76
|
Haque MA. Effects of specimen size and mix ratio on the nickel migration behavior of landfill waste mixed mortar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 190:290-301. [PMID: 28064036 DOI: 10.1016/j.jenvman.2016.12.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/16/2016] [Accepted: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Landfill solid waste management system poses the potential source of silent wide-spread heavy metals like nickel poisoning in the entire ecosystem of nearby environment. Nickel containing demolish solid wastes are disposed at landfill zones to a great extent from where nickel migrate into the food chain through the surface water body as well as groundwater. Consequently, nickel exposure may cause different environmental problems. From this sense, it may be an attractive proposal to recycle the waste as a sustainable product. Herein is presented a long-term feasibility study on potential leaching behavioral pattern of nickel from different sizes and mixes based solidified landfill waste mixed mortar block. The calculated results revealed the larger sizes block entrapped more nickel content than the smaller in relation to the available for leaching. Moreover, the specimen bearing the higher amount of waste resulted the significant nickel immobilization within the crystalline structure. The study observed the fixation results 97.72%-99.35%, 97.08%-99.11%, 96.19%-98.58% and 95.86%-91.6% under the stabilizing agent to fine aggregate mixing combination 1:1, 1:1.5, 1:2 and 1:2.5 respectively where 30% of the total volume of fine aggregate was replaced by landfill waste. Although, mechanical strength test of all surrogate waste forms was also conducted that showed acceptable performance for land disposal, the current research pointing out that constructed green products were non-hazardous except the specimens having mixture ratio 1:2.5 because nickel ion release mechanism was observed under this ratio by surface decay or physical erosion of the monolithic matrices. Furthermore, semi-empirical based dominant leaching mechanism models were justified against the goodness of fit statistical parameters for interpreting the experimental observations of nickel transport profile where the adopted models possessed strong potential for predicting Ni content with high accuracy.
Collapse
|
77
|
Arias FJ, Parks GT. The behavior of radiogenic particles at solidification fronts. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 167:86-91. [PMID: 28007441 DOI: 10.1016/j.jenvrad.2016.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 06/06/2023]
Abstract
The thermal behavior of insoluble radiogenic particles at the solid-liquid interface of an advancing solidification front and its significance with regard to environmental impact are discussed. It is shown that, unlike classical particles, where the most probable behavior is engulfing by the solidification front, radiogenic particles are more likely to be rejected by the solidification front. Utilizing a simplified physical model, an adaptation of classical theoretical models is performed, where it is shown that, unlike classical particles, for radiogenic particles the mechanism is thermally driven. An analytical expression for the critical velocity of the solidification front for engulfing/rejection to occur is derived. The study could be potentially important to several fields, e.g. in engineering applications where technological processes for the physical removal of radionuclide particles dispersed throughout another substance by inducing solidification could be envisaged, in planetary science where the occurrence of radiogenic concentration could result in the possibility of the eruption of primordial comet/planetoids, or, if specific conditions are suitable, particle ejection may result in an increase in concentration as the front moves, which can translate into the formation of hot spots.
Collapse
|
78
|
Zheng L, Wang W, Gao X. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 58:270-279. [PMID: 27613416 DOI: 10.1016/j.wasman.2016.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
This study presents an integrated synopsis of the solidification and immobilization mechanisms of fly ash-based geopolymers. A rational analysis of the ion reactions involved in geopolymerization was conducted using the partial charge model (PCM). The following conclusions were obtained: (1) heavy metal cations cannot be immobilized as counter cations through exchange with Na+; (2) isomorphous substitution of heavy metals in the geopolymer can be expected from the condensation reaction between the hydrolyzed heavy metal species and aluminosilicate; (3) the hydrolyzed species condensation could result in solidification and immobilization and be promoted by aluminates; and (4) a geopolymer with the highest immobilization and solidification efficiency can be obtained at an intermediate pH value. The partial charges on the framework of Si, Al, and O in the primary building blocks of aluminosilicate and heavy metal-doped aluminosilicate were confirmed through XPS and 29Si NMR spectroscopy analyses. The effects of activator dosage and types on fly ash-based geopolymers were also investigated, and the results verify the PCM analysis. A geopolymer with the highest strength was produced at an intermediate alkaline dosage. Silicate or aluminate introduced into the activator improved the strength and immobilization efficiency, and aluminate exhibited better performance. Heavy metals bound to the exchangeable or acid-soluble fraction were transformed into aluminosilicate species during geopolymerization.
Collapse
|
79
|
Jang JG, Park SM, Lee HK. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:339-346. [PMID: 27434737 DOI: 10.1016/j.jhazmat.2016.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/23/2016] [Accepted: 07/02/2016] [Indexed: 06/06/2023]
Abstract
The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.
Collapse
|
80
|
Li YC, Min XB, Chai LY, Shi MQ, Tang CJ, Wang QW, Liang YJ, Lei J, Liyang WJ. Co-treatment of gypsum sludge and Pb/Zn smelting slag for the solidification of sludge containing arsenic and heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:756-761. [PMID: 27449964 DOI: 10.1016/j.jenvman.2016.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Wastewater treatment sludge from a primary lead-zinc smelter is characterized as hazardous waste and requires treatment prior to disposal due to its significant arsenic and heavy metals contents. This study presents a method for the stabilization of arsenic sludge that uses a slag based curing agent composed of smelting slag, cement clinker and limestone. The Unconfined Compressive Strength (UCS) test, the China Standard Leaching Test (CSLT), and the Toxicity Characteristic Leaching Procedures (TCLP) were used to physically and chemically characterize the solidified sludge. The binder ratio was determined according to the UCS and optimal experiments, and the optimal mass ratio of m (smelting slag): m (cement clinker): m (gypsum sludge): m (limestone) was 70:13:12:5. When the binder was mixed with arsenic sludge using a mass ratio of 1:1 and then maintained at 25 °C for 28 d, the UCS reached 9.30 MPa. The results indicated that the leached arsenic content was always less than 5 mg/L, which is a safe level, and does not contribute to recontamination of the environment. The arsenic sludge from the Zn/Pb metallurgy plant can be blended with cement clinker and smelting slag materials for manufacturing bricks and can be recycled as construction materials.
Collapse
|
81
|
Baek JW, Mallampati SR, Park HS. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue. WASTE MANAGEMENT (NEW YORK, N.Y.) 2016; 49:181-187. [PMID: 26777552 DOI: 10.1016/j.wasman.2015.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 06/05/2023]
Abstract
The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals.
Collapse
|
82
|
The Phase Behavior of γ-Oryzanol and β-Sitosterol in Edible Oil. J AM OIL CHEM SOC 2015; 92:1651-1659. [PMID: 26640280 PMCID: PMC4661199 DOI: 10.1007/s11746-015-2731-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/19/2015] [Accepted: 09/25/2015] [Indexed: 10/31/2022]
Abstract
The phase behavior of binary mixtures of γ-oryzanol and β-sitosterol and ternary mixtures of γ-oryzanol and β-sitosterol in sunflower oil was studied. Binary mixtures of γ-oryzanol and β-sitosterol show double-eutectic behavior. Complex phase behavior with two intermediate mixed solid phases was derived from differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS) data, in which a compound that consists of γ-oryzanol and β-sitosterol molecules at a specific ratio can be formed. SAXS shows that the organization of γ-oryzanol and β-sitosterol in the mixed phases is different from the structure of tubules in ternary systems. Ternary mixtures including sunflower oil do not show a sudden structural transition from the compound to a tubule, but a gradual transition occurs as γ-oryzanol and β-sitosterol are diluted in edible oil. The same behavior is observed when melting binary mixtures of γ-oryzanol and β-sitosterol at higher temperatures. This indicates the feasibility of having an organogelling agent in dynamic exchange between solid and liquid phase, which is an essential feature of triglyceride networks.
Collapse
|
83
|
Du J, Li X, Zhao H, Zhou Y, Wang L, Tian S, Wang Y. Nanosuspensions of poorly water-soluble drugs prepared by bottom-up technologies. Int J Pharm 2015; 495:738-49. [PMID: 26383838 DOI: 10.1016/j.ijpharm.2015.09.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022]
Abstract
In recent years, nanosuspension has been considered effective in the delivery of water-soluble drugs. One of the main challenges to effective drug delivery is designing an appropriate nanosuspension preparation approach with low energy input and erosion contamination, such as the bottom-up method. This review focuses on bottom-up technologies for preparation of nanosuspensions. The features and advantages of drug nanosuspension, including bottom-up methods as well as the corresponding characterization techniques, solidification methods, and drug delivery dosage forms, are discussed in detail. Certain limitations of commercial nanosuspension products are also reviewed.
Collapse
|
84
|
He W, Yang K, Fan L, Lv Y, Jin Z, Zhu S, Qin C, Wang Y, Yin L. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. Int J Pharm 2015; 495:9-18. [PMID: 26325310 DOI: 10.1016/j.ijpharm.2015.08.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/19/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022]
Abstract
Oral drug delivery is the most preferred route for patients; however, the low solubility of drugs and the resultant poor absorption compromise the benefits of oral administration. On the other hand, for years, the overwhelmingly accepted mechanism for enhanced oral absorption using lipid nanocarriers was based on the process of lipid digestion and drug solubilization in the small intestine. Few reports indicated that other bypass pathways are involved in drug absorption in the gastrointestinal tract (GIT) for oral delivery of nanocarriers. Herein, we report a new nanoemulsion system with a denatured globular protein with a diameter of 30 nm, soybean protein isolates (SPI), and bile salt as emulsifiers, aiming to enhance the absorption of insoluble drugs and explore other pathways for absorption. A BCS class II drug, fenofibrate (FB), was used as the model drug. The SPI and bile salt-coated Ns with a diameter of approximately 150 nm were prepared via a high-pressure homogenizing procedure. Interestingly, the present Ns could be converted to solid dosage form using fluid-bed coating technology, maintaining a nanoscale size. Most importantly, in a model of in situ rat intestinal perfusion, Ns could penetrate across the intestinal epithelial barrier into the systemic circulation and then obtain biodistribution into other tissues. In addition, Ns significantly improved FB oral absorption, exhibited as a greater than 2- and 2.5-fold increase in Cmax and AUC0-t, respectively, compared to the suspension formulation. Overall, the present Ns are promising nanocarriers for the oral delivery of insoluble drugs, and the penetration of intact Ns across the GIT barrier into systemic circulation may be a new strategy for improved drug absorption with the use of nanocarriers.
Collapse
|
85
|
Ahmadein M, Wu M, Ludwig A. Analysis of macrosegregation formation and columnar-to-equiaxed transition during solidification of Al-4 wt.%Cu ingot using a 5-phase model. JOURNAL OF CRYSTAL GROWTH 2015; 417:65-74. [PMID: 26089572 PMCID: PMC4459476 DOI: 10.1016/j.jcrysgro.2014.07.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A 5-phase mixed columnar-equiaxed solidification model was recently introduced to predict the as-cast structure, and a series of laboratory experiments were performed previously to verify the model. The focus of the current work is to analyze the formation of macrosegregation, which accompanies the formation of the as-cast structure including the columnar-to-equiaxed transition (CET). The as-cast structure and macrosegregation map of a cylindrical Al-4 wt.% Cu ingot poured at 800 °C are used as a reference to validate the calculations. Good agreement between the calculations and the experiment regarding both the macrosegregation and CET is achieved. Thermal-solutal convection and equiaxed crystal sedimentation in such ingot are verified to be key mechanisms governing the formation of macrosegregation. The competitive equiaxed/columnar growth, the soft and hard blocking mechanisms predominate the CET. The numerical study of grid sensitivity indicates that the global segregation pattern and CET are not significantly affected by grid size; however, some fine details of the segregation map which are predicted by fine grid (~0.5 mm) are smeared or locally averaged by the coarse grid (~2 mm). Such details were also not resolved in the measurement. Future investigations are demanding.
Collapse
|
86
|
Beesabathuni SN, Lindberg SE, Caggioni M, Wesner C, Shen AQ. Getting in shape: molten wax drop deformation and solidification at an immiscible liquid interface. J Colloid Interface Sci 2015; 445:231-242. [PMID: 25622048 DOI: 10.1016/j.jcis.2014.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/01/2022]
Abstract
The controlled production of non-spherical shaped particles is important for many applications such as food processing, consumer goods, adsorbents, drug delivery, and optical sensing. In this paper, we investigated the deformation and simultaneous solidification of millimeter size molten wax drops as they impacted an immiscible liquid interface of higher density. By varying initial temperature and viscoelasticity of the molten drop, drop size, impact velocity, viscosity and temperature of the bath fluid, and the interfacial tension between the molten wax and bath fluid, spherical molten wax drops impinged on a cooling water bath and were arrested into non-spherical solidified particles in the form of ellipsoid, mushroom, disc, and flake-like shapes. We constructed cursory phase diagrams for the various particle shapes generated over a range of Weber, Capillary, Reynolds, and Stefan numbers, governed by the interfacial, inertial, viscous, and thermal effects. We solved a simplified heat transfer problem to estimate the time required to initiate the solidification at the interface of a spherical molten wax droplet and cooling aqueous bath after impact. By correlating this time with the molten wax drop deformation history captured from high speed imaging experiments, we elucidate the delicate balance of interfacial, inertial, viscous, and thermal forces that determine the final morphology of wax particles.
Collapse
|
87
|
Taheri S, Jalali F, Fattahi N, Bahrami G. Sensitive determination of atorvastatin in human plasma by dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high-performance liquid chromatography. J Sep Sci 2014; 38:309-15. [PMID: 25382401 DOI: 10.1002/jssc.201401115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 11/06/2022]
Abstract
A novel and sensitive dispersive liquid-liquid microextraction method based on the solidification of the floating organic drop combined with high-performance liquid chromatography and ultraviolet detection was used for the determination of atorvastatine in blood serum samples. The chromatographic separation of atorvastatin was carried out using methanol as the mobile phase organic modifier. Various parameters affecting the extraction efficiency were optimized, such as the kind and volume of extraction solvent (1-undecanol) and disperser solvent (acetonitrile), pH, and the extraction time. The calibration curve was linear in the range of 0.2-6000 μg/L of atorvastatin (r(2) = 0.995) with a limit of detection of 0.07 μg/L. The relative standard deviation for 100 μg/L of atorvastatin in human plasma was 8.4% (n = 4). The recoveries of plasma samples spiked with atorvastatin were in the range of 98.8-113.8%. The obtained results showed that the proposed method is fast, simple, and reliable for the determination of very low concentrations of atorvastatin in human plasma samples.
Collapse
|
88
|
Cho JH, Eom Y, Lee TG. Pilot-test of the calcium sodium phosphate (CNP) process for the stabilization/ solidification of various mercury-contaminated wastes. CHEMOSPHERE 2014; 117:374-381. [PMID: 25169648 DOI: 10.1016/j.chemosphere.2014.07.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
A pilot-scale calcium sodium phosphate (CNP) plant was designed and manufactured to examine the performance of recently developed stabilization/solidification (S/S) technology. Hg-contaminated wastes samples generated via various industrial processes in Korea, including municipal, industrial, and medical waste incineration, wastewater treatment, and lime production, were collected and treated using the pilot-scale CNP plant. S/S samples were fabricated according to various operating conditions, including waste type, the dose of the stabilization reagent (Na2S), and the waste loading ratio. Although the performances (Hg leaching value and compressive strength) were reduced as the waste loading ratio increased, most of the S/S samples exhibited Hg leaching values that were below the universal treatment standard limit of 25 μg L(-1) and compressive strengths that exceeded the criterion of 3.45 MPa.
Collapse
|
89
|
Eisenberg DP, Steif PS, Rabin Y. On the Effects of Thermal History on the Development and Relaxation of Thermo-Mechanical Stress in Cryopreservation. CRYOGENICS 2014; 64:86-94. [PMID: 25792762 PMCID: PMC4360916 DOI: 10.1016/j.cryogenics.2014.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This study investigates the effects of the thermal protocol on the development and relaxation of thermo-mechanical stress in cryopreservation by means of glass formation, also known as vitrification. The cryopreserved medium is modeled as a homogeneous viscoelastic domain, constrained within either a stiff cylindrical container or a highly compliant bag. Annealing effects during the cooling phase of the cryopreservation protocol are analyzed. Results demonstrate that an intermediate temperature-hold period can significantly reduce the maximum tensile stress, thereby decreasing the potential for structural damage. It is also demonstrated that annealing at temperatures close to glass transition significantly weakens the dependency of thermo-mechanical stress on the cooling rate. Furthermore, a slower initial rewarming rate after cryogenic storage may drastically reduce the maximum tensile stress in the material, which supports previous experimental observations on the likelihood of fracture at this stage. This study discusses the dependency of the various stress components on the storage temperature. Finally, it is demonstrated that the stiffness of the container wall can affect the location of maximum stress, with implications on the development of cryopreservation protocols.
Collapse
|
90
|
Anderson DM, Benson JD, Kearsley AJ. Foundations of modeling in cryobiology-I: concentration, Gibbs energy, and chemical potential relationships. Cryobiology 2014; 69:349-60. [PMID: 25240602 DOI: 10.1016/j.cryobiol.2014.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 11/16/2022]
Abstract
Mathematical modeling plays an enormously important role in understanding the behavior of cells, tissues, and organs undergoing cryopreservation. Uses of these models range from explanation of phenomena, exploration of potential theories of damage or success, development of equipment, and refinement of optimal cryopreservation/cryoablation strategies. Over the last half century there has been a considerable amount of work in bio-heat and mass-transport, and these models and theories have been readily and repeatedly applied to cryobiology with much success. However, there are significant gaps between experimental and theoretical results that suggest missing links in models. One source for these potential gaps is that cryobiology is at the intersection of several very challenging aspects of transport theory: it couples multi-component, moving boundary, multiphase solutions that interact through a semipermeable elastic membrane with multicomponent solutions in a second time-varying domain, during a two-hundred Kelvin temperature change with multi-molar concentration gradients and multi-atmosphere pressure changes. In order to better identify potential sources of error, and to point to future directions in modeling and experimental research, we present a three part series to build from first principles a theory of coupled heat and mass transport in cryobiological systems accounting for all of these effects. The hope of this series is that by presenting and justifying all steps, conclusions may be made about the importance of key assumptions, perhaps pointing to areas of future research or model development, but importantly, lending weight to standard simplification arguments that are often made in heat and mass transport. In this first part, we review concentration variable relationships, their impact on choices for Gibbs energy models, and their impact on chemical potentials.
Collapse
|
91
|
Wu M, Li J, Ludwig A, Kharicha A. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation. COMPUTATIONAL MATERIALS SCIENCE 2014; 92:267-285. [PMID: 27570373 PMCID: PMC4986388 DOI: 10.1016/j.commatsci.2014.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 06/06/2023]
Abstract
Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm2) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.
Collapse
|
92
|
Li J, Wu M, Ludwig A, Kharicha A. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2014; 72:668-679. [PMID: 24795485 PMCID: PMC3990445 DOI: 10.1016/j.ijheatmasstransfer.2013.08.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 06/03/2023]
Abstract
A three-phase mixed columnar-equiaxed solidification model is used to calculate the macrosegregation in a 2.45 ton steel ingot. The main features of mixed columnar-equiaxed solidification in such an ingot can be quantitatively modelled: growth of columnar dendrite trunks; nucleation, growth and sedimentation of equiaxed crystals; thermosolutal convection of the melt; solute transport by both convection and crystal sedimentation; and the columnar-to-equiaxed transition (CET). The predicted as-cast macrostructure and the segregation pattern are in qualitative agreement with the reported experimental results. Parameter study on the numerical grid size and the nucleation of the equiaxed crystals are performed, and some segregation mechanisms are numerically analyzed. Discontinued positive-negative segregation just below the hot top is predicted because of the formation of a local mini-ingot and the subsequent sedimentation of equiaxed grains within the mini-ingot. Quasi A-segregates in the middle radius region between the casting outer surface and the centreline are also found. The quasi A-segregates originate from the flow instability, but both the appearance of equiaxed crystals and their interaction with the growing columnar dendrite tips significantly strengthen the segregates. The appearance of equiaxed phase is not a necessary condition for the formation of quasi A-segregates. The quantitative discrepancy between the predicted and experimental results is also discussed.
Collapse
|
93
|
De Greef J, Villani K, Goethals J, Van Belle H, Van Caneghem J, Vandecasteele C. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants. WASTE MANAGEMENT (NEW YORK, N.Y.) 2013; 33:2416-2424. [PMID: 23810322 DOI: 10.1016/j.wasman.2013.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/14/2013] [Accepted: 05/28/2013] [Indexed: 06/02/2023]
Abstract
Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation - before and after optimisation - as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential.
Collapse
|
94
|
Yue PF, Li Y, Wan J, Yang M, Zhu WF, Wang CH. Study on formability of solid nanosuspensions during nanodispersion and solidification: I. Novel role of stabilizer/drug property. Int J Pharm 2013; 454:269-77. [PMID: 23830942 DOI: 10.1016/j.ijpharm.2013.06.050] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/23/2013] [Accepted: 06/13/2013] [Indexed: 10/26/2022]
Abstract
Few or no attempts have been made so far to understand the feasibility of solid nanosuspension formulation during nanodispersion and solidification in terms of drug properties and stabilizer characterizations. In order to establish a knowledge base about the effect of physicochemical property of drug compounds and stabilizers on solid nanosuspension production during nanodispersion and solidification, a comparative study was firstly performed on 10 different stabilizers at 3 concentrations for 8 structurally different drug compounds. Synthetic polymers (HPMC, PVP K30, CMS-Na and MC) displayed a poor stabilizing performance (10% success rate on average) during nanodispersion, but polymers showed better potential when higher concentrations was applied during freezing and lyophilization. Meanwhile, an effect for the surfactants group was even more pronounced during nanodispersion. However, the solid nanosuspension stabilized by surfactants showed the worst formability potential when be applied in setted concentrations during freezing and lyophilization. From the point of view of drug property, it was found that the surface hydrophobicity and cohesive energy of drug, were responsible for the formability of the solid nanosuspension during nanodispersion and solidification. Wetting index (k) and ΔE were concluded to have a direct correlation on the feasibility of formation of a stable solid nanosuspension, which can give a formulation design strategy from where candidate drugs and stabilizers with a set of properties.
Collapse
|