1
|
Liu L, Li W, Song W, Guo M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:206-219. [PMID: 29573687 DOI: 10.1016/j.scitotenv.2018.03.161] [Citation(s) in RCA: 692] [Impact Index Per Article: 98.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 05/18/2023]
Abstract
Globally there are over 20millionha of land contaminated by the heavy metal(loid)s As, Cd, Cr, Hg, Pb, Co, Cu, Ni, Zn, and Se, with the present soil concentrations higher than the geo-baseline or regulatory levels. In-situ and ex-situ remediation techniques have been developed to rectify the heavy metal-contaminated sites, including surface capping, encapsulation, landfilling, soil flushing, soil washing, electrokinetic extraction, stabilization, solidification, vitrification, phytoremediation, and bioremediation. These remediation techniques employ containment, extraction/removal, and immobilization mechanisms to reduce the contamination effects through physical, chemical, biological, electrical, and thermal remedy processes. These techniques demonstrate specific advantages, disadvantages, and applicability. In general, in-situ soil remediation is more cost-effective than ex-situ treatment, and contaminant removal/extraction is more favorable than immobilization and containment. Among the available soil remediation techniques, electrokinetic extraction, chemical stabilization, and phytoremediation are at the development stage, while the others have been practiced at full, field scales. Comprehensive assessment indicates that chemical stabilization serves as a temporary soil remediation technique, phytoremediation needs improvement in efficiency, surface capping and landfilling are applicable to small, serious-contamination sites, while solidification and vitrification are the last remediation option. The cost and duration of soil remediation are technique-dependent and site-specific, up to $500ton-1 soil (or $1500m-3 soil or $100m-2 land) and 15years. Treatability studies are crucial to selecting feasible techniques for a soil remediation project, with considerations of the type and degree of contamination, remediation goals, site characteristics, cost effectiveness, implementation time, and public acceptability.
Collapse
|
Review |
7 |
692 |
2
|
Zhang X, Gu P, Liu Y. Decontamination of radioactive wastewater: State of the art and challenges forward. CHEMOSPHERE 2019; 215:543-553. [PMID: 30342399 DOI: 10.1016/j.chemosphere.2018.10.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Radioactive substances have been widely used in many industrial sectors, e.g. nuclear power station, biomedical engineering, etc. With increasing applications of nuclear technology, more and more radioactive wastewater is being generated via different channels, which indeed is posing an emerging challenge and threat to the environment and human health. Given such a situation, this review attempts to offer a holistic view with regard to the state of the art of technology for decontamination of radioactive wastewater as well as shed lights on the challenges forward. Different from reclamation of other types of wastewaters, the most challenging issue in decontamination of radioactive wastewater is the effective stabilization and solidification of soluble radioactive nuclides present in wastewater, which are critical for final disposal. Moreover, the potential risk of human exposure to wastewater radiation needs to be carefully assessed, and this issue should also be taken into consideration in the selection, design and operation of the radioactive wastewater treatment process. These clearly differentiate the treatment principle of radioactive wastewater from those of traditional industrial and municipal wastewaters. Lastly, the challenges from the perspectives of technology development, environmental and human health impacts and possible solutions forward are also elucidated.
Collapse
|
Review |
6 |
85 |
3
|
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 2015; 495:738-49. [PMID: 26383838 DOI: 10.1016/j.ijpharm.2015.09.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022]
Abstract
In recent years, nanosuspension has been considered effective in the delivery of water-soluble drugs. One of the main challenges to effective drug delivery is designing an appropriate nanosuspension preparation approach with low energy input and erosion contamination, such as the bottom-up method. This review focuses on bottom-up technologies for preparation of nanosuspensions. The features and advantages of drug nanosuspension, including bottom-up methods as well as the corresponding characterization techniques, solidification methods, and drug delivery dosage forms, are discussed in detail. Certain limitations of commercial nanosuspension products are also reviewed.
Collapse
|
Review |
10 |
83 |
4
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
Review |
6 |
73 |
5
|
Liu X, Zhao X, Yin H, Chen J, Zhang N. Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior. JOURNAL OF HAZARDOUS MATERIALS 2018; 349:262-271. [PMID: 29438822 DOI: 10.1016/j.jhazmat.2017.12.072] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/25/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Municipal solid waste incineration (MSWI) fly ash is a by-product of garbage incineration power generation, and its disposal is currently a world problem because it contains over standard heavy metals. This research aims to solidify the heavy metals in MSWI fly ash and make it to be utilizable construction materials under the guidance of intermediate-calcium cementitious materials (ICCM), and meanwhile figure out the solidification and hydration mechanism. The hydration characteristics of ICCM were characterized by XRD, FTIR, 29Si MAS-NMR and SEM techniques, and the environmental properties are investigated by TCLP and EPMA. The results indicate that the optimal ratio of (CaO + MgO)/(SiO2 + Al2O3) for ICCM is at the range of 0.76-0.88. The compressive strengths of ICCM reach the 42.5R normal Portland cement level, and the leaching concentrations of heavy metals meet the Chinese integrated wastewater discharge standard GB 8978-1996. As predominant hydration products, ettringite, hydrocalumite and amorphous C-S-H gel are principally responsible for the strength development of ICCM, and the (Ca + Mg)/(Si + Al) ratio at 0.88 has the best polymerized structure. The heavy metals are well solidified through combining with the C-S-H gel or absorbed in the hydration pastes. This paper provides an effective solution to use the MSWI fly ash in building material.
Collapse
|
|
7 |
61 |
6
|
Yue PF, Li Y, Wan J, Yang M, Zhu WF, Wang CH. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm 2013; 454:269-77. [PMID: 23830942 DOI: 10.1016/j.ijpharm.2013.06.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/23/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Few or no attempts have been made so far to understand the feasibility of solid nanosuspension formulation during nanodispersion and solidification in terms of drug properties and stabilizer characterizations. In order to establish a knowledge base about the effect of physicochemical property of drug compounds and stabilizers on solid nanosuspension production during nanodispersion and solidification, a comparative study was firstly performed on 10 different stabilizers at 3 concentrations for 8 structurally different drug compounds. Synthetic polymers (HPMC, PVP K30, CMS-Na and MC) displayed a poor stabilizing performance (10% success rate on average) during nanodispersion, but polymers showed better potential when higher concentrations was applied during freezing and lyophilization. Meanwhile, an effect for the surfactants group was even more pronounced during nanodispersion. However, the solid nanosuspension stabilized by surfactants showed the worst formability potential when be applied in setted concentrations during freezing and lyophilization. From the point of view of drug property, it was found that the surface hydrophobicity and cohesive energy of drug, were responsible for the formability of the solid nanosuspension during nanodispersion and solidification. Wetting index (k) and ΔE were concluded to have a direct correlation on the feasibility of formation of a stable solid nanosuspension, which can give a formulation design strategy from where candidate drugs and stabilizers with a set of properties.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
61 |
7
|
Sörengård M, Kleja DB, Ahrens L. Stabilization and solidification remediation of soil contaminated with poly- and perfluoroalkyl substances (PFASs). JOURNAL OF HAZARDOUS MATERIALS 2019; 367:639-646. [PMID: 30654281 DOI: 10.1016/j.jhazmat.2019.01.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 05/22/2023]
Abstract
Remediation methods for soils contaminated with poly- and perfluoroalkyl substances (PFASs) are urgently needed to protect the surrounding environment and drinking water source areas from pollution. In this study, the stabilization and solidification (S/S) technique was tested on aged PFAS-contaminated soil that were artificially spiked with 14 PFAS. To further reduce leaching of PFASs in S/S-treated soil, seven different additives were tested at 2% concentration: powdered activated carbon (PAC), Rembind®, pulverized zeolite, chitosan, hydrotalcite, bentonite, and calcium chloride. Standardized leaching tests on S/S-treated soil revealed that leaching of 13 out of 14 target PFASs (excluding perfluorobutane sulfonate (PFBA)) was reduced by, on average, 70% and 94% by adding PAC and Rembind®. Longer-chained PFASs such as perfluorooctane sulfonate (PFOS), which is considered persistent, bioaccumulative and toxic, were stabilized by 99.9% in all S/S treatments when PAC or Rembind® was used as an additive. The S/S stabilization efficiency depended on PFAS perfluorocarbon chain length and functional group, e.g., it increased on average by 11-15 % per CF3-moeity and was on average 49% higher for the perfluorosulfonates (PFSAs) than the perfluorocarboxylates (PFCAs). Overall, the S/S treatment with active carbon-based additives showed excellent performance in reducing leaching of PFASs, without marked loss of physical matrix stability.
Collapse
|
|
6 |
56 |
8
|
Li YC, Min XB, Chai LY, Shi MQ, Tang CJ, Wang QW, Liang YJ, Lei J, Liyang WJ. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:756-761. [PMID: 27449964 DOI: 10.1016/j.jenvman.2016.07.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.
Collapse
|
|
9 |
54 |
9
|
Ahire E, Thakkar S, Darshanwad M, Misra M. Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 2018; 8:733-755. [PMID: 30245962 PMCID: PMC6146387 DOI: 10.1016/j.apsb.2018.07.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/20/2018] [Accepted: 06/26/2018] [Indexed: 02/01/2023] Open
Abstract
Advancements in in silico techniques of lead molecule selection have resulted in the failure of around 70% of new chemical entities (NCEs). Some of these molecules are getting rejected at final developmental stage resulting in wastage of money and resources. Unfavourable physicochemical properties affect ADME profile of any efficacious and potent molecule, which may ultimately lead to killing of NCE at final stage. Numerous techniques are being explored including nanocrystals for solubility enhancement purposes. Nanocrystals are the most successful and the ones which had a shorter gap between invention and subsequent commercialization of the first marketed product. Several nanocrystal-based products are commercially available and there is a paradigm shift in using approach from simply being solubility enhancement technique to more novel and specific applications. Some other aspects in relation to parenteral nanosuspensions are concentrations of surfactant to be used, scalability and in vivo fate. At present, there exists a wide gap due to poor understanding of these critical factors, which we have tried to address in this review. This review will focus on parenteral nanosuspensions, covering varied aspects especially stabilizers used, GRAS (Generally Recognized as Safe) status of stabilizers, scalability challenges, issues of physical and chemical stability, solidification techniques to combat stability problems and in vivo fate.
Collapse
Key Words
- ADME, absorption distribution metabolism elimination
- ASEs, aerosols solvent extractions
- AUC, area under curve
- BBB, blood–brain barrier
- BCS, Biopharmaceutical Classification System
- BDP, beclomethasone dipropionate
- CFC, critical flocculation concentration
- CLSM, confocal laser scanning microscopy
- CMC, critical micelle concentration
- DMSO, dimethyl sulfoxide
- EDI, estimated daily intake
- EHDA, electrohydrodynamic atomization
- EPAS, evaporative precipitation in aqueous solution
- EPR, enhanced permeability and retention
- FITC, fluorescein isothiocyanate
- GRAS, Generally Recognized as Safe
- HEC, hydroxyethylcellulose
- HFBII, class II hydrophobin
- HP-PTX/NC, hyaluronic acid-paclitaxel/nanocrystal
- HPC, hydroxypropyl cellulose
- HPH, high-pressure homogenization
- HPMC, hydroxypropyl methylcellulose
- IM, intramuscular
- IP, intraperitoneal
- IV, intravenous
- IVIVC, in vivo–in vitro correlation
- In vivo fate
- LD50, median lethal dose (50%)
- MDR, multidrug resistance effect
- NCE, new chemical entities
- Nanosuspension
- P-gp, permeation glycoprotein
- PEG, polyethylene glycol
- PTX, paclitaxel
- PVA, polyvinyl alcohol
- Parenteral
- QbD, quality by design
- SC, subcutaneous
- SEDS, solution enhanced dispersion by supercritical fluids
- SEM, scanning electron microscopy
- SFL, spray freezing into liquids
- Scalability
- Solidification
- Stabilizer
- TBA, tert-butanol
- TEM, transmission electron microscopy
- US FDA, United States Food and Drug Administration
- Vitamin E TPGS, d-α-tocopheryl polyethylene glycol 1000 succinate
Collapse
|
Review |
7 |
54 |
10
|
Du B, Li J, Fang W, Liu Y, Yu S, Li Y, Liu J. Characterization of naturally aged cement-solidified MSWI fly ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:101-111. [PMID: 30454989 DOI: 10.1016/j.wasman.2018.08.053] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/09/2023]
Abstract
Solidification/stabilization (S/S) is the most common treatment for municipal solid waste incineration fly ash (MSWI-FA), and is widely applied in developed countries but has a history barely longer than 10 years in China. However, our understanding of the physicochemical characteristics of the solidified FA body after long-term natural aging is comparatively poor. Focusing on cement-solidified FA that was naturally aged for 6 years (hereafter referred to as FA-6), the physicochemical characteristics including elemental composition, mineral composition, microstructure, thermogravimetry, distribution of heavy metals in mineral phases, and leaching characteristics of inorganic salts (Na, K, Ca), anions (Cl and SO4) and heavy metals (Cd, Cr, Cu, Pb, Zn) were investigated in this study. By combining pH-dependent leaching results with the geochemical model LeachXS, the chemical forms of heavy metals in the FA solid phase was determined. The main conclusion was as follows: (1) soluble salts of FA-6 decreased by more than 92% compared with fresh FA. (2) In FA-6, the proportions of Pb, Cd and Zn in the non-mineral phase were 100%, 100% and 58%, respectively, which may cause potential environmental risk of heavy metal release. The leaching concentration of Pb was 4007.37 μg/L according to compliance batch test of HJ300, which was far higher than the landfill requirement of 250 μg/L. (3) The controlling phase for Pb in FA-6 was Pb5(PO4)3Cl (pH 2-12) and Pb2(OH)3Cl (pH > 12). (4) Carbonates, hydrous Fe oxides (HFO) and dissolved organic carbon (DOC) in FA-6 also affected the phase-controlled leaching of heavy metals. The carbonate fraction partly controlled the leaching of Cd, Cu and Zn. For example, smithsonite (ZnCO3) controlled the release of Zn (pH 2-13). Adsorption to solid humic acid (SHA) controlled the Cr leaching at pH < 7 and the Cu leaching except pH > 12.
Collapse
|
|
7 |
43 |
11
|
Taheri S, Jalali F, Fattahi N, Bahrami G. Sensitive determination of atorvastatin in human plasma by dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high-performance liquid chromatography. J Sep Sci 2014; 38:309-15. [PMID: 25382401 DOI: 10.1002/jssc.201401115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 11/06/2022]
Abstract
A novel and sensitive dispersive liquid-liquid microextraction method based on the solidification of the floating organic drop combined with high-performance liquid chromatography and ultraviolet detection was used for the determination of atorvastatine in blood serum samples. The chromatographic separation of atorvastatin was carried out using methanol as the mobile phase organic modifier. Various parameters affecting the extraction efficiency were optimized, such as the kind and volume of extraction solvent (1-undecanol) and disperser solvent (acetonitrile), pH, and the extraction time. The calibration curve was linear in the range of 0.2-6000 μg/L of atorvastatin (r(2) = 0.995) with a limit of detection of 0.07 μg/L. The relative standard deviation for 100 μg/L of atorvastatin in human plasma was 8.4% (n = 4). The recoveries of plasma samples spiked with atorvastatin were in the range of 98.8-113.8%. The obtained results showed that the proposed method is fast, simple, and reliable for the determination of very low concentrations of atorvastatin in human plasma samples.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
35 |
12
|
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil. J AM OIL CHEM SOC 2015; 92:1651-1659. [PMID: 26640280 PMCID: PMC4661199 DOI: 10.1007/s11746-015-2731-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 10/31/2022]
Abstract
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
Collapse
|
Journal Article |
10 |
33 |
13
|
Chen W, Wang F, Li Z, Li Q. A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 114:107-114. [PMID: 32663772 DOI: 10.1016/j.wasman.2020.06.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Fly ash is a hazardous material that is produced from municipal solid waste incineration. It contains heavy metals and should be properly treated to meet landfill entry requirements. In this study, under the precondition that the leachable concentration of lead (Pb) exceeded the limit value for landfill disposal, the effects of cement solidification, chemical stabilization, and their combination on the leachable Pb concentration and the chemical state of Pb were systematically investigated. In addition, the reaction conditions were optimized by response surface methodology (RSM) in terms of leachable Pb concentration, volume change ratio, and treatment cost. The results indicated that the leachable Pb concentration decreased at lower cement or sodium dihydrogen phosphate (NaH2PO4) dosages in cement solidification or NaH2PO4 stabilization, and the liquid-to-solid ratio had a significant influence on cement solidification. The leachable Pb concentration met the limit value for landfill disposal in the individual processes with 20% cement or 5% NaH2PO4, and in the combined process with 10% cement + 2% NaH2PO4. The combined process achieved the best treatment efficiency by enabling Pb to transform to a stable residual state. According to the RSM, a combined cement content of 11.64%, NaH2PO4 content of 2.79%, and liquid-to-solid ratio of 0.48 were the optimal parameters, resulting in substantial decreases in the volume change ratio and treatment costs, while satisfying the preconditions for landfill disposal. In conclusion, the combined process can reduce the pollution risk to the environment, and is an efficient and cost-effective pre-treatment method for incinerator fly ash.
Collapse
|
|
5 |
31 |
14
|
Zheng L, Wang W, Gao X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 58:270-279. [PMID: 27613416 DOI: 10.1016/j.wasman.2016.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study presents an integrated synopsis of the solidification and immobilization mechanisms of fly ash-based geopolymers. A rational analysis of the ion reactions involved in geopolymerization was conducted using the partial charge model (PCM). The following conclusions were obtained: (1) heavy metal cations cannot be immobilized as counter cations through exchange with Na+; (2) isomorphous substitution of heavy metals in the geopolymer can be expected from the condensation reaction between the hydrolyzed heavy metal species and aluminosilicate; (3) the hydrolyzed species condensation could result in solidification and immobilization and be promoted by aluminates; and (4) a geopolymer with the highest immobilization and solidification efficiency can be obtained at an intermediate pH value. The partial charges on the framework of Si, Al, and O in the primary building blocks of aluminosilicate and heavy metal-doped aluminosilicate were confirmed through XPS and 29Si NMR spectroscopy analyses. The effects of activator dosage and types on fly ash-based geopolymers were also investigated, and the results verify the PCM analysis. A geopolymer with the highest strength was produced at an intermediate alkaline dosage. Silicate or aluminate introduced into the activator improved the strength and immobilization efficiency, and aluminate exhibited better performance. Heavy metals bound to the exchangeable or acid-soluble fraction were transformed into aluminosilicate species during geopolymerization.
Collapse
|
|
9 |
26 |
15
|
Jang JG, Park SM, Lee HK. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:339-346. [PMID: 27434737 DOI: 10.1016/j.jhazmat.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.
Collapse
|
|
9 |
26 |
16
|
Yang N, Balasubramani N, Venezuela J, Almathami S, Wen C, Dargusch M. The influence of Ca and Cu additions on the microstructure, mechanical and degradation properties of Zn-Ca-Cu alloys for absorbable wound closure device applications. Bioact Mater 2021; 6:1436-1451. [PMID: 33210035 PMCID: PMC7658446 DOI: 10.1016/j.bioactmat.2020.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Novel ternary Zn-Ca-Cu alloys were studied for the development of absorbable wound closure device material due to Ca and Cu's therapeutic values to wound healing. The influence of Ca and Cu on the microstructure, mechanical and degradation properties of Zn were investigated in the as-cast state to establish the fundamental understanding on the Zn-Ca-Cu alloy system. The microstructure of Zn-0.5Ca-0.5Cu, Zn-1.0Ca-0.5Cu, and Zn0.5Ca-1.0Cu is composed of intermetallic phase CaZn13 distributed within the Zn-Cu solid solution. The presence of CaZn13 phase and Cu as solute within the Zn matrix, on the one hand, exhibited a synergistic effect on the grain refinement of Zn, reducing the grain size of pure Zn by 96%; on the other hand, improved the mechanical properties of the ternary alloys through solid solution strengthening, second phase strengthening, and grain refinement. The degradation properties of Zn-Ca-Cu alloys are primarily influenced by the micro-galvanic corrosion between Zn-Cu matrix and CaZn13 phase, where the 0.5% and 1.0% Ca addition increased the corrosion rate of Zn from 11.5 μm/y to 19.8 μm/y and 29.6 μm/y during 4 weeks immersion test.
Collapse
|
research-article |
4 |
24 |
17
|
Kim HT, Lee TG. A simultaneous stabilization and solidification of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). CHEMOSPHERE 2017; 178:479-485. [PMID: 28347911 DOI: 10.1016/j.chemosphere.2017.03.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
A novel chemically bonded phosphate ceramic (CBPC) binder was developed for the simultaneous treatment of the top five most toxic heavy metals (Hg, Pb, As, Cr, and Cd). Various CBPC binders were synthesized and tested, and their toxicity characteristic leaching procedure (TCLP) values were obtained. A magnesium/calcium-potassium phosphate ceramic binder with FeCl2 (M/C-KP-FeCl2) simultaneously stabilized multiple heavy metals. The TCLP value of the final product for industrial waste (IW) treatment using the M/C-KP-FeCl2 technology was well below the Universal Treatment Standard (UTS). Additionally, the compressive strength of the final product was below the US Nuclear Regulatory Commission Standard.
Collapse
|
|
8 |
24 |
18
|
Eisenberg DP, Steif PS, Rabin Y. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation. CRYOGENICS 2014; 64:86-94. [PMID: 25792762 PMCID: PMC4360916 DOI: 10.1016/j.cryogenics.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.
Collapse
|
research-article |
11 |
22 |
19
|
He W, Yang K, Fan L, Lv Y, Jin Z, Zhu S, Qin C, Wang Y, Yin L. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. Int J Pharm 2015; 495:9-18. [PMID: 26325310 DOI: 10.1016/j.ijpharm.2015.08.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022]
Abstract
Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.
Collapse
|
Journal Article |
10 |
22 |
20
|
Wu F, Chen B, Qu G, Liu S, Zhao C, Ren Y, Liu X. Harmless treatment technology of phosphogypsum: Directional stabilization of toxic and harmful substances. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114827. [PMID: 35248928 DOI: 10.1016/j.jenvman.2022.114827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/05/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Phosphogypsum is one of the typical by-products of phosphorus chemical industry. As a strategic industry related to the national livelihood of China, phosphorus chemical industry has accumulated and produced a significant amount of phosphogypsum. In general, phosphogypsum contains approximately 80%-95% calcium sulfate dihydrate, and less than 5% toxic and harmful elements. In this paper, toxic and hazardous components in phosphogypsum were efficiently solidified and stabilized by highly targeted solidification and stabilization technology. Calcium carbide slag or lime was used as an alkali-base neutralizer of phosphogypsum, and polymeric ferric sulfate or polymeric aluminum chloride as a directional solidification stabilizer to analyze the leaching toxicity of the mixed powder in 1, 3, 5 and 15 days. The experimental results demonstrate excellent solidification and stabilization effect with the leaching pH of 6-9, the leaching concentration of P, F and heavy metals of less than 0.5 mg/L, 10 mg/L and 0.1 mg/L, respectively, which meets the requirements of relevant international standards. Mechanistic analysis indicates that the solidification and stabilization of toxic and hazardous substances in phosphogypsum is perfectly achieved owing to the generation, adsorption and encapsulation of insoluble substances. This technology can reduce the costs and difficulty in the phosphogypsum treatment, and has extensive application potentials.
Collapse
|
|
3 |
18 |
21
|
Komljenović M, Tanasijević G, Džunuzović N, Provis JL. Immobilization of cesium with alkali-activated blast furnace slag. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121765. [PMID: 31928790 DOI: 10.1016/j.jhazmat.2019.121765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Alkali-activated binders (AABs), as a promising alternative to Portland cement, are now being used on a commercial scale in various applications around the world, including hazardous and radioactive waste immobilization. In this paper, the leaching resistance, strength, and nanostructural alteration of alkali-activated blast furnace slag (AABFS) doped with 2 % and 5 % cesium were investigated. The addition of cesium caused a significant increase in the compressive strength of AABFS, followed by mild strength reduction after leaching. AABFS can be considered a potentially efficient matrix for cesium immobilization, since the mean leachability index in both cases (2 % and 5 % of Cs added) was above the threshold value of 6. Both doping with Cs and leaching caused the transformation of the AABFS nanostructure. The majority of the aluminum that was released from the C-A-S-H gel due to leaching remained within the AABFS matrix, initiating gel reconstruction: the C-A-S-H gel was converted to C-S-H gel, and an additional N-(C)-A-S-H gel was also formed. Cesium was preferentially associated with the N-(C)-A-S-H gel rather than with the C-A-S-H gel. The results of this research seem to be in good agreement with the Cross-linked Substituted Tobermorite Model (CSTM).
Collapse
|
|
5 |
16 |
22
|
Sihn Y, Bae S, Lee W. Immobilization of uranium(VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI). CHEMOSPHERE 2019; 215:626-633. [PMID: 30347357 DOI: 10.1016/j.chemosphere.2018.10.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/29/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
We developed a novel solidification and stabilization process using a nanoscale zerovalent iron (NZVI)-cement system for reductive immobilization of hexavalent uranium (U(VI)) in a soil-cement matrix. The NZVI suspension without cement demonstrated high removal efficiency (100% in 2 h) and fast removal kinetics (53.7 Lm-2d-1), which surpassed those of other Fe-containing minerals (i.e., green rust, mackinawite, magnetite, and pyrite). Significant removal of aqueous U(VI) was observed in NZVI-cement slurries and minimal adsorbed U was desorbed by a bicarbonate/carbonate (CARB) solution. Surface analysis using scanning electron microscopy and X-ray photoelectron spectroscopy revealed U distributed homogeneously on the surface of the NZVI-cement and transformed considerably from U(VI) to reduced U species by coupled oxidation of Fe(0)/Fe(II) to Fe(III). Furthermore, the increase in pH and NZVI concentration, and presence of humic acid resulted in the enhanced U(VI) reduction in NZVI-cement slurries. The NZVI-cement system was tested with a soil matrix, resulting in successful immobilization of aqueous U(VI) in both batch and column experiments. Moreover, the U(VI) removed in the NZVI-cement system was not leached out by the CARB solution during long-term experiments. The results suggest an NZVI-cement system could represent a promising remediation alternative for effective and stable immobilization of U(VI) in contaminated sites.
Collapse
|
|
6 |
14 |
23
|
Beesabathuni SN, Lindberg SE, Caggioni M, Wesner C, Shen AQ. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface. J Colloid Interface Sci 2015; 445:231-242. [PMID: 25622048 DOI: 10.1016/j.jcis.2014.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/01/2022]
Abstract
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.
Collapse
|
|
10 |
13 |
24
|
Seidi S, Alavi L, Jabbari A. Dispersed Solidified Fine Droplets Based on Sonication of a Low Melting Point Deep Eutectic Solvent: a Novel Concept for Fast and Efficient Determination of Cr(VI) in Urine Samples. Biol Trace Elem Res 2019; 188:353-362. [PMID: 30043285 DOI: 10.1007/s12011-018-1438-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
Cr(VI) has carcinogenic effects, so determination of trace amount of chromium in human body such as urine has a great deal of importance. In this work, a novel microextraction method was developed based on solidification of dispersed fine droplets (SDFD) of a low melting point deep eutectic solvent (DES), produced with the aid of sonication, for fast and efficient determination of Cr(VI) in urine samples. Cr(VI) contents of the human urine samples were first complexed using 1,5-diphenylcarbazone at pH ≈ 2.0 and then extracted by the method. A cloudy solution was achieved by the sonication of a microliter volume of a new water-immiscible DES consisting of benzyltriphenylphosphonium bromide (BTPPB) and phenol. Low freezing point of DES makes it possible to use simple, precise, and fast collection of the extraction phase by solidification and the subsequent centrifugation. Finally, the sedimented phase was diluted with methanol and analyzed by electrothermal atomic absorption spectrometry (ETAAS). The influences of the main factors on the efficiency of the procedure were investigated by a four-factor central composite design (CCD). Under the optimum conditions, the calibration curve was linear within the range of 10-1000 ng L-1. The intra- and inter-day RSD% values of 2.6 and 4.7% were obtained at the concentration of 50.0 ng L-1, respectively. The limits of detection (LOD) and quantification (LOQ) were calculated as 2.0 and 7.0 ng L-1, respectively. Moreover, compared to the other approaches, the proposed method presented better or comparable analytical performance and provided accurate, precise, and reliable results for trace analysis of Cr(VI) in urine samples.
Collapse
|
|
6 |
12 |
25
|
Anderson DM, Benson JD, Kearsley AJ. Foundations of modeling in cryobiology-I: concentration, Gibbs energy, and chemical potential relationships. Cryobiology 2014; 69:349-60. [PMID: 25240602 DOI: 10.1016/j.cryobiol.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 11/16/2022]
Abstract
Mathematical modeling plays an enormously important role in understanding the behavior of cells, tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of phenomena, exploration of potential theories of damage or success, development of equipment, and refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been a considerable amount of work in bio-heat and mass-transport, and these models and theories have been readily and repeatedly applied to cryobiology with much success. However, there are significant gaps between experimental and theoretical results that suggest missing links in models. One source for these potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport theory: it couples multi-component, moving boundary, multiphase solutions that interact through a semipermeable elastic membrane with multicomponent solutions in a second time-varying domain, during a two-hundred Kelvin temperature change with multi-molar concentration gradients and multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point to future directions in modeling and experimental research, we present a three part series to build from first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be made about the importance of key assumptions, perhaps pointing to areas of future research or model development, but importantly, lending weight to standard simplification arguments that are often made in heat and mass transport. In this first part, we review concentration variable relationships, their impact on choices for Gibbs energy models, and their impact on chemical potentials.
Collapse
|
Review |
11 |
12 |