76
|
Sirois-Delisle C, Kerr JT. Climate change aggravates non-target effects of pesticides on dragonflies at macroecological scales. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2494. [PMID: 34783410 DOI: 10.1002/eap.2494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Critical gaps in understanding how species respond to environmental change limit our capacity to address conservation risks in a timely way. Here, we examine the direct and interactive effects of key global change drivers, including climate change, land use change, and pesticide use, on persistence of 104 odonate species between two time periods (1980-2002 and 2008-2018) within 100 × 100 km quadrats across the USA using phylogenetic mixed models. Non-target effects of pesticides interacted with higher maximum temperatures to contribute to odonate declines. Closely related species responded similarly to global change drivers, indicating a potential role of inherited traits in species' persistence or decline. Species shifting their range to higher latitudes were more robust to negative impacts of global change drivers generally. Inherited traits related to dispersal abilities and establishment in new places may govern both species' acclimation to global change and their abilities to expand their range limits, respectively. This work is among the first to assess effects of climate change, land use change, and land use intensification together on Odonata, a significant step that improves understanding of multispecies effects of global change on invertebrates, and further identifies conditions contributing to global insect loss.
Collapse
|
77
|
Lark TJ, Hendricks NP, Smith A, Pates N, Spawn-Lee SA, Bougie M, Booth EG, Kucharik CJ, Gibbs HK. Environmental outcomes of the US Renewable Fuel Standard. Proc Natl Acad Sci U S A 2022; 119:e2101084119. [PMID: 35165202 PMCID: PMC8892349 DOI: 10.1073/pnas.2101084119] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023] Open
Abstract
The Renewable Fuel Standard (RFS) specifies the use of biofuels in the United States and thereby guides nearly half of all global biofuel production, yet outcomes of this keystone climate and environmental regulation remain unclear. Here we combine econometric analyses, land use observations, and biophysical models to estimate the realized effects of the RFS in aggregate and down to the scale of individual agricultural fields across the United States. We find that the RFS increased corn prices by 30% and the prices of other crops by 20%, which, in turn, expanded US corn cultivation by 2.8 Mha (8.7%) and total cropland by 2.1 Mha (2.4%) in the years following policy enactment (2008 to 2016). These changes increased annual nationwide fertilizer use by 3 to 8%, increased water quality degradants by 3 to 5%, and caused enough domestic land use change emissions such that the carbon intensity of corn ethanol produced under the RFS is no less than gasoline and likely at least 24% higher. These tradeoffs must be weighed alongside the benefits of biofuels as decision-makers consider the future of renewable energy policies and the potential for fuels like corn ethanol to meet climate mitigation goals.
Collapse
|
78
|
Wade CM, Baker JS, Jones JPH, Austin KG, Cai Y, de Hernandez AB, Latta GS, Ohrel SB, Ragnauth S, Creason J, McCarl B. Projecting the Impact of Socioeconomic and Policy Factors on Greenhouse Gas Emissions and Carbon Sequestration in U.S. Forestry and Agriculture. JOURNAL OF FOREST ECONOMICS 2022; 37:127-161. [PMID: 37942211 PMCID: PMC10631549 DOI: 10.1561/112.00000545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Understanding greenhouse gas mitigation potential of the U.S. agriculture and forest sectors is critical for evaluating potential pathways to limit global average temperatures from rising more than 2° C. Using the FASOMGHG model, parameterized to reflect varying conditions across shared socioeconomic pathways, we project the greenhouse gas mitigation potential from U.S. agriculture and forestry across a range of carbon price scenarios. Under a moderate price scenario ($20 per ton CO2 with a 3% annual growth rate), cumulative mitigation potential over 2015-2055 varies substantially across SSPs, from 8.3 to 17.7 GtCO2e. Carbon sequestration in forests contributes the majority, 64-71%, of total mitigation across both sectors. We show that under a high income and population growth scenario over 60% of the total projected increase in forest carbon is driven by growth in demand for forest products, while mitigation incentives result in the remainder. This research sheds light on the interactions between alternative socioeconomic narratives and mitigation policy incentives which can help prioritize outreach, investment, and targeted policies for reducing emissions from and storing more carbon in these land use systems.
Collapse
|
79
|
Piffer PR, Calaboni A, Rosa MR, Schwartz NB, Tambosi LR, Uriarte M. Ephemeral forest regeneration limits carbon sequestration potential in the Brazilian Atlantic Forest. GLOBAL CHANGE BIOLOGY 2022; 28:630-643. [PMID: 34665911 DOI: 10.1111/gcb.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Although deforestation remains widespread in the tropics, many places are now experiencing significant forest recovery (i.e., forest transition), offering an optimistic outlook for natural ecosystem recovery and carbon sequestration. Naturally regenerated forests, however, may not persist, so a more nuanced understanding of the drivers of forest change in the tropics is critical to ensure the success of reforestation efforts and carbon sequestration targets. Here we use 35 years of detailed land cover data to investigate forest trajectories in 3014 municipalities in the Brazilian Atlantic Forest (AF), a biodiversity and conservation hotspot. Although deforestation was evident in some regions, deforestation reversals, the typical forest transition trajectory, were the prevalent trend in the AF, accounting for 38% of municipalities. However, simultaneous reforestation reversals in the region (13% of municipalities) suggest that these short-term increases in native forest cover do not necessarily translate into persistent trends. In the absence of reversals in reforestation, forests in the region could have sequestered 1.75 Pg C, over three times the actual estimated carbon sequestration (0.52 Pg C). We also showed that failure to distinguish native and planted forests would have masked native forest cover loss in the region and overestimated reforestation by 3.2 Mha and carbon sequestration from natural forest regeneration by 0.37 Pg C. Deforestation reversals were prevalent in urbanized municipalities with limited forest cover and high agricultural productivity, highlighting the importance of favorable socioeconomic conditions in promoting reforestation. Successful forest restoration efforts will require development and enforcement of environmental policies that promote forest regeneration and ensure the permanence of regrowing forests. This is crucial not only for the fate and conservation of the AF, but also for other tropical nations to achieve their restoration and carbon sequestration commitments.
Collapse
|
80
|
Zhong M, Liu C, Wang X, Hu W, Qiao N, Song H, Chen J, Miao Y, Wang G, Wang D, Yang Z. Belowground Root Competition Alters the Grass Seedling Establishment Response to Light by a Nitrogen Addition and Mowing Experiment in a Temperate Steppe. FRONTIERS IN PLANT SCIENCE 2022; 13:801343. [PMID: 35909790 PMCID: PMC9331913 DOI: 10.3389/fpls.2022.801343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/13/2022] [Indexed: 05/17/2023]
Abstract
Predicting species responses to climate change and land use practices requires understanding both the direct effects of environmental factors as well as the indirect effects mediated by changes in belowground and aboveground competition. Belowground root competition from surrounding vegetation and aboveground light competition are two important factors affecting seedling establishment. However, few studies have jointly examined the effect of belowground root and light competition on seedling establishment, especially under long-term nitrogen addition and mowing. Here, we examined how belowground root competition from surrounding vegetation and aboveground light competition affect seedling establishment within a long-term nitrogen addition and mowing experiment. Seedlings of two grasses (Stipa krylovii and Cleistogenes squarrosa) were grown with and without belowground root competition under control, nitrogen addition, and mowing treatments, and their growth characteristics were monitored. The seedlings of the two grasses achieved higher total biomass, height, mean shoot and root mass, but a lower root/shoot ratio in the absence than in the presence of belowground root competition. Nitrogen addition significantly decreased shoot biomass, root biomass, and the survival of the two grasses. Regression analyses revealed that the biomass of the two grass was strongly negatively correlated with net primary productivity under belowground root competition, but with the intercept photosynthetic active radiation in the absence of belowground root competition. This experiment demonstrates that belowground root competition can alter the grass seedling establishment response to light in a long-term nitrogen addition and mowing experiment.
Collapse
|
81
|
Fan X, Luo W, Yu H, Rong Y, Gu X, Zheng Y, Ou S, Tiando DS, Zhang Q, Tang G, Li J. Landscape Evolution and Simulation of Rural Settlements around Wetland Park Based on MCCA Model and Landscape Theory: A Case Study of Chaohu Peninsula, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413285. [PMID: 34948897 PMCID: PMC8706627 DOI: 10.3390/ijerph182413285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 11/29/2022]
Abstract
As a transitional zone between urban and rural areas, the peri-urban areas are the areas with the most intense urban expansion and the most frequent spatial reconfiguration, and in this context, it is particularly important to reveal the evolution pattern of rural settlements in the peri-urban areas to provide reference for the rearrangement of rural settlements. The study takes five townships in the urban suburbs, and explores the scale, shape, spatial layout, and spatial characteristics of the urban suburbs of Hefei from 1980 to 2030 under the influence of urban-lake symbiosis based on spatial mathematical analysis and geographical simulation software. The study shows that: (1) the overall layout of rural settlements in the study area is randomly distributed due to the hilly terrain, but in small areas there is a high and low clustering phenomenon, and the spatial density shows the distribution characteristics of “high in the east and low in the west”; (2) since the reform and opening up, there are large spatial differences in the scale of rural settlements in the study area. (3) Different development scenarios have a strong impact on the future spatial pattern of rural settlement land use within the study area, which is a strong reflection of policy.
Collapse
|
82
|
Cheng P, Tang H, Dong Y, Liu K, Jiang P, Liu Y. Knowledge Mapping of Research on Land Use Change and Food Security: A Visual Analysis Using CiteSpace and VOSviewer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:13065. [PMID: 34948674 PMCID: PMC8701921 DOI: 10.3390/ijerph182413065] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Many scholars have conducted in-depth research on the theme of land use change and food security, and formed fruitful research results, but there is a lack of quantitative analysis and comprehensive evaluation of research achievements. Therefore, based on the relevant literature on the theme of land use change and food security in the core collection of the Web of Science (WOS) database, this paper takes the advantage of CiteSpace and VOSviewer bibliometric software to draw the cooperative network and keyword cooccurrence map to analyze the research progress and frontier. The results reveal that: (1) The research started in 1999 and can be divided into three stages: initial research, rapid development, and a stable in-depth stage. This topic has increasingly become a research hotspot in the academic community. (2) The distribution of research institutions is concentrated and forms a small cluster, and the research networks between developed and developing countries have been established, and developed countries are in the core position, but the cooperation network is not prominent. (3) The research content is becoming increasingly organized and systematic, and the research hot topics are divided into seven aspects. (4) The research area of the subject covers multiple levels, such as global, national, and specific natural geographical regions, and has formed a research system of geographic information technology and satellite remote sensing technology. It also presents the trend of cross integration with economics, land management and soil science. In the future, theoretical innovation still needs to be strengthened, and we should strengthen the research on the impact of agricultural chemical fertilizers on food security and study the impact of urban expansion on land use change.
Collapse
|
83
|
Horton AJ, Virkki V, Lounela A, Miettinen J, Alibakhshi S, Kummu M. Identifying Key Drivers of Peatland Fires Across Kalimantan's Ex-Mega Rice Project Using Machine Learning. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2021; 8:e2021EA001873. [PMID: 35864915 PMCID: PMC9286596 DOI: 10.1029/2021ea001873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Throughout Indonesia ecological degradation, agricultural expansion, and the digging of drainage canals has compromised the integrity and functioning of peatland forests. Fragmented landscapes of scrubland, cultivation, degraded forest, and newly established plantations are then susceptible to extensive fires that recur each year. However, a comprehensive understanding of all the drivers of fire distribution and the conditions of initiation is still absent. Here we show the first analysis in the region that encompasses a wide range of driving factors within a single model that captures the inter-annual variation, as well as the spatial distribution of peatland fires. We developed a fire susceptibility model using machine learning (XGBoost random forest) that characterizes the relationships between key predictor variables and the distribution of historic fire locations. We then determined the relative importance of each predictor variable in controlling the initiation and spread of fires. The model included land-cover classifications, a forest clearance index, vegetation indices, drought indices, distances to infrastructure, topography, and peat depth, as well as the Oceanic Niño Index (ONI). The model performance consistently scores highly in both accuracy and precision across all years (>75% and >67.5% respectively), though recall metrics are much lower (>25%). Our results confirm the anthropogenic dependence of extreme fires in the region, with distance to settlements and distance to canals consistently weighted the most important driving factors within the model structure. Our results may help target the root causes of fire initiation and propagation to better construct regulation and rehabilitation efforts to mitigate future fires.
Collapse
|
84
|
Pant G, Maraseni T, Apan A, Allen BL. Predicted declines in suitable habitat for greater one-horned rhinoceros ( Rhinoceros unicornis) under future climate and land use change scenarios. Ecol Evol 2021; 11:18288-18304. [PMID: 35003673 PMCID: PMC8717310 DOI: 10.1002/ece3.8421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 11/11/2022] Open
Abstract
Rapidly changing climate is likely to modify the spatial distribution of both flora and fauna. Land use change continues to alter the availability and quality of habitat and further intensifies the effects of climate change on wildlife species. We used an ensemble modeling approach to predict changes in habitat suitability for an iconic wildlife species, greater one-horned rhinoceros due to the combined effects of climate and land use changes. We compiled an extensive database on current rhinoceros distribution and selected nine ecologically meaningful environmental variables for developing ensemble models of habitat suitability using ten different species distribution modeling algorithms in the BIOMOD2 R package; and we did this under current climatic conditions and then projected them onto two possible climate change scenarios (SSP1-2.6 and SSP5-8.5) and two different time frames (2050 and 2070). Out of ten algorithms, random forest performed the best, and five environmental variables-distance from grasslands, mean temperature of driest quarter, distance from wetlands, annual precipitation, and slope, contributed the most in the model. The ensemble model estimated the current suitable habitat of rhinoceros to be 2610 km2, about 1.77% of the total area of Nepal. The future habitat suitability under the lowest and highest emission scenarios was estimated to be: (1) 2325 and 1904 km2 in 2050; and (2) 2287 and 1686 km2 in 2070, respectively. Our results suggest that over one-third of the current rhinoceros habitat would become unsuitable within a period of 50 years, with the predicted declines being influenced to a greater degree by climatic changes than land use changes. We have recommended several measures to moderate these impacts, including relocation of the proposed Nijgad International Airport given that a considerable portion of potential rhinoceros habitat will be lost if the airport is constructed on the currently proposed site.
Collapse
|
85
|
Kakouei K, Kraemer BM, Anneville O, Carvalho L, Feuchtmayr H, Graham JL, Higgins S, Pomati F, Rudstam LG, Stockwell JD, Thackeray SJ, Vanni MJ, Adrian R. Phytoplankton and cyanobacteria abundances in mid-21st century lakes depend strongly on future land use and climate projections. GLOBAL CHANGE BIOLOGY 2021; 27:6409-6422. [PMID: 34465002 DOI: 10.1111/gcb.15866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Land use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long-term (1971-2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971-2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins. We projected future phytoplankton and cyanobacteria abundance in the 29 focal lake basins and 1567 lakes across focal regions based on three land use (sustainability, middle of the road, and regional rivalry) and two climate (RCP 2.6 and 8.5) scenarios to mid-21st century. On average, lakes are expected to have higher phytoplankton and cyanobacteria due to increases in both urban land use and temperature, and decreases in forest habitat. However, the relative importance of land use and climate effects varied substantially among regions and lakes. Accounting for land use and climate changes in a combined way based on extensive data allowed us to identify urbanization as the major driver of phytoplankton development in lakes located in urban areas, and climate as major driver in lakes located in remote areas where past and future land use changes were minimal. For approximately one-third of the studied lakes, both drivers were relatively important. The results of this large scale study suggest the best approaches for mitigating the effects of human activity on lake phytoplankton and cyanobacteria will depend strongly on lake sensitivity to long-term change and the magnitude of projected land use and climate changes at a given location. Our quantitative analyses suggest local management measures should focus on retaining nutrients in urban landscapes to prevent nutrient pollution from exacerbating ongoing changes to lake ecosystems from climate change.
Collapse
|
86
|
Pan S, Liang J, Chen W, Li J, Liu Z. Gray Forecast of Ecosystem Services Value and Its Driving Forces in Karst Areas of China: A Case Study in Guizhou Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12404. [PMID: 34886131 PMCID: PMC8656509 DOI: 10.3390/ijerph182312404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
A sound ecosystem is the prerequisite for the sustainable development of human society, and the karst ecosystem is a key component of the global ecosystem, which is essential to human welfare and livelihood. However, there remains a gap in the literature on the changing trend and driving factors of ecosystem services value (ESV) in karst areas. In this study, Guizhou Province, a representative region of karst mountainous areas, was taken as a case to bridge the gap. ESV in the karst areas was predicted, based on the land use change data in 2009-2018, and the driving mechanisms were explored through the gray correlation analysis method. Results show that a total loss of CNY 21.47 billion ESV from 2009 to 2018 is due to the conversion of a total of 22.566% of the land in Guizhou, with forest land as the main cause of ESV change. By 2025 and 2030, the areas of garden land, water area, and construction land in Guizhou Province will continue to increase, whereas the areas of cultivated land, forest land, and garden land will decline. The total ESV shows a downward trend and will decrease to CNY 218.71 billion by 2030. Gray correlation analysis results illuminate that the total population and tertiary industry proportion are the uppermost, among all the driving factors that affect ESV change. The findings in this study have important implications for optimizing and adjusting the land use structure ecological protection and will enrich the literature on ESV in ecologically fragile areas.
Collapse
|
87
|
Guan J, Yu P. Does Coal Mining Have Effects on Land Use Changes in a Coal Resource-Based City? Evidence from Huaibei City on the North China Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111616. [PMID: 34770128 PMCID: PMC8583168 DOI: 10.3390/ijerph182111616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Continuous coal mining results in dramatic regional land use change, and significantly influences the sustainable development of coal resource-based cities. Present studies pay little attention to the characteristics and regularities of land use change in coal resource-based cities, caused by underground coal mining in high groundwater areas. Based on the Landsat remote sensing images of 1999, 2000, 2010, and 2018 of Huaibei City, a typical coal resource-based city of a high ground water area on the North China Plain, this paper applies the dynamic degree and transition matrix of land use to analyze the land use change characteristics, and identify the regularity between land use type and coal mining production in this coal resource-based city. Results show that the land use change in the research area presents an overall characteristic of a constant increase in water area, urban construction land, and rural settlement land, and a continuous decrease in cultivated land. Cultivated land is converted into a water area, urban construction land, and rural settlement land, and rural settlement land and cultivated land are converted bidirectionally. The land use change in this coal resource-based city demonstrates significant reliance on coal resources, and coal mining is significantly related to the area of cultivated land, water area, and rural settlement land, which demonstrates that continuous large-scale coal mining results in damage to cultivated land, a decrease in rural settlement land, and an increase in water area. The research result contributes to the sustainable land use of coal resource-based cities.
Collapse
|
88
|
|
89
|
Fu JX, Cao GC, Guo WJ. [ Land use change and its driving force on the southern slope of Qilian Mountains from 1980 to 2018]. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2021; 31:2699-2709. [PMID: 34494793 DOI: 10.13287/j.1001-9332.202008.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Qilian Mountains is the boundary of the first and second steps of China's terrain, with fragile ecological environment. There is great ecological significance to study land use change and driving force in transitional areas. In this study, we investigated the spatial and temporal characte-ristic of land use and its driving force in the south slope of Qilian Mountains, based on RS image data from 1980 to 2018, with the spatial autocorrelation method, ArcGIS spatial analysis method and principal component analysis. The results showed that, from 1980 to 2018, grassland was the main land use type, and the proportion of construction land was the smallest. Water area and grassland showed a declining trend, while unused land, construction land and farmland showed an increasing trend. There was smaller change for the woodland. The single dynamic degree of different land types decreased following an order of construction land, water, farmland, unused land, woodland and grassland. The comprehensive dynamic degree of land use was 0.9%. The spatial distribution of different land use types showed the characteristics of spatial agglomeration. The increased areas of farmland and the decreased areas of woodland and grassland were mainly distributed in the northwest of the Datong River valley of Menyuan County, while in the upper reaches of Datong River in the northeast of Tianjun County, grassland was occupied by construction land. The driving force of land use was population, science and technology, urbanization, level of economic development, and policies. Our results would support the government to reasonably plan and utilize land resources, which is of significance to the protection of ecological environment and the sustainable development of society and economy on the southern slope of Qilian Mountains.
Collapse
|
90
|
Jiang C, Guan K, Khanna M, Chen L, Peng J. Assessing Marginal Land Availability Based on Land Use Change Information in the Contiguous United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10794-10804. [PMID: 34297551 DOI: 10.1021/acs.est.1c02236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Utilization of marginal land for growing dedicated bioenergy crops for second-generation biofuels is appealing to avoid conflicts with food production. This study develops a novel framework to quantify marginal land for the Contiguous United States (CONUS) based on a history of satellite-observed land use change (LUC) over the 2008-2015 period. Frequent LUC between crop and noncrop is assumed to be an indicator of economically marginal land; this land is also likely to have a lower opportunity cost of conversion from food crop to bioenergy crop production. We first present an approach to identify cropland in transition using the time series of Cropland Data Layer (CDL) land cover product and determine the amount of land that can be considered marginal with a high degree of confidence vs with uncertainty across the CONUS. We find that the biophysical characteristics of this land and its productivity and environmental vulnerability vary across the land and lie in between that of permanent cropland and permanent natural vegetation/bare areas; this land also has relatively low intrinsic value and agricultural profit but a high financial burden and economic risk. We find that the total area of marginal land with confidence vs with uncertainty is 10.2 and 58.4 million hectares, respectively, and mainly located along the 100th meridian. Only a portion of this marginal land (1.4-2.2 million hectares with confidence and 14.8-19.4 million hectares with uncertainty) is in the rainfed region and not in crop production and, thus, suitable for producing energy crops without diverting land from food crops in 2016. These estimates are much smaller than the estimates obtained by previous studies, which consider all biophysically low-quality land to be marginal without considering economical marginality. The estimate of marginal land for bioenergy crops obtained in this study is an indicator of the availability of economically marginal land that is suitable for bioenergy crop production; whether this land is actually converted to bioenergy crops will depend on the market conditions. We note the inability to conduct field-level validation of cropland in transition and leave it to future advances in technology to ground-truth land use change and its relationship to economically marginal land.
Collapse
|
91
|
Lammel DR, Nüsslein K, Cerri CEP, Veresoglou SD, Rillig MC. Soil biota shift with land use change from pristine rainforest and Savannah (Cerrado) to agriculture in southern Amazonia. Mol Ecol 2021; 30:4899-4912. [PMID: 34297871 DOI: 10.1111/mec.16090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/30/2022]
Abstract
Southern Amazonia is currently experiencing extensive land use change from forests to agriculture caused by increased local and global demand for agricultural products. However, little is known about the impacts of deforestation and land use change on soil biota. We investigated two regions in southern Amazonia (rainforest and Savannah/Cerrado biomes), analysing soil biota community turnover based on 16S (Archaea and Bacteria) and 18S rRNA genes (Eukaryotes, including Fungi, Protists and Animalia) and correlating them with soil chemistry and land use intensity. We found that soil biota community structure is driven by land use change in both Cerrado and rainforest. Crop fields approximatively doubled the richness of soil Archaea, Bacteria and Protists. We propose that crop systems not only increase soil pH and fertility, but also create continued disturbance (crop seasons) that stimulates soil diversity, as predicted by the dynamic equilibrium model (DEM) and the intermediate disturbance hypothesis (IDH). Even though agricultural fields had higher soil biota richness, some taxa were suppressed by agriculture (6/31 operational taxonomic units of Archaea, 245/1790 of Bacteria, 12/74 of Animalia, 20/144 of Fungi and 25/310 of Protists). Consequently, land use change in this region should proceed with caution. In the southern Amazonia region of Brazil, current laws require farmers to keep 20%-80% pristine vegetation areas on their property. Our data support the relevance of this law: since there are unique soil taxa under native vegetation, keeping these pristine areas adjacent to the agricultural fields should maximize soil biodiversity protection in these regions.
Collapse
|
92
|
Wang WJ, Wang Q, Zhu AS, Huang L, Gu Y, Wang YJ, Wang M, Li L. [Role of Land Use Changes on Ammonia Emissions from Agricultural Ecosystems in the Yangtze River Delta Region from 2000 to 2018]. HUAN JING KE XUE= HUANJING KEXUE 2021; 42:3442-3450. [PMID: 34212671 DOI: 10.13227/j.hjkx.202010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Based on Landsat satellite remote sensing images, this study interprets land use changes in the Yangtze River Delta (YRD) region from 2000 to 2018. Combined with changes in nitrogen fertilizer application, the changes in ammonia emissions from farmland ecosystem due changes in land use and nitrogen fertilizer application were further investigated. The results show that along with the rapid urbanization process, the area of cultivated land in the YRD region has gradually decreased from 276269 km2 (49% of total land area) in 2000 to 244001 km2 (44%) in 2018. The effects of changes in land use and nitrogen fertilizer application on ammonia emissions from farmland ecosystems mainly include emissions from soil background and nitrogen fertilizer application. From 2000 to 2018, ammonia emissions due to the application of nitrogen fertilizer decreased from 690 kt·a-1 to 541 kt·a-1 (relative decrease by 22%), while the ammonia emissions from the soil background reduced from 32 kt·a-1 to 29 kt·a-1 (decrease by 9%). During the past 20 years, urbanization in the YRD region has accelerated, and the area of cultivated land and the total amount of nitrogen fertilizer application have significantly reduced, thus resulting in reductions in ammonia emissions from the farmland ecosystem.
Collapse
|
93
|
Zamora-Gutierrez V, Rivera-Villanueva AN, Martínez Balvanera S, Castro-Castro A, Aguirre-Gutiérrez J. Vulnerability of bat-plant pollination interactions due to environmental change. GLOBAL CHANGE BIOLOGY 2021; 27:3367-3382. [PMID: 33749983 DOI: 10.1111/gcb.15611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 05/21/2023]
Abstract
Plant-pollinator interactions are highly relevant to society as many crops important for humans are animal pollinated. However, changes in climate and land use may put such interacting patterns at risk by disrupting the occurrences between pollinators and the plants they pollinate. Here, we analyse how the co-occurrence patterns between bat pollinators and 126 plant species they pollinate may be disrupted given changes in climate and land use, and we forecast relevant changes of the current bat-plant co-occurrence distribution patterns for the near future. We predict under RCP8.5 21% of the territory will experience a loss of bat species richness, plants with C3 metabolism are predicted to reduce their area of distribution by 6.5%, CAM species are predicted to increase their potential area of distribution up to 1% and phanerophytes are predicted to have a 14% reduction in their distribution. The potential bat-plant interactions are predicted to decrease from an average of 47.1 co-occurring bat-plant pairs in the present to 34.1 in the pessimistic scenario. The overall changes in suitable environmental conditions for bats and the plant species they pollinate may disrupt the current bat-plant co-occurrence network and will likely put at risk the pollination services bat species provide.
Collapse
|
94
|
Liu GX, Wang XJ, Xiang AC, Wang XR, Wang BX, Xiao SM. Spatial heterogeneity and driving factors of land use change in the middle and upper reaches of Ganjiang River, southern China. YING YONG SHENG TAI XUE BAO = THE JOURNAL OF APPLIED ECOLOGY 2021; 32:2545-2554. [PMID: 34313073 DOI: 10.13287/j.1001-9332.202107.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The middle and upper reaches of Ganjiang River is an important functional area for soil and water conservation in the southeastern hills of China. It is important to analyze the land use change and their driving forces at different spatial and temporal scales to maintain and optimize the local ecological functions. We analyzed the land use structure and land use dynamics in the middle and upper reaches of Ganjiang River from 1980-2018 based on 1 km spatial resolution land use data, and analyzed the spatial heterogeneity and driving factors of land use change using principal component analysis (PCA), ordinary least squares (OLS) and geographically weighted regression (GWR). From 1980-2018, the main land use types in the study area were forests (proportion 69.4%-71%) and cultivated land (proportion 20.8%-20.9%). Land use dynamic degree of build-up land and unused land were larger, and the comprehensive land use dynamic degree gradually increased, especially in 2010-2018. The GWR model had a better fitting effect on the analysis of land use change drivers, which was better in 98.6% of the area. Among the influencing factors of the spatial heterogeneity of land use change in the study area, the natural environment factors were the most obvious, with a restrictive role. The socio-economic factors were the secondary in importance, with a promoting role. The comprehensive influence of natural and social factors were weak and complex.
Collapse
|
95
|
Agboli E, Zahouli JBZ, Badolo A, Jöst H. Mosquito-Associated Viruses and Their Related Mosquitoes in West Africa. Viruses 2021; 13:v13050891. [PMID: 34065928 PMCID: PMC8151702 DOI: 10.3390/v13050891] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Mosquito-associated viruses (MAVs), including mosquito-specific viruses (MSVs) and mosquito-borne (arbo)viruses (MBVs), are an increasing public, veterinary, and global health concern, and West Africa is projected to be the next front for arboviral diseases. As in-depth knowledge of the ecologies of both western African MAVs and related mosquitoes is still limited, we review available and comprehensive data on their diversity, abundance, and distribution. Data on MAVs’ occurrence and related mosquitoes were extracted from peer-reviewed publications. Data on MSVs, and mosquito and vertebrate host ranges are sparse. However, more data are available on MBVs (i.e., dengue, yellow fever, chikungunya, Zika, and Rift Valley fever viruses), detected in wild and domestic animals, and humans, with infections more concentrated in urban areas and areas affected by strong anthropogenic changes. Aedes aegypti, Culex quinquefasciatus, and Aedes albopictus are incriminated as key arbovirus vectors. These findings outline MAV, related mosquitoes, key knowledge gaps, and future research areas. Additionally, these data highlight the need to increase our understanding of MAVs and their impact on host mosquito ecology, to improve our knowledge of arbovirus transmission, and to develop specific strategies and capacities for arboviral disease surveillance, diagnostic, prevention, control, and outbreak responses in West Africa.
Collapse
|
96
|
Ji Z, Wei H, Xue D, Liu M, Cai E, Chen W, Feng X, Li J, Lu J, Guo Y. Trade-Off and Projecting Effects of Land Use Change on Ecosystem Services under Different Policies Scenarios: A Case Study in Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073552. [PMID: 33805548 PMCID: PMC8036688 DOI: 10.3390/ijerph18073552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023]
Abstract
Predicting the spatio-temporal evolution characteristics and trade-off/synergy relationships of ecosystem service value (ESV) under different policy scenarios is of great significance for realizing regional sustainable development. This study established a framework and used the geographical simulation and optimization systems-future land use simulation (GeoSOS-FLUS) model and bivariate local autocorrelation analysis to stimulate and predict the impact of land use change on the ESV of Anyang City from 1995 to 2025. We also explored the trade-offs and synergy among ecosystem services under three policy scenarios (natural evolution, cultivated land protection, and ecological protection) in 2025. Results show that (1) the land use change in Anyang from 1995 to 2025 was significant, and the degree of land use change under the cultivated land and ecological protection scenarios was more moderate than that under the natural evolution scenario; (2) The total ESV decreased between 1995 and 2015, amounting to losses of 1126 million yuan, and the decline from 2015 to 2025 under the natural evolution scenario was more significant than those under the cultivated land protection and ecological protection scenarios; and (3) an obvious synergy was observed between various ecosystem services in Anyang City under different scenarios in 2025, and the most significant synergy was observed under the natural evolution scenario. In terms of spatial distribution, the agglomeration of “high–high” synergy in the west and “low–low” synergy in the central region was significant. Local areas showed “high–low” and “low–high” trade-off relationships scattered between their built land and woodland or cultivated land. The proposed framework can provide certain scientific support for regulating land use and ecosystem services in rapidly urbanized areas.
Collapse
|
97
|
Wielgat P, Kalinowska D, Szymkiewicz A, Zima P, Jaworska-Szulc B, Wojciechowska E, Nawrot N, Matej-Lukowicz K, Dzierzbicka-Glowacka LA. Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ 2021; 9:e10938. [PMID: 33665035 PMCID: PMC7916535 DOI: 10.7717/peerj.10938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background This paper analyzes the impact of changes in fertilization on crop yields and the runoff of nutrients from a small agricultural catchment (176 km2) to a shallow bay, using the SWAT model. Puck Bay is part of the Gulf of Gdansk and belongs to the Baltic Sea. The whole area of Puck Bay (364 km2) is protected (Natura 2000) yet despite this it suffers from eutrophication problems due to the relatively minimal depth and difficult water exchange. Methods The paper presents a comparison of the calculated yields and the runoff of nutrients and pesticides in the SWAT model, for a small agricultural coastal catchment. Calculations were made for 13 crop scenarios with weather data from 2011 to 2019. For each crop, an agriculture calendar was made. Two variants of fertilization were considered (autofertilization mode and according to the calendar). The nutrient runoff was calculated depending on the adopted scenario. In addition, the fate of selected pesticides was simulated. Results Depending on the crop, the annual load of NO3into the stream ranged from 0.74 to 3.65 kg ha-1. The annual load of organic phosphorous into the stream was between 0.686 and 3.64 kg ha-1. This is lower than in the majority of EU or Baltic countries. The surface runoff of dissolved Glyphosate was equal to 286 mg ha-1. The annual loads of nutrients from the catchment area are equivalent in both fertilization modes. Regardless of the selected fertilization mode, in addition to the dosage, the form of nutrients is important for the model.
Collapse
|
98
|
Schaller J, Puppe D, Kaczorek D, Ellerbrock R, Sommer M. Silicon Cycling in Soils Revisited. PLANTS (BASEL, SWITZERLAND) 2021; 10:295. [PMID: 33557192 PMCID: PMC7913996 DOI: 10.3390/plants10020295] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/15/2022]
Abstract
Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance.
Collapse
|
99
|
Hassell JM, Bettridge JM, Ward MJ, Ogendo A, Imboma T, Muloi D, Fava F, Robinson TP, Begon M, Fèvre EM. Socio-ecological drivers of vertebrate biodiversity and human-animal interfaces across an urban landscape. GLOBAL CHANGE BIOLOGY 2021; 27:781-792. [PMID: 33263214 PMCID: PMC7983883 DOI: 10.1111/gcb.15412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Urbanization can have profound impacts on the distributional ecology of wildlife and livestock, with implications for biodiversity conservation, ecosystem services and human health. A wealth of studies have assessed biotic responses to urbanization in North America and Europe, but there is little empirical evidence that directly links human activities to urban biodiversity in the tropics. Results from a large-scale field study conducted in Nairobi, Kenya, are used to explore the impact of human activities on the biodiversity of wildlife and livestock with which humans co-exist across the city. The structure of sympatric wildlife, livestock and human populations are characterized using unsupervised machine learning, and statistical modelling is used to relate compositional variation in these communities to socio-ecological drivers occurring across the city. By characterizing landscape-scale drivers acting on these interfaces, we demonstrate that socioeconomics, elevation and subsequent changes in habitat have measurable impacts upon the diversity, density and species assemblage of wildlife, livestock and humans. Restructuring of wildlife and livestock assemblages (both in terms of species diversity and composition) has important implications for the emergence of novel diseases at urban interfaces, and we therefore use our results to generate a set of testable hypotheses that explore the influence of urban change on microbial communities. These results provide novel insight into the impact of urbanization on biodiversity in the tropics. An understanding of associations between urban processes and the structure of human and animal populations is required to link urban development to conservation efforts and risks posed by disease emergence to human health, ultimately informing sustainable urban development policy.
Collapse
|
100
|
Diversity, Co-Occurrence, and Nestedness Patterns of Sand Fly Species (Diptera: Psychodidae) in Two Rural Areas of Western Panamá. INSECTS 2021; 12:insects12020113. [PMID: 33525399 PMCID: PMC7912352 DOI: 10.3390/insects12020113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
Simple Summary Sand flies are insects that can transmit the parasites causing leishmaniasis, a major neglected tropical disease. In the Americas, these insects are highly diverse, and unlike what is observed for other vector-borne diseases, many species co-occur in sites where this disease affects human populations. Here, we present results from a two-year-long study where we study how the number of species changes in two rural areas of Western Panamá with different land use cover and through the dry and wet seasons. We found that species number increased during the wet season and in plots with higher natural forest cover and that species number decreased in both areas in plots when the forest cover decreased, with some species changing through the seasons, and some species disappearing when comparing the sand fly faunas of the most forested with less forested plots. However, our results suggest that seasonality, or the change from a dry to rainy season, can be a more important driver of the number of species locally observed in the studied areas. Abstract Cutaneous Leishmaniasis transmission in the New World is observed in areas with rich sand fly species’ faunas. The diversity and composition of sand fly species can change in response to seasonal weather and land use changes. Here, we present results from a two-year-long study where we collected, using Centers for Disease Control (CDC) light traps, sand flies from two rural areas, Las Pavas (LP) and Trinidad de las Minas (T) in western Panamá. Over 710 trap-nights, we collected 16,156 sand flies from 15 genera and 35 species. We identified 34 species in T, and the most abundant species collected was Nyssomyia trapidoi (Fairchild and Hertig, 1952) (n = 2278, 37%), followed by Psychodopygus panamensis (Shannon, 1926) (n = 1112, 18%), and Trichopygomyia triramula (Fairchild and Hertig, 1952) (n = 1063, 17%). In LP, we identified 26 species, and the most abundant species collected were Ty. triramula (n = 4729, 48%), and Ps. panamensis (n = 3444, 35%). We estimated a higher species’ richness in T (Chao2 ± S.E.: 36.58 ± 3.84) than in LP (27.49 ± 2.28). In T, species’ richness was significantly higher in the rainy season, but no seasonal differences were observed in LP. Species’ assemblages were nested in the two areas. Phlebotomine sand fly species’ abundance increased at the two sites during the rainy season. Our data suggest that seasonality is more important than land use as a factor driving sand fly species’ diversity at the studied sites.
Collapse
|