing cycles. All coaching techniques improved respiratory variation, compared with free-breathing. Displacement RMSEs were 1.43 ± 0.84, 1.22 ± 1.13, 1.21 ± 0.86 and 0.98 ± 0.47 mm for free-breathing, Abches, bar model and wave model, respectively. Period RMSEs were 0.48 ± 0.42, 0.33 ± 0.31, 0.23 ± 0.18 and 0.17 ± 0.05 s for free-breathing, Abches, bar model and wave model, respectively. The average reduction in displacement and period RMSE compared with the wave model were 27% and 47%, respectively. For variation in both displacement and period, wave model was superior to the other techniques. Our results showed that visual biofeedback combined with a wave model could potentially provide clinical benefits in respiratory management, although all techniques were able to reduce respiratory irregularities.
Collapse
|
92
|
Kadoya N, Nakajima Y, Saito M, Miyabe Y, Kurooka M, Kito S, Sasaki M, Fujita Y, Arai K, Tani K, Yagi M, Wakita A, Tohyama N, Jingu K. TU-AB-202-01: Multi-Institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images. Med Phys 2016. [DOI: 10.1118/1.4957423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
93
|
Uchida T, Kadoya N, Ichiji K, Nakajima Y, Jingu K, Osanai M, Takeda K, Takai Y, Homma N. SU-G-BRA-15: Dosimetric Evaluation of Dynamic Tumor Tracking Radiation Therapy Using Digital Phantom: A Study On Margin and Desired Accuracy of Tracking. Med Phys 2016. [DOI: 10.1118/1.4956939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
94
|
Miyasaka Y, Kadoya N, Kuroda Y, Ito K, Chiba M, Nakajima Y, Sato K, Dobashi S, Takeda K, Jingu K. TU-AB-202-02: Deformable Image Registration Accuracy Between External Beam Radiotherapy and HDR Brachytherapy CT Images for Cervical Cancer Using a 3D-Printed Deformable Pelvis Phantom. Med Phys 2016. [DOI: 10.1118/1.4957424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
95
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dove J, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Pan HR, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2016; 116:061801. [PMID: 26918980 DOI: 10.1103/physrevlett.116.061801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 06/05/2023]
Abstract
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Collapse
|
96
|
Mathew J, Nakajima Y, Choe YK, Urabe Y, Ando W, Sato K, Shimada S. Olefin hydrosilylation catalyzed by cationic nickel(ii) allyl complexes: a non-innocent allyl ligand-assisted mechanism. Chem Commun (Camb) 2016; 52:6723-6. [DOI: 10.1039/c6cc01665k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cationic nickel allyl complexes catalyse selective monohydrosilylation of α-olefins with sec-silanes via a unique mechanism assisted by a non-innocent allyl ligand.
Collapse
|
97
|
Nakajima Y, Iwasaki N, Takahashi H, Yoshida M, Honda E, Kurabayashi T. MRI artifacts and radiopacity of CAD/CAM composite resin blocks. Dent Mater 2016. [DOI: 10.1016/j.dental.2016.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
98
|
Kato H, Kawashima S, Mimuro S, Obata Y, Doi M, Nakajima Y. An evaluation of deep-forehead temperature (spoton®) in ICU patients after cardiac surgery. Intensive Care Med Exp 2015. [PMCID: PMC4797347 DOI: 10.1186/2197-425x-3-s1-a111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
99
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Themann H, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Yeh YS, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay. PHYSICAL REVIEW LETTERS 2015; 115:111802. [PMID: 26406819 DOI: 10.1103/physrevlett.115.111802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 06/05/2023]
Abstract
We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10^{5} GW_{th} ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six ^{241}Am-^{13}C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin^{2}2θ_{13} and |Δm_{ee}^{2}| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave sin^{2}2θ_{13}=0.084±0.005 and |Δm_{ee}^{2}|=(2.42±0.11)×10^{-3} eV^{2} in the three-neutrino framework.
Collapse
|
100
|
Inoue K, Nakano H, Sumida T, Yamada T, Otawa N, Fukuda N, Nakajima Y, Kumamaru W, Mishima K, Kouchi M, Takahashi I, Mori Y. A novel measurement method for the morphology of the mandibular ramus using homologous modelling. Dentomaxillofac Radiol 2015; 44:20150062. [PMID: 26143939 DOI: 10.1259/dmfr.20150062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES It is important to assess the mandibular morphology when orthognathic surgery, especially mandibular ramus osteotomy, is performed. Several studies on three-dimensional (3D) facial asymmetry have reported differences in linear and angle measurements between the deviated and contralateral sides in asymmetric mandibles. However, methods used in these studies cannot analyse the 3D morphology of the ramus. In this study, we aimed to evaluate the differences in mandibular ramus between the deviated and contralateral sides in asymmetric mandibles using traditional measurements as well as 3D shape analysis. METHODS 15 Japanese females with jaw deformities treated by orthodontic surgery were enrolled. 3D CT images were reconstructed, and 14 landmarks were identified on the model surface. Ten linear and four angle measurements were calculated using these landmarks. Homologous ramus models were constructed for each sample, and after converting all homologous models to the right side, 30 homologous models of the ramus were analysed using principal component analysis. RESULTS Firstly, eight principal components explained >80% of the total variance. Differences between the deviated and contralateral sides in measurements and scores of the eight principal components were tested. Significant difference at the 5% level between the deviated and contralateral sides was observed in five linear measurements, three angle measurements and the third principal component. The variance of the deviated side was significantly larger in the diameter between the mandibular notch and coronoid process, horizontal dilated angle of the mandibular ramus and vertical dilated angle of the mandibular ramus. The variance of the contralateral side was significantly larger in the height of mandibular ramus, height of posterior of mandibular ramus, condylar width, height of condylar head and mandibular angle. The squared multiple correlation coefficient adjusted for the degrees of freedom was 0.815. The third principal component showed the difference between the deviated and contralateral sides. Shape variation represented by the third principal component visually indicated that the contralateral side was larger and had inwardly directed coronoid process and the deviated side had a mandibular angle that was turned inwards to a greater extent. CONCLUSIONS In conclusion, we successfully created a homologous model of the mandibular ramus and demonstrated the effectiveness of this model in the 3D comparison of the ramus morphology between the contralateral and deviated sides in asymmetric mandibles.
Collapse
|