76
|
Kgomo H, Dube S, Nindi MM. Evaluating the Performance of Ball-Milled Silk Fibroin Films for Simultaneous Adsorption of Eight Pharmaceuticals from Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14922. [PMID: 36429640 PMCID: PMC9690709 DOI: 10.3390/ijerph192214922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Pollutants mainly exist as multicomponent mixtures in the environment. Therefore, it is necessary to synthesize low-cost adsorbents that can simultaneously adsorb multiple compounds. This work presents the prospect of the adsorption of multiclass pharmaceuticals from the aqueous environment using an adsorbent derived from silk fibroin of the wild silkworm Argema mimosae. The adsorbent was prepared by dissolving degummed silk fibroin and the resultant solution was cast to obtain films that were ball-milled to powder. FTIR results revealed bands corresponding to N-H and C=O stretching vibrations. Particle size distribution data generally showed two size groups in the range of 50-90 nm and 250-625 nm. The study focused on the adsorptive removal of multiple compounds consisting of eight pharmaceuticals representing various classes including a β-blocker (pindolol), anesthetic (lidocaine), stimulant (caffeine), antiviral (nevirapine), steroid (estriol), anti-epileptic (carbamazepine), and a non-steroidal anti-inflammatory drug (naproxen). The adsorption process was best fitted to the pseudo-second-order isotherm and an overall match to the Freundlich model. Thermodynamic parameters suggested that the process was mainly exothermic and more spontaneous at lower temperatures. The performance of the adsorbent was further evaluated using environmental waters and the adsorbent demonstrated good potential for simultaneous adsorption of multicomponent pharmaceuticals.
Collapse
|
77
|
Nilsson P, Engström Å, Kaschuk JJ, Vapaavuori J, Larsson A, Abitbol T. Design of experiments to investigate multi-additive cellulose nanocrystal films. Front Mol Biosci 2022; 9:988600. [PMID: 36406274 PMCID: PMC9673984 DOI: 10.3389/fmolb.2022.988600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/24/2022] [Indexed: 08/23/2024] Open
Abstract
Cellulose nanocrystal (CNC) suspensions can self-assemble into chiral nematic films upon the slow evaporation of water. These films are brittle, as indicated by their fracturing instead of plastically deforming once they are fully elastically deformed. This aspect can be mediated to some extent by plasticizing additives, such as glucose and glycerol, however, few reports consider more than one additive at a time or address the influence of additive content on the homogeneity of the self-assembled structure. In this work, design of experiments (DoE) was used to empirically model complex film compositions, attempting to relate additive concentrations in dilute suspension to film properties, and to understand whether outcome specific predictions are possible using this approach. We demonstrate that DoE can be used to predict film properties in multi-additive systems, without consideration given to the different phenomena that occur along the drying process or to the nature of the additives. Additionally, a homogeneity metric is introduced in relation to chiral nematic organization in CNC films, with most of the additive-containing compositions in this work found to reduce the homogeneity of the self-assembly relative to pure CNC films.
Collapse
|
78
|
Shishatskaya EI, Dudaev AE, Volova TG. Resorbable Nanomatrices from Microbial Polyhydroxyalkanoates: Design Strategy and Characterization. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3843. [PMID: 36364619 PMCID: PMC9656924 DOI: 10.3390/nano12213843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
From a series of biodegradable natural polymers of polyhydroxyalkanoates (PHAs)-poly-3-hydroxybutyrate (P(3HB) and copolymers containing, in addition to 3HB monomers, monomers of 3-hydroxyvalerate (3HV), 3-hydroxyhexanoate (3HHx), and 4-hydroxybutyrate (4HB), with different ratios of monomers poured-solvent casting films and nanomembranes with oriented and non-oriented ultrathin fibers were obtained by electrostatic molding. With the use of SEM, AFM, and measurement of contact angles and energy characteristics, the surface properties and mechanical and biological properties of the polymer products were studied depending on the method of production and the composition of PHAs. It has been shown in cultures of mouse fibroblasts of the NIH 3T3 line and diploid human embryonic cells of the M22 line that elastic films and nanomembranes composed of P(3HB-co-4HB) copolymers have high biocompatibility and provide adhesion, proliferation and preservation of the high physiological activity of cells for up to 7 days. Polymer films, namely oriented and non-oriented nanomembranes coated with type 1 collagen, are positively evaluated as experimental wound dressings in experiments on laboratory animals with model and surgical skin lesions. The results of planimetric measurements of the dynamics of wound healing and analysis of histological sections showed the regeneration of model skin defects in groups of animals using experimental wound dressings from P(3HB-co-4HB) of all types, but most actively when using non-oriented nanomembranes obtained by electrospinning. The study highlights the importance of nonwoven nanomembranes obtained by electrospinning from degradable low-crystalline copolymers P(3HB-co-4HB) in the effectiveness of the skin wound healing process.
Collapse
|
79
|
Gehrcke M, Martins CC, de Bastos Brum T, da Rosa LS, Luchese C, Wilhelm EA, Soares FZM, Cruz L. Novel Pullulan/Gellan Gum Bilayer Film as a Vehicle for Silibinin-Loaded Nanocapsules in the Topical Treatment of Atopic Dermatitis. Pharmaceutics 2022; 14:2352. [PMID: 36365170 PMCID: PMC9699506 DOI: 10.3390/pharmaceutics14112352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
In this study a novel gellan gum/pullulan bilayer film containing silibinin-loaded nanocapsules was developed for topical treatment of atopic dermatitis (AD). The bilayer films were produced by applying a pullulan layer on a gellan gum layer incorporated with silibinin nanocapsules by two-step solvent casting method. The bilayer formation was confirmed by microscopic analysis. In vitro studies showed that pullulan imparts bioadhesitvity for the films and the presence of nanocapsules increased their occlusion factor almost 2-fold. Besides, the nano-based film presented a slow silibinin release and high affinity for cutaneous tissue. Moreover, this film presented high scavenger capacity and non-hemolytic property. In the in vivo study, interestingly, the treatments with vehicle film attenuated the scratching behavior and the ear edema in mice induced by 2,4-dinitrochlorobenzene (DNCB). However, the nano-based film containing silibinin modulated the inflammatory and oxidative parameters in a similar or more pronounced way than silibinin solution and vehicle film, as well as than hydrocortisone, a classical treatment of AD. In conclusion, these data suggest that itself gellan gum/pullulan bilayer film might attenuate the effects induced by DNCB, acting together with silibinin-loaded nanocapsules, which protected the skin from oxidative damage, improving the therapeutic effect in this AD-model.
Collapse
|
80
|
Concórdio-Reis P, Pereira JR, Alves VD, Nabais AR, Neves LA, Marques AC, Fortunato E, Moppert X, Guézennec J, Reis MA, Freitas F. Characterisation of Films Based on Exopolysaccharides from Alteromonas Strains Isolated from French Polynesia Marine Environments. Polymers (Basel) 2022; 14:4442. [PMID: 36298020 PMCID: PMC9611721 DOI: 10.3390/polym14204442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/24/2023] Open
Abstract
This work assessed the film-forming capacity of exopolysaccharides (EPS) produced by six Alteromonas strains recently isolated from different marine environments in French Polynesia atolls. The films were transparent and resulted in small colour alterations when applied over a coloured surface (ΔEab below 12.6 in the five different colours tested). Moreover, scanning electron microscopy showed that the EPS films were dense and compact, with a smooth surface. High water vapour permeabilities were observed (2.7-6.1 × 10-11 mol m-1 s-1 Pa-1), which are characteristic of hydrophilic polysaccharide films. The films were also characterised in terms of barrier properties to oxygen and carbon dioxide. Interestingly, different behaviours in terms of their mechanical properties under tensile tests were observed: three of the EPS films were ductile with high elongation at break (ε) (35.6-47.0%), low tensile strength at break (Ꞇ) (4.55-11.7 MPa) and low Young's modulus (εm) (10-93 MPa), whereas the other three were stiffer and more resistant with a higher Ꞇ (16.6-23.6 MPa), lower ε (2.80-5.58%), and higher εm (597-1100 MPa). These properties demonstrate the potential of Alteromonas sp. EPS films to be applied in different areas such as biomedicine, pharmaceuticals, or food packaging.
Collapse
Grants
- UIDP/04378/2020, UIDB/04378/2020, LA/P/0140/202019, UID/AGR/04129/2020, SFRH/BD/131947/2017, SFRH/BD/147518/2019, LA/P/0037/2020, UIDP/50025/2020, UIDB/50025/2020, UIDB/50006/2020, UIDP/50006/2020 Fundação para a Ciência e Tecnologia
Collapse
|
81
|
Sirota V, Zaitsev S, Prokhorenkov D, Limarenko M, Skiba A, Kovaleva M. NiB-CrC Coatings Prepared by Magnetron Sputtering Using Composite Ceramic NiCr-BC Target Produced by Detonation Spray Coating. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3584. [PMID: 36296774 PMCID: PMC9611401 DOI: 10.3390/nano12203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A metal-ceramic composite target for magnetron sputtering was fabricated for the first time by a robotic complex for the detonation spraying of coatings equipped with a multi-chamber detonation accelerator. A mixture of metal and ceramic NiCr/B4C powders was sprayed onto the copper base of the cylindrical composite target cathode. The study of the structure of a metal-ceramic composite coating target using scanning electron microscopy showed that the coating material is dense without visible pores; the elemental composition is evenly distributed in the material. The study of the cathode sputtering area after deposition in the DC mode showed that there are uniform traces of annular erosion on the target surface. The obtained cathode target with an NiCr-70B4C coating was used to deposit the NiB-Cr7C3 coating on flat specimens of 65G steel using equipment for magnetron sputtering UNICOAT 200. The coating was applied in the Direct Current mode. A dense NiB-Cr7C3 coating with a thickness of 2 μm was obtained. The NiB-Cr7C3 coating has a quasi-amorphous structure. The microstructures and concentration of oxygen and carbon impurities throughout the entire thickness of the coating were investigated by means of transmission electron microscopy. The results of the study show that the coatings have a nanocrystalline multi-phase structure. The microhardness of the NiB-Cr7C3 coating reached 10 GPa, and the adhesion fracture load exceeded 16 N. The results will open up new prospects for the further elaboration of technology for obtaining original composite cathodes for magnetron sputtering using detonation spraying of coatings.
Collapse
|
82
|
Biosynthesis and Properties of a P(3HB- co-3HV- co-4HV) Produced by Cupriavidus necator B-10646. Polymers (Basel) 2022; 14:polym14194226. [PMID: 36236173 PMCID: PMC9570873 DOI: 10.3390/polym14194226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.
Collapse
|
83
|
Gellan Gum in Wound Dressing Scaffolds. Polymers (Basel) 2022; 14:polym14194098. [PMID: 36236046 PMCID: PMC9573731 DOI: 10.3390/polym14194098] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Several factors, such as bacterial infections, underlying conditions, malnutrition, obesity, ageing, and smoking are the most common issues that cause a delayed process of wound healing. Developing wound dressings that promote an accelerated wound healing process and skin regeneration is crucial. The properties of wound dressings that make them suitable for the acceleration of the wound healing process include good antibacterial efficacy, excellent biocompatibility, and non-toxicity, the ability to provide a moist environment, stimulating cell migration and adhesion, and providing gaseous permeation. Biopolymers have demonstrated features appropriate for the development of effective wound dressing scaffolds. Gellan gum is one of the biopolymers that has attracted great attention in biomedical applications. The wound dressing materials fabricated from gellan gum possess outstanding properties when compared to traditional dressings, such as good biocompatibility, biodegradability, non-toxicity, renewability, and stable nature. This biopolymer has been broadly employed for the development of wound dressing scaffolds in different forms. This review discusses the physicochemical and biological properties of gellan gum-based scaffolds in the management of wounds.
Collapse
|
84
|
Li H, Liu C, Sun J, Lv S. Bioactive Edible Sodium Alginate Films Incorporated with Tannic Acid as Antimicrobial and Antioxidative Food Packaging. Foods 2022; 11:foods11193044. [PMID: 36230120 PMCID: PMC9561993 DOI: 10.3390/foods11193044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Currently, biodegradable and functional food packaging materials have attracted more and more attention due to their potential advantages. Biopolymers are one of the promising materials used to produce biodegradable food packaging films, and sodium alginate (SA) is one of the most used polysaccharides. In this work, we explored a novel edible sodium alginate (SA)/tannic acid (TA) film as biodegradable active food packaging material. The impact of TA concentration on the UV light blocking ability, transparency, water vapor barrier ability, mechanical strength, antioxidant, and antimicrobial activity of the SA-TA films was comprehensively investigated. Fourier transform infrared spectroscopy results revealed that strong hydrogen bonding was the main intermolecular interaction between SA and TA. As TA concentration in the films increased, the water vapor permeability (WVP) decreased from 1.24 × 10-6 to 0.54 × 10-6 g/m/h/Pa, the DPPH radical scavenging activity increased from 0.008% to 89.02%. Moreover, the incorporation of TA effectively blocked UV light and elevated antimicrobial activity against Escherichia coli. Overall, the SA films with TA exhibited better water vapor barrier ability, remarkable UV-light barrier ability and antioxidant activity while showing a slight decrease in light transmittance. These results indicated the potential application of TA as a functional additive agent for developing multifunctional food packaging materials.
Collapse
|
85
|
Yang S, Xie C, Qiu T, Tuo X. The Aramid-Coating-on-Aramid Strategy toward Strong, Tough, and Foldable Polymer Aerogel Films. ACS NANO 2022; 16:14334-14343. [PMID: 35994616 DOI: 10.1021/acsnano.2c04572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aerogel has been much highlighted as an emerging lightweight thermal insulation material, but problems such as fragility, low strength, liquid permeability, and lack of flexibility greatly limit further applications. In this work, a facile aramid-coating-on-aramid (ACoA) method is demonstrated to fabricate all-aramid aerogel composite films for thermal insulation. The method started from the bottom-up synthesis of polymerization-induced para-aramid nanofibers (PANF), which were easily transformed into aerogel films through the vacuum-assisted filtration followed by the freeze-drying techniques. Then, the heterocyclic aramid (HA) solution prepared through the low-temperature-solution polycondensation was used as the coating to be applied onto the PANF aerogel films, and composite films of HA/PANF aerogel were simply achieved with HA contributed to the dense and continuous surface layer. The bulk HA film is of superior mechanical and thermal properties to those of the PANF film. Moreover, reliable interfacial interlocking structures were developed beneath the outermost surface via the interpenetration of the infiltrated HA with PANF network. The comprehensive result was the 15 times enhanced tensile strength, 33 times enhanced fracture toughness, the high thermal decomposition temperature, and the additional flexibility for the foldable films of HA/PANF aerogel. The sealing of the surface macropores greatly suppressed the surface chalking and high water absorption. However, the survival of the tiny pores inside the composite maintained the low enough level of the thermal conductivity to provide effective protections against high temperature not only in air but also under wet or even liquid conditions, suggesting the broader applications for thermal insulation.
Collapse
|
86
|
Sora-Domenjó C. Disrupting the "empathy machine": The power and perils of virtual reality in addressing social issues. Front Psychol 2022; 13:814565. [PMID: 36225675 PMCID: PMC9549362 DOI: 10.3389/fpsyg.2022.814565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
This article looks through a critical media lens at mediated effects and ethical concerns of virtual reality (VR) applications that explore personal and social issues through embodiment and storytelling. In recent years, the press, immersive media practitioners and researchers have promoted the potential of virtual reality storytelling to foster empathy. This research offers an interdisciplinary narrative review, with an evidence-based approach to challenge the assumptions that VR films elicit empathy in the participant-what I refer to as the VR-empathy model. A review of literature from the fields of psychology, computer science, embodiment, medicine, and virtual reality was carried out to question and counter these claims through case studies of both fiction and non-fiction VR experiences. The results reveal that there is little empirical evidence of a correlation between VR exposure and an increase in empathy that motivates pro-social behavior, and a lack of research covering VR films exposure eliciting empathy. Furthermore, the results show an alarming lack of research into the long-term effects of VR films and other VR immersive experiences. This contribution aims to understand and demystify the current "empathy machine" rhetoric and calls for more rigorous, scientific research that can authenticate future claims and systemize ethical best practices.
Collapse
|
87
|
Muslimov AE, Tarasov AP, Kanevsky VM. Interference Phenomena and Stimulated Emission in ZnO Films on Sapphire. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6409. [PMID: 36143718 PMCID: PMC9503717 DOI: 10.3390/ma15186409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
We studied the texturing, roughness, and morphology features of ZnO films grown on the R (11¯02)-, M (101¯0)-, A (112¯0)-, and C (0001)-planes of sapphire, as well as their optical and luminescent properties. We showed that the growth conditions, substrate orientation, and the presence of a buffer layer significantly affected the structure and morphology of the growing films, which was reflected in their optical and radiative properties. In particular, films grown on the A- and M- planes of sapphire showed the highest UV radiation brightness values and exhibited stimulated emissions upon pulsed photoexcitation. The dependence of the topography of the film surface on the substrate orientation allowed the formation of a smooth continuous film with pronounced interference properties using the R- and M- planes of sapphire. A change in the crystallographic orientation, as well as a significant enhancement in crystallinity and luminescence, were observed for ZnO films grown on R-plane sapphire substrates with a gold buffer layer as compared to films grown on bare substrates. At the same time, the use of gold facilitates a significant smoothing of the film's surface, retaining its interference properties. The sensitivity of interference and laser properties to changes in the external environment, as well as the ease of fabrication of such structures, create prospects for their application as key elements of optical converters, chemical and biological sensors, and sources of coherent radiation.
Collapse
|
88
|
Abdullah, Fang J, Liu X, Javed HU, Cai J, Zhou Q, Huang Q, Xiao J. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:1015-1042. [PMID: 36004584 DOI: 10.1080/10408398.2022.2113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.
Collapse
|
89
|
Policastro D, Giorno E, Scarpelli F, Godbert N, Ricciardi L, Crispini A, Candreva A, Marchetti F, Xhafa S, De Rose R, Nucera A, Barberi RC, Castriota M, De Bartolo L, Aiello I. New Zinc-Based Active Chitosan Films: Physicochemical Characterization, Antioxidant, and Antimicrobial Properties. Front Chem 2022; 10:884059. [PMID: 35711963 PMCID: PMC9194505 DOI: 10.3389/fchem.2022.884059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The improvement of the antioxidant and antimicrobial activities of chitosan (CS) films can be realized by incorporating transition metal complexes as active components. In this context, bioactive films were prepared by embedding a newly synthesized acylpyrazolonate Zn(II) complex, [Zn(QPhtBu)2(MeOH)2], into the eco-friendly biopolymer CS matrix. Homogeneous, amorphous, flexible, and transparent CS@Znn films were obtained through the solvent casting method in dilute acidic solution, using different weight ratios of the Zn(II) complex to CS and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman, and scanning electron microscopy (SEM) techniques. The X-ray single-crystal analysis of [Zn(QPhtBu)2(MeOH)2] and the evaluation of its intermolecular interactions with a protonated glucosamine fragment through hydrogen bond propensity (HBP) calculations are reported. The effects of the different contents of the [Zn(QPhtBu)2(MeOH)2] complex on the CS biological proprieties have been evaluated, proving that the new CS@Znn films show an improved antioxidant activity, tested according to the DPPH method, with respect to pure CS, related to the concentration of the incorporated Zn(II) complex. Finally, the CS@Znn films were tried out as antimicrobial agents, showing an increase in antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus) with respect to pure CS, when detected by the agar disk-diffusion method.
Collapse
|
90
|
Wray PR, Eslamisaray MA, Nelson GM, Ilic O, Kortshagen UR, Atwater HA. Broadband, Angle- and Polarization-Invariant Antireflective and Absorbing Films by a Scalable Synthesis of Monodisperse Silicon Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23624-23636. [PMID: 35549027 DOI: 10.1021/acsami.2c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optically induced magnetic resonances (OMRs) are highly tunable scattering states that cannot be reproduced in systems that only support electric resonances, such as in metals, lossy, or low-index materials. Despite offering unique scattering and coupling behavior, the study of OMRs in thin films has been limited by synthesis and simulation constraints. We report on the absorption and scattering response of OMR-based thin films composed of monodisperse crystalline silicon nanoparticles synthesized using a scalable nonthermal plasma growth technique and tractable simulation framework. The synthesis is solvent and ligand free, ensuring minimal contamination, and crystalline particles form with high yield and a narrow size distribution at close to room temperature. Using a scalable high-throughput deposition method, we deposit random particle films, without the need of a solid host matrix, showing near complete blackbody absorption at the collective OMR. This is achieved using 70% less material than an optimized antireflective-coated crystalline silicon thin film. The film exhibits strongly directional forward scattering with very low reflectivity, thus giving rise to angle- and polarization-insensitive antireflection properties across the visible spectrum. We find that, while commonly used effective medium models cannot capture the optical response, a modified effective medium accounting for multipole resonances and interparticle coupling shows excellent agreement with experiment. The effective permittivity and permeability are written in a mode and cluster resolved form, providing useful insight into how individual resonances and nanoparticle clusters affect the overall film response. Electric and magnetic-mode coupling show dramatically different behavior, resulting in uniquely different spectral broadening.
Collapse
|
91
|
Yi J, Liu L, Shu L, Huang Y, Li JF. Outstanding Ferroelectricity in Sol-Gel-Derived Polycrystalline BiFeO 3 Films within a Wide Thickness Range. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21696-21704. [PMID: 35482048 DOI: 10.1021/acsami.2c03137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As a promising lead-free ferroelectric, BiFeO3 has a very large intrinsic polarization of ∼100 μC/cm2, enabling its great potential in electronic applications especially in a film format. In this sense, reliable ferroelectric properties are desired; however, pure-phase BiFeO3 films are notorious for their large leakage current, especially of those processed by using the sol-gel method─a facile and industrially scalable method for film preparation. In this study, a protection layer, which can be easily integrated in the sol-gel process, is used to ensure the acquirement of remnant polarization of ∼65 μC/cm2 in ∼200 nm BiFeO3 thin films, whereas O2 annealing can enhance that to ∼120 μC/cm2 in ∼400-700 nm films. Reliable ferroelectricity of BiFeO3 films on Si wafers within a wide thickness range was thus achieved. The obtained ferroelectricity is among the best-achieved properties to date of BiFeO3 films for both thin and intermediate thicknesses, including both chemically and physically derived. These results are helpful to advance potential use of sol-gel-processed BiFeO3 films in electromechanical devices with different desired thicknesses.
Collapse
|
92
|
Zhang AA, Li YL, Fang ZB, Xie L, Cao R, Liu Y, Liu TF. Facile Preparation of Hydrogen-Bonded Organic Framework/Cu 2O Heterostructure Films via Electrophoretic Deposition for Efficient CO 2 Photoreduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21050-21058. [PMID: 35476406 DOI: 10.1021/acsami.2c02917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photocatalytic CO2 reduction is one of the most cost-effective and environmentally friendly techniques of converting CO2 into high-value compounds and/or fuels. However, the performance of most current photocatalytic CO2 reduction catalysts is less than satisfactory for practical applications. Here, we synthesized a heterogeneous structure by integrating Cu2O and a porphyrin hydrogen-bonded organic framework (PFC-45), which was then fabricated into a thin-film catalyst on carbolic paper (CP) using a facile electrophoretic deposition technology. With improved electron-hole separation efficiency and visible-light-harvesting ability, this film (PFC-45/Cu2O@CP) significantly enhanced CO2-to-CO photoreduction, exceeding 2.4 and 3.2 times that of PFC-45@CP and PFC-45/Cu2O particles, respectively. Remarkably, PFC-45/Cu2O@CP also exhibited high selectivity (99%) and outstanding activity (11.81 μmol g-1 h-1) for photocatalytic CO2 reduction in pure water without any sacrificial agent. This work demonstrates a new strategy to design photocatalysts for efficient CO2 reduction.
Collapse
|
93
|
Serrano-Aroca Á. Antiviral Characterization of Advanced Materials: Use of Bacteriophage Phi 6 as Surrogate of Enveloped Viruses Such as SARS-CoV-2. Int J Mol Sci 2022; 23:5335. [PMID: 35628148 PMCID: PMC9141689 DOI: 10.3390/ijms23105335] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
The bacteriophage phi 6 is a virus that belongs to a different Baltimore group than SARS-CoV-2 (group III instead of IV). However, it has a round-like shape and a lipid envelope like SARS-CoV-2, which render it very useful to be used as a surrogate of this infectious pathogen for biosafety reasons. Thus, recent antiviral studies have demonstrated that antiviral materials such as calcium alginate hydrogels, polyester-based fabrics coated with benzalkonium chloride (BAK), polyethylene terephthalate (PET) coated with BAK and polyester-based fabrics coated with cranberry extracts or solidified hand soap produce similar log reductions in viral titers of both types of enveloped viruses after similar viral contact times. Therefore, researchers with no access to biosafety level 3 facilities can perform antiviral tests of a broad range of biomaterials, composites, nanomaterials, nanocomposites, coatings and compounds against the bacteriophage phi 6 as a biosafe viral model of SARS-CoV-2. In fact, this bacteriophage has been used as a surrogate of SARS-CoV-2 to test a broad range of antiviral materials and compounds of different chemical natures (polymers, metals, alloys, ceramics, composites, etc.) and forms (films, coatings, nanomaterials, extracts, porous supports produced by additive manufacturing, etc.) during the current pandemic. Furthermore, this biosafe viral model has also been used as a surrogate of SARS-CoV-2 and other highly pathogenic enveloped viruses such as Ebola and influenza in a wide range of biotechnological applications.
Collapse
|
94
|
Lai WF, Wong WT. Edible Clusteroluminogenic Films Obtained from Starch of Different Botanical Origins for Food Packaging and Quality Management of Frozen Foods. MEMBRANES 2022; 12:membranes12040437. [PMID: 35448407 PMCID: PMC9029101 DOI: 10.3390/membranes12040437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
Starch is a naturally occurring material showing high potential for use in food packaging because of its low cost, natural abundance and high biodegradability. Over the years, different starch-based packaging films have been developed, but the impact of botanical sources on film performance has rarely been exploited. Efforts devoted to exploiting the role played by the clusteroluminescence of starch in food packaging are also lacking. This study fills these gaps by comparing the properties of edible starch films generated from different botanical sources (including water chestnuts, maize and potatoes) in food packaging. Such films are produced by solution casting. They are highly homogeneous, with a thickness of 55–65 μm. Variations in the botanical sources of starch have no significant impact on the color parameters (including L*, a* and b*) and morphological features of the films but affect the water vapor permeability, maximum tensile strength and elongation at break. Starch films from water chestnut show the highest percentage of transmittance, whereas those from potatoes are the opaquest. No observable change in the intensity of clusteroluminescence occurs when a packaging bag generated from starch is used to package fresh or frozen chicken breast meat; however, a remarkable decline in the intensity of luminescence is noted when the frozen meat is thawed inside the bag. Our results reveal the impact of starch sources on the performance of starch films in food packaging and demonstrate the possibility of using the clusteroluminescence of starch as an indicator to reveal the state of packaged frozen food.
Collapse
|
95
|
Cano-Vicent A, Hashimoto R, Takayama K, Serrano-Aroca Á. Biocompatible Films of Calcium Alginate Inactivate Enveloped Viruses Such as SARS-CoV-2. Polymers (Basel) 2022; 14:polym14071483. [PMID: 35406356 PMCID: PMC9002394 DOI: 10.3390/polym14071483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023] Open
Abstract
The current pandemic is urgently demanding the development of alternative materials capable of inactivating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus 2019 (COVID-19) disease. Calcium alginate is a crosslinked hydrophilic biopolymer with an immense range of biomedical applications due to its excellent chemical, physical, and biological properties. In this study, the cytotoxicity and antiviral activity of calcium alginate in the form of films were studied. The results showed that these films, prepared by solvent casting and subsequent crosslinking with calcium cations, are biocompatible in human keratinocytes and are capable of inactivating enveloped viruses such as bacteriophage phi 6 with a 1.43-log reduction (94.92% viral inactivation) and SARS-CoV-2 Delta variant with a 1.64-log reduction (96.94% viral inactivation) in virus titers. The antiviral activity of these calcium alginate films can be attributed to its compacted negative charges that may bind to viral envelopes inactivating membrane receptors.
Collapse
|
96
|
Härtwig F, Lorenz L, Makowski S, Krause M, Habenicht C, Lasagni AF. Low-Friction of ta-C Coatings Paired with Brass and Other Materials under Vacuum and Atmospheric Conditions. MATERIALS 2022; 15:ma15072534. [PMID: 35407869 PMCID: PMC8999154 DOI: 10.3390/ma15072534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Vacuum environments provide challenging conditions for tribological systems. MoS2 is one of the materials commonly known to provide low friction for both ambient and vacuum conditions. However, it also exhibits poor wear resistance and low ability to withstand higher contact pressures. In search of wear-resistant alternatives, superhard hydrogen-free tetrahedral amorphous carbon coatings (ta-C) are explored in this study. Although known to have excellent friction and wear properties in ambient atmospheres, their vacuum performance is limited when self-paired and with steel. In this study, the influence of the paired material on the friction behavior of ta-C is studied using counterbodies made from brass, bronze, copper, silicon carbide, and aluminum oxide, as well as from steel and ta-C coatings as reference materials. Brass was found to be the most promising counterbody material and was further tested in direct comparison to steel, as well as in long-term performance experiments. It was shown that the brass/ta-C friction pair exhibits low friction (µ < 0.1) and high wear in the short term, irrespective of ambient pressure, whereas in the long term, the friction coefficient increases due to a change in the wear mechanism. Al2O3 was identified as another promising sliding partner against ta-C, with a higher friction coefficient than that of brass (µ = 0.3), but considerably lower wear. All other pairings exhibited high friction, high wear, or both.
Collapse
|
97
|
Progress in Aromatic Polyimide Films for Electronic Applications. Polymers (Basel) 2022; 14:polym14061269. [PMID: 35335599 PMCID: PMC8951356 DOI: 10.3390/polym14061269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Aromatic polyimides have excellent thermal stability, mechanical strength and toughness, high electric insulating properties, low dielectric constants and dissipation factors, and high radiation and wear resistance, among other properties, and can be processed into a variety of materials, including films, fibers, carbon fiber composites, engineering plastics, foams, porous membranes, coatings, etc. Aromatic polyimide materials have found widespread use in a variety of high-tech domains, including electric insulating, microelectronics and optoelectronics, aerospace and aviation industries, and so on, due to their superior combination characteristics and variable processability. In recent years, there have been many publications on aromatic polyimide materials, including several books available to readers. In this review, the representative progress in aromatic polyimide films for electronic applications, especially in our laboratory, will be described.
Collapse
|
98
|
Munekata PES, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr 2022; 63:7795-7810. [PMID: 35285755 DOI: 10.1080/10408398.2022.2050350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.
Collapse
|
99
|
Horbelt N, Fratzl P, Harrington MJ. Mistletoe viscin: a hygro- and mechano-responsive cellulose-based adhesive for diverse material applications. PNAS NEXUS 2022; 1:pgac026. [PMID: 36712808 PMCID: PMC9802232 DOI: 10.1093/pnasnexus/pgac026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 04/23/2023]
Abstract
Mistletoe viscin is a natural cellulosic adhesive consisting of hierarchically organized cellulose microfibrils (CMFs) surrounded by a humidity-responsive matrix that enables mechanical drawing into stiff and sticky fibers. Here, we explored the processability and adhesive capacity of viscin and demonstrated its potential as a source material for various material applications, as well as a source for bioinspired design. Specifically, we revealed that viscin fibers exhibit humidity-activated self-adhesive properties that enable "contact welding" into complex 2D and 3D architectures under ambient conditions. We additionally discovered that viscin can be processed into stiff and transparent free-standing films via biaxial stretching in the hydrated state, followed by drying, whereby CMFs align along local stress fields. Furthermore, we determined that viscin adheres strongly to both synthetic materials (metals, plastics, and glass) and biological tissues, such as skin and cartilage. In particular, skin adhesion makes viscin a compelling candidate as a wound sealant, as we further demonstrate. These findings highlight the enormous potential of this hygro- and mechano-responsive fiber-reinforced adhesive for bioinspired and biomedical applications.
Collapse
|
100
|
Oliveira VDS, da Cruz MM, Bezerra GS, Silva NESE, Nogueira FHA, Chaves GM, Sobrinho JLS, Mendonça-Junior FJB, Damasceno BPGDL, Converti A, de Lima ÁAN. Chitosan-Based Films with 2-Aminothiophene Derivative: Formulation, Characterization and Potential Antifungal Activity. Mar Drugs 2022; 20:103. [PMID: 35200633 PMCID: PMC8878255 DOI: 10.3390/md20020103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, films of chitosan and 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carbonitrile (6CN), a 2-aminothiophene derivative with great pharmacological potential, were prepared as a system for a topical formulation. 6CN-chitosan films were characterized by physicochemical analyses, such as Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electronic microscopy (SEM). Additionally, the antifungal potential of the films was evaluated in vitro against three species of Candida (C. albicans, C. tropicalis, and C. parapsilosis). The results of the FTIR and thermal analysis showed the incorporation of 6CN in the polymer matrix. In the diffractogram, the 6CN-chitosan films exhibited diffraction halos that were characteristic of amorphous structures, while the micrographs showed that 6CN particles were dispersed in the chitosan matrix, exhibiting pores and cracks on the film surface. In addition, the results of antifungal investigation demonstrated that 6CN-chitosan films were effective against Candida species showing potential for application as a new antifungal drug.
Collapse
|