76
|
Ruiz-Ramos DV, Baums IB. Microsatellite abundance across the Anthozoa and Hydrozoa in the phylum Cnidaria. BMC Genomics 2014; 15:939. [PMID: 25346285 PMCID: PMC4226868 DOI: 10.1186/1471-2164-15-939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/16/2014] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Microsatellite loci have high mutation rates and thus are indicative of mutational processes within the genome. By concentrating on the symbiotic and aposymbiotic cnidarians, we investigated if microsatellite abundances follow a phylogenetic or ecological pattern. Individuals from eight species were shotgun sequenced using 454 GS-FLX Titanium technology. Sequences from the three available cnidarian genomes (Nematostella vectensis, Hydra magnipapillata and Acropora digitifera) were added to the analysis for a total of eleven species representing two classes, three subclasses and eight orders within the phylum Cnidaria. RESULTS Trinucleotide and tetranucleotide repeats were the most abundant motifs, followed by hexa- and dinucleotides. Pentanucleotides were the least abundant motif in the data set. Hierarchical clustering and log likelihood ratio tests revealed a weak relationship between phylogeny and microsatellite content. Further, comparisons between cnidaria harboring intracellular dinoflagellates and those that do not, show microsatellite coverage is higher in the latter group. CONCLUSIONS Our results support previous studies that found tri- and tetranucleotides to be the most abundant motifs in invertebrates. Differences in microsatellite coverage and composition between symbiotic and non-symbiotic cnidaria suggest the presence/absence of dinoflagellates might place restrictions on the host genome.
Collapse
|
77
|
Ai B, Gao Y, Zhang X, Tao J, Kang M, Huang H. Comparative transcriptome resources of eleven Primulina species, a group of 'stone plants' from a biodiversity hot spot. Mol Ecol Resour 2014; 15:619-32. [PMID: 25243665 DOI: 10.1111/1755-0998.12333] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
Abstract
The genus Primulina is an emerging model system in studying the drivers and mechanisms of species diversification, for its high species richness and endemism, together with high degree of habitat specialization. In this study, we sequenced transcriptomes for eleven Primulina species across the phylogeny of the genus using the Illumina HiSeq 2000 platform. A total of 336 million clean reads were processed into 355 573 unigenes with a mean length of 1336 bp and an N50 value of 2191 bp after pooling and reassembling twelve individual pre-assembled unigene sets. Of these unigenes, 249 973 (70%) were successfully annotated and 256 601 (72%) were identified as coding sequences (CDSs). We identified a total of 38 279 simple sequence repeats (SSRs) and 367 123 single nucleotide polymorphisms (SNPs). Marker validation assay revealed that 354 (27.3%) of the 1296 SSR and 795 (39.6%) of the 2008 SNP loci showed successful genotyping performance and exhibited expected polymorphism profiles. We screened 834 putative single-copy nuclear genes and proved their high effectiveness in phylogeny construction and estimation of ancestral population parameters. We identified a total of 85 candidate orthologs under positive selection for 46 of the 66 species pairs. This study provided an efficient application of RNA-seq in development of genomic resources for a group of 'stone plants' from south China Karst regions, a biodiversity hot spot of the World. The assembled unigenes with annotations and the massive gene-associated molecular markers would help guide further molecular systematic, population genetic and ecological genomics studies in Primulina and its relatives.
Collapse
|
78
|
Zhu C, Tong J, Yu X, Guo W, Wang X, Liu H, Feng X, Sun Y, Liu L, Fu B. A second-generation genetic linkage map for bighead carp (Aristichthys nobilis) based on microsatellite markers. Anim Genet 2014; 45:699-708. [PMID: 25040196 DOI: 10.1111/age.12194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2014] [Indexed: 01/03/2023]
Abstract
Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second-generation genetic linkage map was constructed for bighead carp through a pseudo-testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non-normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two-tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well-defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker-assisted breeding in bighead carp.
Collapse
|
79
|
Cerqueira-Silva CBM, Santos ESL, Vieira JGP, Mori GM, Jesus ON, Corrêa RX, Souza AP. New microsatellite markers for wild and commercial species of Passiflora (Passifloraceae) and cross-amplification. APPLICATIONS IN PLANT SCIENCES 2014; 2:apps1300061. [PMID: 25202599 PMCID: PMC4103603 DOI: 10.3732/apps.1300061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/18/2013] [Indexed: 06/03/2023]
Abstract
PREMISE OF THE STUDY We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • METHODS AND RESULTS We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • CONCLUSIONS These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.
Collapse
|
80
|
Ding M, Jiang Y, Cao Y, Lin L, He S, Zhou W, Rong J. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development. Gene 2013; 535:273-85. [PMID: 24279997 DOI: 10.1016/j.gene.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 11/02/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
Abstract
Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.
Collapse
|
81
|
Bodare S, Tsuda Y, Ravikanth G, Uma Shaanker R, Lascoux M. Genetic structure and demographic history of the endangered tree species Dysoxylum malabaricum (Meliaceae) in Western Ghats, India: implications for conservation in a biodiversity hotspot. Ecol Evol 2013; 3:3233-48. [PMID: 24223264 PMCID: PMC3797473 DOI: 10.1002/ece3.669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 12/02/2022] Open
Abstract
The impact of fragmentation by human activities on genetic diversity of forest trees is an important concern in forest conservation, especially in tropical forests. Dysoxylum malabaricum (white cedar) is an economically important tree species, endemic to the Western Ghats, India, one of the world's eight most important biodiversity hotspots. As D. malabaricum is under pressure of disturbance and fragmentation together with overharvesting, conservation efforts are required in this species. In this study, range-wide genetic structure of twelve D. malabaricum populations was evaluated to assess the impact of human activities on genetic diversity and infer the species’ evolutionary history, using both nuclear and chloroplast (cp) DNA simple sequence repeats (SSR). As genetic diversity and population structure did not differ among seedling, juvenile and adult age classes, reproductive success among the old-growth trees and long distance seed dispersal by hornbills were suggested to contribute to maintain genetic diversity. The fixation index (FIS) was significantly correlated with latitude, with a higher level of inbreeding in the northern populations, possibly reflecting a more severe ecosystem disturbance in those populations. Both nuclear and cpSSRs revealed northern and southern genetic groups with some discordance of their distributions; however, they did not correlate with any of the two geographic gaps known as genetic barriers to animals. Approximate Bayesian computation-based inference from nuclear SSRs suggested that population divergence occurred before the last glacial maximum. Finally we discussed the implications of these results, in particular the presence of a clear pattern of historical genetic subdivision, on conservation policies.
Collapse
|
82
|
Escudero M, Weber JA, Hipp AL. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae). ANNALS OF BOTANY 2013; 112:515-26. [PMID: 23723260 PMCID: PMC3718211 DOI: 10.1093/aob/mct119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied. METHODS Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations. KEY RESULTS Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded. CONCLUSIONS These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world's largest angiosperm genera.
Collapse
|
83
|
Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 2013; 14:245. [PMID: 23577925 PMCID: PMC3637502 DOI: 10.1186/1471-2164-14-245] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 04/02/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Panax ginseng C. A. Meyer is one of the most widely used medicinal plants. Complete genome information for this species remains unavailable due to its large genome size. At present, analysis of expressed sequence tags is still the most powerful tool for large-scale gene discovery. The global expressed sequence tags from P. ginseng tissues, especially those isolated from stems, leaves and flowers, are still limited, hindering in-depth study of P. ginseng. RESULTS Two 454 pyrosequencing runs generated a total of 2,423,076 reads from P. ginseng roots, stems, leaves and flowers. The high-quality reads from each of the tissues were independently assembled into separate and shared contigs. In the separately assembled database, 45,849, 6,172, 4,041 and 3,273 unigenes were only found in the roots, stems, leaves and flowers database, respectively. In the jointly assembled database, 178,145 unigenes were observed, including 86,609 contigs and 91,536 singletons. Among the 178,145 unigenes, 105,522 were identified for the first time, of which 65.6% were identified in the stem, leaf or flower cDNA libraries of P. ginseng. After annotation, we discovered 223 unigenes involved in ginsenoside backbone biosynthesis. Additionally, a total of 326 potential cytochrome P450 and 129 potential UDP-glycosyltransferase sequences were predicted based on the annotation results, some of which may encode enzymes responsible for ginsenoside backbone modification. A BLAST search of the obtained high-quality reads identified 14 potential microRNAs in P. ginseng, which were estimated to target 100 protein-coding genes, including transcription factors, transporters and DNA binding proteins, among others. In addition, a total of 13,044 simple sequence repeats were identified from the 178,145 unigenes. CONCLUSIONS This study provides global expressed sequence tags for P. ginseng, which will contribute significantly to further genome-wide research and analyses in this species. The novel unigenes identified here enlarge the available P. ginseng gene pool and will facilitate gene discovery. In addition, the identification of microRNAs and the prediction of targets from this study will provide information on gene transcriptional regulation in P. ginseng. Finally, the analysis of simple sequence repeats will provide genetic makers for molecular breeding and genetic applications in this species.
Collapse
|
84
|
Leino MW, Boström E, Hagenblad J. Twentieth-century changes in the genetic composition of Swedish field pea metapopulations. Heredity (Edinb) 2013; 110:338-46. [PMID: 23169556 PMCID: PMC3607183 DOI: 10.1038/hdy.2012.93] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 01/08/2023] Open
Abstract
Landrace crops are formed by local adaptation, genetic drift and gene flow through seed exchange. In reverse, the study of genetic structure between landrace populations can reveal the effects of these forces over time. We present here the analysis of genetic diversity in 40 Swedish field pea (Pisum sativum L.) populations, either available as historical seed samples from the late nineteenth century or as extant gene bank accessions assembled in the late twentieth century. The historical material shows constant high levels of within-population diversity, whereas the extant accessions show varying, and overall lower, levels of within-population diversity. Structure and principal component analysis cluster most accessions, both extant and historical, in groups after geographical origin. County-wise analyses of the accessions show that the genetic diversity of the historical accessions is largely overlapping. In contrast, most extant accessions show signs of genetic drift. They harbor a subset of the alleles found in the historical accessions and are more differentiated from each other. These results reflect how, historically present metapopulations have been preserved during the twentieth century, although as genetically isolated populations.
Collapse
|
85
|
Singh S, Gupta S, Mani A, Chaturvedi A. Mining and gene ontology based annotation of SSR markers from expressed sequence tags of Humulus lupulus. Bioinformation 2012; 8:114-22. [PMID: 22368382 PMCID: PMC3283882 DOI: 10.6026/97320630008114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 12/03/2022] Open
Abstract
Humulus lupulus is commonly known as hops, a member of the family moraceae. Currently many projects are underway leading to the accumulation of voluminous genomic and expressed sequence tag sequences in public databases. The genetically characterized domains in these databases are limited due to non-availability of reliable molecular markers. The large data of EST sequences are available in hops. The simple sequence repeat markers extracted from EST data are used as molecular markers for genetic characterization, in the present study. 25,495 EST sequences were examined and assembled to get full-length sequences. Maximum frequency distribution was shown by mononucleotide SSR motifs i.e. 60.44% in contig and 62.16% in singleton where as minimum frequency are observed for hexanucleotide SSR in contig (0.09%) and pentanucleotide SSR in singletons (0.12%). Maximum trinucleotide motifs code for Glutamic acid (GAA) while AT/TA were the most frequent repeat of dinucleotide SSRs. Flanking primer pairs were designed in-silico for the SSR containing sequences. Functional categorization of SSRs containing sequences was done through gene ontology terms like biological process, cellular component and molecular function.
Collapse
|
86
|
Kiran JAP, Chakravarthi VP, Kumar YN, Rekha SS, Kruti SS, Bhaskar M. Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species. Bioinformation 2011; 6:179-82. [PMID: 21738309 PMCID: PMC3124796 DOI: 10.6026/97320630006179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/07/2011] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. ABBREVIATIONS SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames.
Collapse
|
87
|
Isokpehi RD, Simmons SS, Cohly HHP, Ekunwe SIN, Begonia GB, Ayensu WK. Identification of drought-responsive universal stress proteins in viridiplantae. Bioinform Biol Insights 2011; 5:41-58. [PMID: 21423406 PMCID: PMC3045048 DOI: 10.4137/bbi.s6061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genes encoding proteins that contain the universal stress protein (USP) domain are known to provide bacteria, archaea, fungi, protozoa, and plants with the ability to respond to a plethora of environmental stresses. Specifically in plants, drought tolerance is a desirable phenotype. However, limited focused and organized functional genomic datasets exist on drought-responsive plant USP genes to facilitate their characterization. The overall objective of the investigation was to identify diverse plant universal stress proteins and Expressed Sequence Tags (ESTs) responsive to water-deficit stress. We hypothesize that cross-database mining of functional annotations in protein and gene transcript bioinformatics resources would help identify candidate drought-responsive universal stress proteins and transcripts from multiple plant species. Our bioinformatics approach retrieved, mined and integrated comprehensive functional annotation data on 511 protein and 1561 ESTs sequences from 161 viridiplantae taxa. A total of 32 drought-responsive ESTs from 7 plant genera Glycine, Hordeum, Manihot, Medicago, Oryza, Pinus and Triticum were identified. Two Arabidopsis USP genes At3g62550 and At3g53990 that encode ATP-binding motif were up-regulated in a drought microarray dataset. Further, a dataset of 80 simple sequence repeats (SSRs) linked to 20 singletons and 47 transcript assembles was constructed. Integrating the datasets on SSRs and drought-responsive ESTs identified three drought-responsive ESTs from bread wheat (BE604157), soybean (BM887317) and maritime pine (BX682209). The SSR sequence types were CAG, ATA and AT respectively. The datasets from cross-database mining provide organized resources for the characterization of USP genes as useful targets for engineering plant varieties tolerant to unfavorable environmental conditions.
Collapse
|
88
|
Molnár I, Cifuentes M, Schneider A, Benavente E, Molnár-Láng M. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. ANNALS OF BOTANY 2011; 107:65-76. [PMID: 21036694 PMCID: PMC3002473 DOI: 10.1093/aob/mcq215] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 07/16/2010] [Accepted: 09/21/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Repetitive DNA sequences are thought to be involved in the formation of chromosomal rearrangements. The aim of this study was to analyse the distribution of microsatellite clusters in Aegilops biuncialis and Aegilops geniculata, and its relationship with the intergenomic translocations in these allotetraploid species, wild genetic resources for wheat improvement. METHODS The chromosomal localization of (ACG)(n) and (GAA)(n) microsatellite sequences in Ae. biuncialis and Ae. geniculata and in their diploid progenitors Aegilops comosa and Aegilops umbellulata was investigated by sequential in situ hybridization with simple sequence repeat (SSR) probes and repeated DNA probes (pSc119·2, Afa family and pTa71) and by dual-colour genomic in situ hybridization (GISH). Thirty-two Ae. biuncialis and 19 Ae. geniculata accessions were screened by GISH for intergenomic translocations, which were further characterized by fluorescence in situ hybridization and GISH. KEY RESULTS Single pericentromeric (ACG)(n) signals were localized on most U and on some M genome chromosomes, whereas strong pericentromeric and several intercalary and telomeric (GAA)(n) sites were observed on the Aegilops chromosomes. Three Ae. biuncialis accessions carried 7U(b)-7M(b) reciprocal translocations and one had a 7U(b)-1M(b) rearrangement, while two Ae. geniculata accessions carried 7U(g)-1M(g) or 5U(g)-5M(g) translocations. Conspicuous (ACG)(n) and/or (GAA)(n) clusters were located near the translocation breakpoints in eight of the ten translocated chromosomes analysed, SSR bands and breakpoints being statistically located at the same chromosomal site in six of them. CONCLUSIONS Intergenomic translocation breakpoints are frequently mapped to SSR-rich chromosomal regions in the allopolyploid species examined, suggesting that microsatellite repeated DNA sequences might facilitate the formation of those chromosomal rearrangements. The (ACG)(n) and (GAA)(n) SSR motifs serve as additional chromosome markers for the karyotypic analysis of UM genome Aegilops species.
Collapse
|
89
|
Sathishkumar R, Lakshmi PTV, Annamalai A, Arunachalam V. Mining of simple sequence repeats in the Genome of Gentianaceae. Pharmacognosy Res 2011; 3:19-29. [PMID: 21731391 PMCID: PMC3119266 DOI: 10.4103/0974-8490.79111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/25/2010] [Accepted: 04/07/2011] [Indexed: 11/06/2022] Open
Abstract
Simple sequence repeats (SSRs) or short tandem repeats are short repeat motifs that show high level of length polymorphism due to insertion or deletion mutations of one or more repeat types. Here, we present the detection and abundance of microsatellites or SSRs in nucleotide sequences of Gentianaceae family. A total of 545 SSRs were mined in 4698 nucleotide sequences downloaded from the National Center for Biotechnology Information (NCBI). Among the SSR sequences, the frequency of repeat type was about 429 -mono repeats, 99 -di repeats, 15 -tri repeats, and 2 --hexa repeats. Mononucleotide repeats were found to be abundant repeat types, about 78%, followed by dinucleotide repeats (18.16%) among the SSR sequences. An attempt was made to design primer pairs for 545 identified SSRs but these were found only for 169 sequences.
Collapse
|
90
|
Gao XG, Li HJ, Li YF, Sui LJ, Zhu B, Liang Y, Liu WD, He CB. Sixteen polymorphic simple sequence repeat markers from expressed sequence tags of the Chinese Mitten Crab Eriocheir sinensis. Int J Mol Sci 2010; 11:3035-8. [PMID: 21152289 PMCID: PMC2996744 DOI: 10.3390/ijms11083035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 12/30/2022] Open
Abstract
The Chinese mitten crab (Eriocheir sinensis) is an economically important aquaculture species in China. In this study, we developed and evaluated simple sequence repeat markers from expressed sequence tags of E. sinensis. Among the 40 wild E. sinensis individuals tested, 16 loci were polymorphic. The number of alleles per locus ranged from two to ten. The observed heterozygosity ranged from 0.0667 to 0.9667, whereas the expected heterozygosity ranged from 0.0661 to 0.9051. These markers have the potential for use in genetic studies of population structure and intraspecific variation in E. sinensis.
Collapse
|
91
|
Arias RS, Stetina SR, Tonos JL, Scheffler JA, Scheffler BE. Microsatellites reveal genetic diversity in Rotylenchulus reniformis populations. J Nematol 2009; 41:146-56. [PMID: 22661788 PMCID: PMC3365315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Indexed: 06/01/2023] Open
Abstract
Rotylenchulus reniformis is the predominant parasitic nematode of cotton in the Mid South area of the United States. Although variable levels of infection and morphological differences have been reported for this nematode, genetic variability has been more elusive. We developed microsatellite-enriched libraries for R. reniformis, produced 1152 clones, assembled 694 contigs, detected 783 simple sequence repeats (SSR) and designed 192 SSR-markers. The markers were tested on six R. reniformis cultures from four states, Texas, Louisiana, Mississippi and Georgia, in the USA. Based on performance we selected 156 SSR markers for R. reniformis from which 88 were polymorphic across the six reniform nematode populations, showing as the most frequent motif the dinucleotide AG. The polymorphic information content of the markers ranged from 0.00 to 0.82, and the percentage of multiallelic loci of the isolates was between 40.9 and 45.1%. An interesting finding in this study was the genetic variability detected among the three Mississippi isolates, for which 22 SSR markers were polymorphic. We also tested the level of infection of these isolates on six cotton genotypes, where significant differences were found between the Texas and Georgia isolates. Coincidentally, 62 polymorphic markers were able to distinguish these two populations. Further studies will be necessary to establish possible connections, if any, between markers and level of pathogenicity of the nematode. The SSR markers developed here will be useful in the assessment of the genetic diversity of this nematode, could assist in management practices for control of reniform nematode, be used in breeding programs for crop resistance, and help in detecting the origin and spread of this nematode in the United States.
Collapse
|
92
|
Arias RS, Ballard LL, Scheffler BE. UPIC: Perl scripts to determine the number of SSR markers to run. Bioinformation 2009; 3:352-60. [PMID: 19707300 PMCID: PMC2720665 DOI: 10.6026/97320630003352] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 04/06/2009] [Accepted: 04/11/2009] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED We introduce here the concept of Unique Pattern Informative Combinations (UPIC), a decision tool for the cost-effective design of DNA fingerprinting/genotyping experiments using simple-sequence/tandem repeat (SSR/STR) markers. After the first screening of SSR-markers tested on a subset of DNA samples, the user can apply UPIC to find marker combinations that maximize the genetic information obtained by a minimum or desirable number of markers. This allows a cost-effective planning of future experiments. We have developed Perl scripts to calculate all possible subset combinations of SSR markers, and determine based on unique patterns or alleles, which combinations can discriminate among all DNA samples included in a test. This makes UPIC an essential tool for optimizing resources when working with microsatellites. An example using real data from eight markers and 12 genotypes shows that UPIC detected groups of as few as three markers sufficient to discriminate all 12- DNA samples. Should markers for future experiments be chosen based only on polymorphism-information content (PIC), the necessary number of markers for discrimination of all samples cannot be determined. We also show that choosing markers using UPIC, an informative combination of four markers can provide similar information as using a combination of six markers (23 vs. 25 patterns, respectively), granting a more efficient planning of experiments. Perl scripts with documentation are also included to calculate the percentage of heterozygous loci on the DNA samples tested and to calculate three PIC values depending on the type of fertilization and allele frequency of the organism. AVAILABILITY Perl scripts are freely available for download from http://www.ars.usda.gov/msa/jwdsrc/gbru.
Collapse
|