76
|
Hong CS, Elsamadicy AA, Fisayo A, Inzucchi SE, Gopal PP, Vining EM, Erson-Omay EZ, Bulent Omay S. Comprehensive Genomic Characterization of A Case of Granular Cell Tumor of the Posterior Pituitary Gland: A Case Report. Front Endocrinol (Lausanne) 2021; 12:762095. [PMID: 34925233 PMCID: PMC8671743 DOI: 10.3389/fendo.2021.762095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Granular cell tumors of the pituitary belong to a rare family of neoplasms, arising from the posterior pituitary gland. Although considered benign, they may cause significant morbidity and residual disease after resection can lead to poor clinical outcomes. Currently, there is no known medical therapy for any posterior pituitary gland tumor, in part due to sparse molecular characterization of these lesions. We report data from whole exome sequencing of a case of granular cell tumor of the pituitary, performed under an institutional review board approved protocol. A 77 year-old female underwent resection of an incidentally diagnosed pituitary mass that was causing radiographic compression of the optic nerves with a subclinical temporal field defect and central hypothyroidism. The pathology of the resected specimen demonstrated a granular cell tumor of the posterior pituitary gland. Whole-exome sequencing revealed mutations predicted to be deleterious in key oncogenes, SETD2 and PAX8, both of which have been described in other cancers and could potentially be amenable to targeted therapies with existing approved drugs, including immune checkpoint inhibitors and histone deacetylase inhibitors, respectively. To our knowledge, this is the first comprehensive genomic characterization of granular cell tumor of the posterior pituitary gland. We report mutations in oncogenes predicted to be deleterious and reported in other cancers with potential for therapeutic targeting with existing pharmacologic agents. These data provide new insights into the molecular pathogenesis of GCT of the pituitary and may warrant further investigation.
Collapse
|
77
|
Monomorphic Epitheliotropic Intestinal T-Cell Lymphoma in Asia Frequently Shows SETD2 Alterations. Cancers (Basel) 2020; 12:cancers12123539. [PMID: 33260897 PMCID: PMC7759862 DOI: 10.3390/cancers12123539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare primary T-cell lymphoma of the digestive tract that is characterized by an aggressive clinical course. The aim of this study was to analyze the clinicopathological characteristics and genomic profile of Asian MEITL. In this study, nine cases of Japanese MEITL were analyzed by targeted Next Generation Sequencing and immunohistochemistry and were integrated with previously reported whole-genome copy number microarray-based assay data. All cases showed alterations of the tumor suppressor gene SETD2 and mutations in one or more genes of the JAK/STAT pathway. Therefore, we concluded that the combination of epigenetic deregulation and cell signaling activation may represent a major oncogenic event in the pathogenesis of Asian MEITL, similar to Western MEITL. Abstract Monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) is a rare primary T-cell lymphoma of the digestive tract derived from intraepithelial lymphocytes and characterized by an aggressive clinical course. In this study, nine cases of Japanese MEITL were analyzed by targeted Next Generation Sequencing (NGS) and immunohistochemistry and were integrated with previously reported whole-genome copy number microarray-based assay data. The highlight of our findings is that all cases showed alterations of the tumor suppressor gene SETD2 by mutations and/or loss of the corresponding 3p21 locus. We also demonstrated that all cases showed mutations in one or more genes of JAK/STAT pathway. Therefore, the combination of epigenetic deregulation and cell signaling activation represent major oncogenic events in the pathogenesis of MEITL in Asian MEITL, similar to Western MEITL.
Collapse
|
78
|
Zhou Y, Zheng X, Xu B, Deng H, Chen L, Jiang J. Histone methyltransferase SETD2 inhibits tumor growth via suppressing CXCL1-mediated activation of cell cycle in lung adenocarcinoma. Aging (Albany NY) 2020; 12:25189-25206. [PMID: 33223508 PMCID: PMC7803529 DOI: 10.18632/aging.104120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be frequently mutated or deleted in many types of human cancer. However, the role of SETD2 in lung adenocarcinoma (LUAD) has not been well documented. In the present study, we found that SETD2 was significantly down-regulated both in LUAD tissues and cell lines. Functionally, the increased expression of SETD2 significantly attenuated the proliferation of cancer cells by affecting the cell cycle, whereas SETD2 deficiency dramatically improved these proliferative abilities of cancer cells. Through conjoint analysis of RNA-seq and ChIP data, we identified a functional target gene of SETD2, CXCL1, and its expression was negatively correlated with that of SETD2. Moreover, SETD2 deletion stimulated cell cycle-related proteins to promote LUAD. Further mechanistic studies demonstrated that histone H3 lysine 36 trimethylation (H3K36me3) catalyzed by SETD2 interacted with the promoter of CXCL1 to regulate its transcription and downstream signaling pathways, contributing to tumorigenesis in vitro and in vivo. Our findings suggested that SETD2 inhibited tumor growth via suppressing CXCL1-mediated activation of cell cycle, indicating that the regulation of H3K36me3 level by targeting SETD2 and/or the administration of downstream CXCL1 might represent a potential therapeutic way for new treatment in LUAD.
Collapse
|
79
|
Histone H3.3 G34 mutations promote aberrant PRC2 activity and drive tumor progression. Proc Natl Acad Sci U S A 2020; 117:27354-27364. [PMID: 33067396 DOI: 10.1073/pnas.2006076117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A high percentage of pediatric gliomas and bone tumors reportedly harbor missense mutations at glycine 34 in genes encoding histone variant H3.3. We find that these H3.3 G34 mutations directly alter the enhancer chromatin landscape of mesenchymal stem cells by impeding methylation at lysine 36 on histone H3 (H3K36) by SETD2, but not by the NSD1/2 enzymes. The reduction of H3K36 methylation by G34 mutations promotes an aberrant gain of PRC2-mediated H3K27me2/3 and loss of H3K27ac at active enhancers containing SETD2 activity. This altered histone modification profile promotes a unique gene expression profile that supports enhanced tumor development in vivo. Our findings are mirrored in G34W-containing giant cell tumors of bone where patient-derived stromal cells exhibit gene expression profiles associated with early osteoblastic differentiation. Overall, we demonstrate that H3.3 G34 oncohistones selectively promote PRC2 activity by interfering with SETD2-mediated H3K36 methylation. We propose that PRC2-mediated silencing of enhancers involved in cell differentiation represents a potential mechanism by which H3.3 G34 mutations drive these tumors.
Collapse
|
80
|
Seervai RNH, Grimm SL, Jangid RK, Tripathi DN, Coarfa C, Walker CL. An actin-WHAMM interaction linking SETD2 and autophagy. Biochem Biophys Res Commun 2020; 558:202-208. [PMID: 33036756 DOI: 10.1016/j.bbrc.2020.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
The process of autophagy is dysregulated in many cancers including clear cell renal cell carcinoma (ccRCC). Autophagy involves the coordination of numerous autophagy-related (ATG) genes, as well as processes involving the actin cytoskeleton. The histone methyltransferase SETD2, frequently inactivated in ccRCC, has recently been shown to also methylate cytoskeletal proteins, which in the case of actin lysine 68 trimethylation (ActK68me3) regulates actin polymerization dynamics. Here we show that cells lacking SETD2 exhibit autophagy defects, as well as decreased interaction of the actin nucleation promoting factor WHAMM with its target actin, which is required for initiation of autophagy. Interestingly, the WHAMM actin binding deficit could be rescued with pharmacologic induction of actin polymerization in SETD2-null cells using Jasplakinolide. These data indicate that the decreased interaction between WHAMM and its target actin in SETD2-null cells was secondary to altered actin dynamics rather than loss of the SETD2 ActK68me3 mark itself, and underscores the importance of the functional defect in actin polymerization in SETD2-null cells exhibiting autophagy defects.
Collapse
|
81
|
Yuan H, Han Y, Wang X, Li N, Liu Q, Yin Y, Wang H, Pan L, Li L, Song K, Qiu T, Pan Q, Chen Q, Zhang G, Zang Y, Tan M, Zhang J, Li Q, Wang X, Jiang J, Qin J. SETD2 Restricts Prostate Cancer Metastasis by Integrating EZH2 and AMPK Signaling Pathways. Cancer Cell 2020; 38:350-365.e7. [PMID: 32619406 DOI: 10.1016/j.ccell.2020.05.022] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
The level of SETD2-mediated H3K36me3 is inversely correlated with that of EZH2-catalyzed H3K27me3. Nevertheless, it remains unclear whether these two enzymatic activities are molecularly intertwined. Here, we report that SETD2 delays prostate cancer (PCa) metastasis via its substrate EZH2. We show that SETD2 methylates EZH2 which promotes EZH2 degradation. SETD2 deficiency induces a Polycomb-repressive chromatin state that enables cells to acquire metastatic traits. Conversely, mice harboring nonmethylated EZH2 mutant or SETD2 mutant defective in binding to EZH2 develop metastatic PCa. Furthermore, we identify that metformin-stimulated AMPK signaling converges at FOXO3 to stimulate SETD2 expression. Together, our results demonstrate that the SETD2-EZH2 axis integrates metabolic and epigenetic signaling to restrict PCa metastasis.
Collapse
|
82
|
Ding H, Zhao J, Zhang Y, Yu J, Liu M, Li X, Xu L, Lin M, Liu C, He Z, Chen S, Jiang H. Systematic Analysis of Drug Vulnerabilities Conferred by Tumor Suppressor Loss. Cell Rep 2020; 27:3331-3344.e6. [PMID: 31189115 DOI: 10.1016/j.celrep.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to oncogene inhibition, targeting tumor suppressor deficiency could provide potential venues for precision cancer medicine. However, the full spectrum of drug vulnerability conferred by tumor suppressor loss remains unclear. We systematically analyzed how loss of 59 common tumor suppressors each affected cellular sensitivity to 26 different types of anticancer therapeutics. The experiments were performed in a one-gene, one-drug manner, and through such a large gene-drug iteration study, we were able to generate a drug sensitivity map that describes numerous examples of drug resistance or hypersensitivity conferred by tumor suppressor loss. We further delineated the mechanisms of several gene-drug interactions, showing that loss of tumor suppressors could modify drug sensitivity at various steps of drug action. This systematic drug sensitivity map highlights potential drug vulnerabilities associated with tumor suppressor loss, which may help expand precision cancer medicine on the basis of tumor suppressor status.
Collapse
|
83
|
Rabin R, Radmanesh A, Glass IA, Dobyns WB, Aldinger KA, Shieh JT, Romoser S, Bombei H, Dowsett L, Trapane P, Bernat JA, Baker J, Mendelsohn NJ, Popp B, Siekmeyer M, Sorge I, Sansbury FH, Watts P, Foulds NC, Burton J, Hoganson G, Hurst JA, Menzies L, Osio D, Kerecuk L, Cobben JM, Jizi K, Jacquemont S, Bélanger SA, Löhner K, Veenstra-Knol HE, Lemmink HH, Keller-Ramey J, Wentzensen IM, Punj S, McWalter K, Lenberg J, Ellsworth KA, Radtke K, Akbarian S, Pappas J. Genotype-phenotype correlation at codon 1740 of SETD2. Am J Med Genet A 2020; 182:2037-2048. [PMID: 32710489 DOI: 10.1002/ajmg.a.61724] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 11/06/2022]
Abstract
The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.
Collapse
|
84
|
Walker C, Burggren W. Remodeling the epigenome and (epi)cytoskeleton: a new paradigm for co-regulation by methylation. ACTA ACUST UNITED AC 2020; 223:223/13/jeb220632. [PMID: 32620673 DOI: 10.1242/jeb.220632] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The epigenome determines heritable patterns of gene expression in the absence of changes in DNA sequence. The result is programming of different cellular-, tissue- and organ-specific phenotypes from a single organismic genome. Epigenetic marks that comprise the epigenome (e.g. methylation) are placed upon or removed from chromatin (histones and DNA) to direct the activity of effectors that regulate gene expression and chromatin structure. Recently, the cytoskeleton has been identified as a second target for the cell's epigenetic machinery. Several epigenetic 'readers, writers and erasers' that remodel chromatin have been discovered to also remodel the cytoskeleton, regulating structure and function of microtubules and actin filaments. This points to an emerging paradigm for dual-function remodelers with 'chromatocytoskeletal' activity that can integrate cytoplasmic and nuclear functions. For example, the SET domain-containing 2 methyltransferase (SETD2) has chromatocytoskeletal activity, methylating both histones and microtubules. The SETD2 methyl mark on chromatin is required for efficient DNA repair, and its microtubule methyl mark is required for proper chromosome segregation during mitosis. This unexpected convergence of SETD2 activity on histones and microtubules to maintain genomic stability suggests the intriguing possibility of an expanded role in the cell for chromatocytoskeletal proteins that read, write and erase methyl marks on the cytoskeleton as well as chromatin. Coordinated use of methyl marks to remodel both the epigenome and the (epi)cytoskeleton opens the possibility for integrated regulation (which we refer to as 'epiregulation') of other higher-level functions, such as muscle contraction or learning and memory, and could even have evolutionary implications.
Collapse
|
85
|
Chen R, Zhao WQ, Fang C, Yang X, Ji M. Histone methyltransferase SETD2: a potential tumor suppressor in solid cancers. J Cancer 2020; 11:3349-3356. [PMID: 32231741 PMCID: PMC7097956 DOI: 10.7150/jca.38391] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulation plays an important role in the occurrence, development and treatment of malignant tumors; and a great deal of attention has been paid to the histone methylation level in recent years. As a 230-kD epigenetic regulator, the histone H3 lysine 36 histone (H3K36) methyltransferase SETD2 is a key enzyme of the nuclear receptor SET domain-containing (NSD) family, which is associated with a specific hyperphosphorylated domain, a large subunit of RNA polymerase II (RNAPII), named RNAPII subunit B1 (RPB1), and SETD2 which methylates the ly-36 position of dimethylated histone H3 (H3K36me2) to generate trimethylated H3K36 (H3K36me3). SETD2 is involved in various cellular processes, including transcriptional regulation, DNA damage repair, non-histone protein-related functions and some other processes. Great efforts of high-throughput sequencing have revealed that SETD2 is mutated or its function is lost in a range of solid cancers, including renal cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, osteosarcoma, and so on. Mutation, or functional loss, of the SETD2 gene produces dysfunction in corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemotherapy resistance, and unfavorable prognosis, suggesting that SETD2 possibly acts as a tumor suppressor. However, its underlying mechanism remains largely unexplored. In the present study, we summarized the latest advances of effects of SETD2 expression at the mRNA and protein levels in solid cancers, and its potential molecular and cellular functions as well as clinical applications were also reviewed.
Collapse
|
86
|
Zeng Y, Wang S, Feng M, Shao Z, Yuan J, Shen Z, Jie W. [Quantitative proteomics and differential signal enrichment in nasopharyngeal carcinoma cells with or without SETD2 gene knockout]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:1191-1199. [PMID: 31801714 DOI: 10.12122/j.issn.1673-4254.2019.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To analyze the effects of alterations in the expressions of methyltransferase SETD2 on protein expression profiles in human nasopharyngeal carcinoma (NPC) cells and enrich the differential signaling pathways. METHODS The total protein was extracted from SETD2-knockout cell line CNE1SETD2-KO and the wild-type cell line CNE1WT, and the differentially expressed proteins were screened by tandem mass tag (TMT) labeled protein quantification technique and tandem mass spectrometry. GO analysis was used to annotate and enrich the differentially expressed proteins, and the KEGG database was used to enrich and analyze the pathways of the differential proteins. RESULTS With a fold change (FC)≥1.2 and P < 0.05 as the screening standard, 2049 differentially expressed proteins were identified in CNE1SETD2-KO cells, among which 904 were up-regulated and 1145 were down-regulated. GO functional annotation results indicated that SETD2 knockout caused characteristic changes in multiple biological processes (cell processes and regulation, cell movement, metabolic processes, and biosynthesis of cellular components), molecular functions (catalytic activity and molecular binding, transcription factor activity), and cellular components (cell membrane, organelle, macromolecular complex). KEGG analysis showed that the differentially expressed proteins were involved in an array of signaling pathways closely related to tumors, including MAPK, PI3K-Akt, Ras, Rap1, mTOR, Hippo, HIF-1, Wnt, AMPK, FoxO, ErbB, P53 and JAK-STAT. CONCLUSIONS SETD2 knockout significantly changes the protein expression characteristics of NPC cells and affects a number of signal pathways closely related to tumors. The results provide evidence for investigation of the pathogenesis and therapeutic target screening of NPC.
Collapse
|
87
|
Marzin P, Rondeau S, Aldinger KA, Alessandri JL, Isidor B, Heron D, Keren B, Dobyns WB, Cormier-Daire V. SETD2 related overgrowth syndrome: Presentation of four new patients and review of the literature. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:509-518. [PMID: 31643139 DOI: 10.1002/ajmg.c.31746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 01/02/2023]
Abstract
The common genes responsible for overgrowth syndromes play key roles in regulating transcription through histone modification and chromatin modeling. The SETD2 gene encoding a H3K36 trimethyltransferase is implicated in Sotos-like syndrome. This syndrome is characterized by postnatal overgrowth, macrocephaly, obesity, speech delay, and advanced carpal ossification. We report four new patients with constitutional SETD2 mutations and review nine earlier reported patients. Almost all patients presented with macrocephaly associated with advanced stature and obesity in half of the cases. In addition to these principal manifestations, neurodevelopmental disorders are common such as intellectual disability (83%), autism spectrum disorders (89%), and behavioral difficulties (100%) with aggressive outbursts (83%). A variety of features such as joint hypermobility (29%), hirsutism (33%), and naevi (50%) were also reported. Constitutional SETD2 mutations are intragenic loss-of-function variants with truncating (69%) and missense (31%) mutations. Functional studies are necessary to improve understanding of the pathogenicity of some missense SETD2 mutations.
Collapse
|
88
|
Li C, Huang Z, Gu L. SETD2 reduction adversely affects the development of mouse early embryos. J Cell Biochem 2019; 121:797-803. [PMID: 31407364 DOI: 10.1002/jcb.29325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/15/2019] [Indexed: 01/03/2023]
Abstract
SET domain-containing protein 2 (SETD2), the protein of regulating trimethylation status of histone H3 at lysine 36 (H3K36), participates in the maintenance of chromatin architecture, transcription elongation, genome stability, and other biological events. However, its function in preimplantation embryos is still obscure. In this study, specific small interfering RNA was employed to investigate the functions of SETD2. We find that deletion of SETD2 results in the developmental delay of mouse early embryos, indicative of the compromised developmental potential. Remarkably, SETD2 knockdown induces the accumulation of the DNA lesions and apoptotic blastomeres in early embryos. In addition, the methylation level of H3K36 is significantly reduced in two-cell embryos depleted of SETD2. In summary, our data indicate that SETD2 maintains genome stability perhaps via regulating trimethylation status of H3K36, consequently controlling the embryo quality. These findings pave the avenue for understanding the cross-talk between epigenome and SETD2 during early embryo development.
Collapse
|
89
|
Lee JJK, Park S, Park H, Kim S, Lee J, Lee J, Youk J, Yi K, An Y, Park IK, Kang CH, Chung DH, Kim TM, Jeon YK, Hong D, Park PJ, Ju YS, Kim YT. Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma. Cell 2019; 177:1842-1857.e21. [PMID: 31155235 DOI: 10.1016/j.cell.2019.05.013] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/18/2019] [Accepted: 05/03/2019] [Indexed: 01/13/2023]
Abstract
Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.
Collapse
|
90
|
Lowe BR, Maxham LA, Hamey JJ, Wilkins MR, Partridge JF. Histone H3 Mutations: An Updated View of Their Role in Chromatin Deregulation and Cancer. Cancers (Basel) 2019; 11:E660. [PMID: 31086012 PMCID: PMC6562757 DOI: 10.3390/cancers11050660] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
In this review, we describe the attributes of histone H3 mutants identified in cancer. H3 mutants were first identified in genes encoding H3.3, in pediatric high-grade glioma, and subsequently in chondrosarcomas and giant cell tumors of bone (GCTB) in adolescents. The most heavily studied are the lysine to methionine mutants K27M and K36M, which perturb the target site for specific lysine methyltransferases and dominantly perturb methylation of corresponding lysines in other histone H3 proteins. We discuss recent progress in defining the consequences of these mutations on chromatin, including a newly emerging view of the central importance of the disruption of H3K36 modification in many distinct K to M histone mutant cancers. We also review new work exploring the role of H3.3 G34 mutants identified in pediatric glioma and GCTB. G34 is not itself post-translationally modified, but G34 mutation impinges on the modification of H3K36. Here, we ask if G34R mutation generates a new site for methylation on the histone tail. Finally, we consider evidence indicating that histone mutations might be more widespread in cancer than previously thought, and if the perceived bias towards mutation of H3.3 is real or reflects the biology of tumors in which the histone mutants were first identified.
Collapse
|
91
|
Ettel M, Zhao L, Schechter S, Shi J. Expression and prognostic value of NSD1 and SETD2 in pancreatic ductal adenocarcinoma and its precursor lesions. Pathology 2019; 51:392-398. [PMID: 31060750 DOI: 10.1016/j.pathol.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic regulation is emerging as a critical mechanism for pancreatic ductal adenocarcinoma (PDA) development. Histone methylation is an important regulatory mechanism, altering chromatin structure and promoter accessibility and causing aberrant gene expression. NSD1 and SETD2 genes encoding two histone H3K36 methyltransferases, are mutated or altered in 8-10% of PDA cases. However, whether there is altered protein expression of NSD1 or SETD2 in PDA and its precursors, and whether they have diagnostic or prognostic utility is unknown. Tissue microarrays composed of a total of 190 and 192 duplicated cases of PDA (n=74 and 75), metastatic PDA (n=17 and 18), pancreatic intraepithelial neoplasia (PanIN; n=19 and 24), intraductal papillary mucinous neoplasm (IPMN; n=36), mucinous cystic neoplasm (MCN; n=12) and benign pancreatic tissues (n=27 and 32) were analysed for expression of NSD1 and SETD2 by immunohistochemistry. We assessed intensity and percentage of positive cells. NSD1 expression was significantly increased in metastatic PDA compared to benign ducts, primary PDA, and all other lesions combined (p=0.03, 0.02, and 0.03 respectively). Additionally, significantly decreased SETD2 protein expression was found in metastatic PDA and PanIN lesions compared to benign ducts (p=0.04 and 0.007, respectively). High NSD1 expression was associated with clinical stage III/IV disease (p=0.026), tumour grade 2 (p=0.022), use of neoadjuvant therapy (p=0.037), and overall higher clinical stage (p=0.022). There is no significant difference in overall and progression-free survival between NSD1/SETD2 high and low PDA. Expression of NSD1 and SETD2 is specifically altered in metastatic PDA and some of the PDA precursor lesions, supporting their important role in PDA development and metastasis. In addition, increased NSD1 expression is significantly associated with higher clinical stage and neoadjuvant therapy, suggesting that NSD1 may be a useful prognostic marker.
Collapse
|
92
|
Sheng Y, Ji Z, Zhao H, Wang J, Cheng C, Xu W, Wang X, He Y, Liu K, Li L, Voeltzel T, Maguer-Satta V, Gao WQ, Zhu HH. Downregulation of the histone methyltransferase SETD2 promotes imatinib resistance in chronic myeloid leukaemia cells. Cell Prolif 2019; 52:e12611. [PMID: 31054182 PMCID: PMC6668982 DOI: 10.1111/cpr.12611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/25/2019] [Accepted: 03/09/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives Epigenetic modifiers were important players in the development of haematological malignancies and sensitivity to therapy. Mutations of SET domain‐containing 2 (SETD2), a methyltransferase that catalyses the trimethylation of histone 3 on lysine 36 (H3K36me3), were found in various myeloid malignancies. However, the detailed mechanisms through which SETD2 confers chronic myeloid leukaemia progression and resistance to therapy targeting on BCR‐ABL remain unclear. Materials and methods The level of SETD2 in imatinib‐sensitive and imatinib‐resistant chronic myeloid leukaemia (CML) cells was examined by immunoblotting and quantitative real‐time PCR. We analysed CD34+CD38− leukaemic stem cells by flow cytometry and colony formation assays upon SETD2 knockdown or overexpression. The impact of SETD2 expression alterations or small‐molecule inhibitor JIB‐04 targeting H3K36me3 loss on imatinib sensitivity was assessed by IC50, cell apoptosis and proliferation assays. Finally, RNA sequencing and ChIP‐quantitative PCR were performed to verify putative downstream targets. Results SETD2 was found to act as a tumour suppressor in CML. The novel oncogenic targets MYCN and ERG were shown to be the direct downstream targets of SETD2, where their overexpression induced by SETD2 knockdown caused imatinib insensitivity and leukaemic stem cell enrichment in CML cell lines. Treatment with JIB‐04, an inhibitor that restores H3K36me3 levels through blockade of its demethylation, successfully improved the cell imatinib sensitivity and enhanced the chemotherapeutic effect. Conclusions Our study not only emphasizes the regulatory mechanism of SETD2 in CML, but also provides promising therapeutic strategies for overcoming the imatinib resistance in patients with CML.
Collapse
|
93
|
Elgendy M, Fusco JP, Segura V, Lozano MD, Minucci S, Echeveste JI, Gurpide A, Andueza M, Melero I, Sanmamed MF, Ruiz MR, Calvo A, Pascual JI, Velis JM, Miñana B, Valle RD, Pio R, Agorreta J, Abengozar M, Colecchia M, Brich S, Renne SL, Guruceaga E, Patiño-García A, Perez-Gracia JL. Identification of mutations associated with acquired resistance to sunitinib in renal cell cancer. Int J Cancer 2019; 145:1991-2001. [PMID: 30848481 DOI: 10.1002/ijc.32256] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Sunitinib is one of the most widely used targeted therapeutics for renal cell carcinoma (RCC), but acquired resistance against targeted therapies remains a major clinical challenge. To dissect mechanisms of acquired resistance and unravel reliable predictive biomarkers for sunitinib in RCC, we sequenced the exons of 409 tumor-suppressor genes and oncogenes in paired tumor samples from an RCC patient, obtained at baseline and after development of acquired resistance to sunitinib. From newly arising mutations, we selected, using in silico prediction models, six predicted to be deleterious, located in G6PD, LRP1B, SETD2, TET2, SYNE1, and DCC. Consistently, immunoblotting analysis of lysates derived from sunitinib-desensitized RCC cells and their parental counterparts showed marked differences in the levels and expression pattern of the proteins encoded by these genes. Our further analysis demonstrates essential roles for these proteins in mediating sunitinib cytotoxicity and shows that their loss of function renders tumor cells resistant to sunitinib in vitro and in vivo. Finally, sunitinib resistance induced by continuous exposure or by inhibition of the six proteins was overcome by treatment with cabozantinib or a low-dose combination of lenvatinib and everolimus. Collectively, our results unravel novel markers of acquired resistance to sunitinib and clinically relevant approaches for overcoming this resistance in RCC.
Collapse
|
94
|
Wang S, Yuan X, Liu Y, Zhu K, Chen P, Yan H, Zhang D, Li X, Zeng H, Zhao X, Chen X, Zhou G, Cao S. Genetic polymorphisms of histone methyltransferase SETD2 predicts prognosis and chemotherapy response in Chinese acute myeloid leukemia patients. J Transl Med 2019; 17:101. [PMID: 30922329 PMCID: PMC6437967 DOI: 10.1186/s12967-019-1848-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/15/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND SETD2, the single mediator of trimethylation of histone 3 at position lysine 36, has been reported associated with initiation progression and chemotherapy resistance in acute myeloid leukemia (AML). Whether polymorphisms of SETD2 affect prognosis and chemotherapy response of AML remains elusive. METHODS Three tag single-nucleotide polymorphisms (tagSNPs) of SETD2 were genotyped in 579 AML patients by using Sequenom Massarray system. Association of the SNPs with complete remission (CR) rate after Ara-C based induction therapy, overall survival (OS) and relapse-free survival (RFS) were analyzed. RESULT Survival analysis indicated that SETD2 rs76208147 TT genotype was significantly associated with poor prognosis of AML (TT vs. CC + CT hazard ratio: HR = 1.838, 95% confidence interval (CI) 1.005-3.360, p = 0.048). After adjusting for the known prognostic factors including risk stratification, age, allo-SCT, WBC count and LDH count, rs76208147 TT genotype was still associated with OS in the multivariate analysis (TT vs. CC + CT HR = 1.923, 95% CI 1.007-3.675, p = 0.048). In addition, after adjusting by other clinical features, patients with rs4082155 allele G carries showed higher rate of complete remission which indicated by CR rate (AG + GG vs. AA odd ratio (OR) = 0.544, 95% CI 0.338-0.876, p = 0.012). CONCLUSIONS SETD2 genetic polymorphism is associated with AML prognosis and chemotherapy outcome, suggesting the possibility for development in AML diagnostics and therapeutics towards SETD2.
Collapse
|
95
|
Li L, Miao W, Huang M, Williams P, Wang Y. Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Mol Cell Proteomics 2019; 18:437-447. [PMID: 30487242 PMCID: PMC6398210 DOI: 10.1074/mcp.ra118.000957] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of RCC in humans. SET domain-containing 2 (SETD2), a lysine methyltransferase for histone and other proteins, has been found to be frequently lost in ccRCC. However, the mechanisms through which deficiency in SETD2 contributes to ccRCC development remain largely unknown. Here, we used a human embryonic kidney epithelial cell line with the SETD2 gene being knocked out using CRISPR/Cas9 technology. Using ChIP-seq analysis, we showed that SETD2 loss leads to diminished occupancy of histone H3K36me3 and H4K16ac on actively transcribed genes. Transcriptome sequencing of the knockout cells revealed diminished expression of genes involved in metabolic pathways and elevated expression of genes involved in regulation of RNA polymerase II-mediated transcription. Quantitative proteomic analysis of chromatin-associated proteins showed that genetic ablation of SETD2 leads to elevated chromatin occupancy of proteins involved in chromatin remodeling and RNA polymerase II transcription regulation, and diminished chromatin binding of proteins involved in translation elongation and RNA splicing. Interestingly, we found that SETD2 depletion attenuates cell proliferation, and this can be rescued by knockdown of CDK1. Taken together, we illustrate multiple SETD2-regulated cellular pathways that suppress cancer development and uncover mechanisms underlying aberrant cell cycle regulation in SETD2-depleted cells.
Collapse
|
96
|
Skucha A, Ebner J, Grebien F. Roles of SETD2 in Leukemia-Transcription, DNA-Damage, and Beyond. Int J Mol Sci 2019; 20:ijms20051029. [PMID: 30818762 PMCID: PMC6429614 DOI: 10.3390/ijms20051029] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/07/2023] Open
Abstract
The non-redundant histone methyltransferase SETD2 (SET domain containing 2; KMT3A) is responsible for tri-methylation of lysine 36 on histone H3 (H3K36me3). Presence of the H3K36me3 histone mark across the genome has been correlated with transcriptional activation and elongation, but also with the regulation of DNA mismatch repair, homologous recombination and alternative splicing. The role of SETD2 and the H3K36me3 histone mark in cancer is controversial. SETD2 is lost or mutated in various cancers, supporting a tumor suppressive role of the protein. Alterations in the SETD2 gene are also present in leukemia patients, where they are associated with aggressive disease and relapse. In line, heterozygous SETD2 loss caused chemotherapy resistance in leukemia cell lines and mouse models. In contrast, other studies indicate that SETD2 is critically required for the proliferation of leukemia cells. Thus, although studies of SETD2-dependent processes in cancer have contributed to a better understanding of the SETD2⁻H3K36me3 axis, many open questions remain regarding its specific role in leukemia. Here, we review the current literature about critical functions of SETD2 in the context of hematopoietic malignancies.
Collapse
|
97
|
Pilié PG, Jonasch E. SET-ing the stage for PI3Kβ inhibitor sensitivity in clear cell renal cell carcinoma. Oncotarget 2019; 10:1540-1541. [PMID: 30899419 PMCID: PMC6422188 DOI: 10.18632/oncotarget.26709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 11/25/2022] Open
|
98
|
Terzo EA, Lim AR, Chytil A, Chiang YC, Farmer L, Gessner KH, Walker CL, Jansen VM, Rathmell WK. SETD2 loss sensitizes cells to PI3Kβ and AKT inhibition. Oncotarget 2019; 10:647-659. [PMID: 30774762 PMCID: PMC6363018 DOI: 10.18632/oncotarget.26567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/22/2018] [Indexed: 12/19/2022] Open
Abstract
Upregulation of the PI3K pathway has been implicated in the initiation and progression of several types of cancer, including renal cell carcinoma (RCC). Although several targeted therapies have been developed for RCC, durable and complete responses are exceptional. Thus, advanced RCC remains a lethal disease, underscoring the need of robust biomarker-based strategies to treat RCC. We report a synthetic lethal interaction between inhibition of phosphatidylinositol 3-kinase beta (PI3Kβ) and loss of SETD2 methyltransferase. Clear cell RCC (ccRCC)-derived SETD2 knockout 786-0 and SETD2 mutant A498 cells treated with TGX221 (PI3Kβ-specific) and AZD8186 (PI3Kβ- and δ-specific) inhibitors displayed decreased cell viability, cell growth, and migration compared to SETD2 proficient 786-0 cells. Inhibition of the p110 δ and α isoforms alone had modest (δ) and no (α) effect on ccRCC cell viability, growth, and migration. In vivo, treatment of SETD2 mutant A498 cells, but not SETD2 proficient 786-0 cells, with AZD8186 significantly decreased tumor growth. Interestingly, inhibition of the downstream effector AKT (MK2206) recapitulated the effects observed in AZD8186-treated SETD2 deficient cells. Our data show that specific inhibition of PI3Kβ causes synthetic lethality with SETD2 loss and suggest targeting of the AKT downstream effector pathway offers a rationale for further translational and clinical investigation of PI3Kβ-specific inhibitors in ccRCC.
Collapse
|
99
|
Liu J, Hanavan PD, Kras K, Ruiz YW, Castle EP, Lake DF, Chen X, O’Brien D, Luo H, Robertson KD, Gu H, Ho TH. Loss of SETD2 Induces a Metabolic Switch in Renal Cell Carcinoma Cell Lines toward Enhanced Oxidative Phosphorylation. J Proteome Res 2019; 18:331-340. [PMID: 30406665 PMCID: PMC6465098 DOI: 10.1021/acs.jproteome.8b00628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SETD2, a histone H3 lysine trimethyltransferase, is frequently inactivated and associated with recurrence of clear cell renal cell carcinoma (ccRCC). However, the impact of SETD2 loss on metabolic alterations in ccRCC is still unclear. In this study, SETD2 null isogenic 38E/38F clones derived from 786-O cells were generated by zinc finger nucleases, and subsequent metabolic, genomic, and cellular phenotypic changes were analyzed by targeted metabolomics, RNA sequencing, and biological methods, respectively. Our results showed that compared with parental 786-O cells, 38E/38F cells had elevated levels of MTT/Alamar blue levels, ATP, glycolytic/mitochondrial respiratory capacity, citrate synthase (CS) activity, and TCA metabolites such as aspartate, malate, succinate, fumarate, and α-ketoglutarate. The 38E/38F cells also utilized alternative sources beyond pyruvate to generate acetyl-CoA for the TCA cycle. Moreover, 38E/38F cells showed disturbed gene networks mainly related to mitochondrial metabolism and the oxidation of fatty acids and glucose, which was associated with increased PGC1α, mitochondrial mass, and cellular size/complexity. Our results indicate that SETD2 deficiency induces a metabolic switch toward enhanced oxidative phosphorylation in ccRCC, which can be related to PGC1α-mediated metabolic networks. Therefore, this current study lays the foundation for the further development of a global metabolic analysis of cancer cells in individual patients, which ultimately will have significant potential for the discovery of novel therapeutics and precision medicine in SETD2-inactivated ccRCC.
Collapse
|
100
|
Viaene AN, Santi M, Rosenbaum J, Li MM, Surrey LF, Nasrallah MP. SETD2 mutations in primary central nervous system tumors. Acta Neuropathol Commun 2018; 6:123. [PMID: 30419952 PMCID: PMC6231273 DOI: 10.1186/s40478-018-0623-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023] Open
Abstract
Mutations in SETD2 are found in many tumors, including central nervous system (CNS) tumors. Previous work has shown these mutations occur specifically in high grade gliomas of the cerebral hemispheres in pediatric and young adult patients. We investigated SETD2 mutations in a cohort of approximately 640 CNS tumors via next generation sequencing; 23 mutations were detected across 19 primary CNS tumors. Mutations were found in a wide variety of tumors and locations at a broad range of allele frequencies. SETD2 mutations were seen in both low and high grade gliomas as well as non-glial tumors, and occurred in patients greater than 55 years of age, in addition to pediatric and young adult patients. High grade gliomas at first occurrence demonstrated either frameshift/truncating mutations or point mutations at high allele frequencies, whereas recurrent high grade gliomas frequently harbored subclones with point mutations in SETD2 at lower allele frequencies in the setting of higher mutational burdens. Comparison with the TCGA dataset demonstrated consistent findings. Finally, immunohistochemistry showed decreased staining for H3K36me3 in our cohort of SETD2 mutant tumors compared to wildtype controls. Our data further describe the spectrum of tumors in which SETD2 mutations are found and provide a context for interpretation of these mutations in the clinical setting.
Collapse
|