76
|
Kulkarni C, Mondal AK, Das TK, Grinbom G, Tassinari F, Mabesoone MFJ, Meijer EW, Naaman R. Highly Efficient and Tunable Filtering of Electrons' Spin by Supramolecular Chirality of Nanofiber-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904965. [PMID: 31922628 DOI: 10.1002/adma.201904965] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/13/2019] [Indexed: 05/19/2023]
Abstract
Organic semiconductors and organic-inorganic hybrids are promising materials for spintronic-based memory devices. Recently, an alternative route to organic spintronic based on chiral-induced spin selectivity (CISS) is suggested. In the CISS effect, the chirality of the molecular system itself acts as a spin filter, thus avoiding the use of magnets for spin injection. Here, spin filtering in excess of 85% in helical π-conjugated materials based on supramolecular nanofibers at room temperature is reported. The high spin-filtering efficiency can even be observed in nanofibers assembled from mixtures of chiral and achiral molecules through chiral amplification effect. Furthermore and most excitingly, it is shown that both "up" and "down" orientations of filtered spins can be obtained in a single enantiopure system via the temperature-dependent helicity (P and M) inversion of supramolecular nanofibers. The findings showcase that materials based on helical noncovalently assembled systems are modular platforms with an emerging structure-property relationship for spintronic applications.
Collapse
|
77
|
Línzembold I, Czett D, Böddi K, Kurtán T, Király SB, Gulyás-Fekete G, Takátsy A, Lóránd T, Deli J, Agócs A, Nagy V. Study on the Synthesis, Antioxidant Properties, and Self-Assembly of Carotenoid-Flavonoid Conjugates. Molecules 2020; 25:E636. [PMID: 32024181 PMCID: PMC7038153 DOI: 10.3390/molecules25030636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/23/2022] Open
Abstract
Flavonoids and carotenoids possess beneficial physiological effects, such as high antioxidant capacity, anticarcinogenic, immunomodulatory, and anti-inflammatory properties, as well as protective effects against UV light. The covalent coupling of hydrophobic carotenoids with hydrophilic flavonoids, such as daidzein and chrysin, was achieved, resulting in new amphipathic structures. 7-Azidohexyl ethers of daidzein and chrysin were prepared in five steps, and their azide-alkyne [4 + 2] cycloaddition with pentynoates of 8'-apo-β-carotenol, zeaxanthin, and capsanthin afforded carotenoid-flavonoid conjugates. The trolox-equivalent antioxidant capacity against ABTS•+ radical cation and self-assembly of the final products were examined. The 1:1 flavonoid-carotenoid hybrids generally showed higher antioxidant activity than their parent flavonoids but lower than that of the corresponding carotenoids. The diflavonoid hybrids of zeaxanthin and capsanthin, however, were found to exhibit a synergistic enhancement in antioxidant capacities. ECD (electronic circular dichroism) and UV-vis analysis of zeaxanthin-flavonoid conjugates revealed that they form different optically active J-aggregates in acetone/water and tetrahydrofuran/water mixtures depending on the solvent ratio and type of the applied aprotic polar solvent, while the capsanthin derivatives showed no self-assembly. The zeaxanthin bis-triazole conjugates with daidzein and with chrysin, differing only in the position of a phenolic hydroxyl group, showed significantly different aggregation profile upon the addition of water.
Collapse
|
78
|
Exploring the Self-Assembled Tacticity in Aurophilic Polymeric Arrangements of Diphosphanegold(I) Fluorothiolates. Molecules 2019; 24:molecules24234422. [PMID: 31817055 PMCID: PMC6930485 DOI: 10.3390/molecules24234422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Despite the recurrence of aurophilic interactions in the solid-state structures of gold(I) compounds, its rational control, modulation, and application in the generation of functional supramolecular structures is an area that requires further development. The ligand effects over the aurophilic-based supramolecular structures need to be better understood. This paper presents the supramolecular structural diversity of a series of new 1,3-bis(diphenylphosphane)propane (dppp) gold(I) fluorinated thiolates with the general formula [Au2(SRF)2(μ-dppp)] (SRF = SC6F5 (1); SC6HF4-4 (2); SC6H3(CF3)2-3,5 (3); SC6H4CF3-2 (4); SC6H4CF3-4 (5); SC6H3F2-3,4 (6); SC6H3F2-3,5 (7); SC6H4F-2 (8); SC6H4F-3 (9); SC6H4F-4 (10)). These compounds were synthesized and characterized, and six of their solid-state crystalline structures were determined using single-crystal X-ray diffraction. In the crystalline arrangement, they form aurophilic-bridged polymers. In these systems, the changes in the fluorination patterns of the thiolate ligands tune the aurophilic-induced self-assembly of the compounds causing tacticity and chiral differentiation of the monomers. This is an example of the use of ligand effects on the tune of the supramolecular association of gold complexes.
Collapse
|
79
|
Dou X, Wu B, Liu J, Zhao C, Qin M, Wang Z, Schönherr H, Feng C. Effect of Chirality on Cell Spreading and Differentiation: From Chiral Molecules to Chiral Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38568-38577. [PMID: 31584794 DOI: 10.1021/acsami.9b15710] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The influence of chirality on cell behavior is closely related with relevant biological events; however, many recent studies only focus on the apparent chiral influence of supramolecular nanofibers and ignore the respective effects of molecular chirality and supramolecular chirality in biological processes. Herein, the inherent molecular and supramolecular chiral effects on cell spreading and differentiation are studied. Left-handed nanofibers (referring to supramolecular chirality) assembled from l-amino acid derivatives can enhance cell spreading and proliferation compared to flat l-surfaces (referring to molecular chirality). However, compared to the d-surfaces (referring to molecular chirality), right-handed nanofibers (referring to supramolecular chirality) derived from d-amino acid suppress cell spreading and proliferation, overturning the conventional view that a fibrous morphology generally enhances cell adhesion. The results directly suggest that the amplification of chirality from chiral molecules to chiral assemblies significantly enhances the effect on regulated cell behavior by supramolecular helical handedness. Moreover, cell differentiation is found to be chirality dependent. It suggests that both the l-amino acid derivatives and the left-handed fibers facilitate osteogenic differentiation. This study provides useful insight into understanding the origin of chiral expression from the molecular to the macroscopic level in nature.
Collapse
|
80
|
Guo Z, Wang Y, Zhang X, Gong R, Mu Y, Wan X. Solvent-Induced Supramolecular Assembly of a Peptide-Tetrathiophene-Peptide Conjugate. Front Chem 2019; 7:467. [PMID: 31316975 PMCID: PMC6611225 DOI: 10.3389/fchem.2019.00467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022] Open
Abstract
The assembly of a peptide-tetrathiophene-peptide (PTP) conjugate has been investigated in mixed solvents, which has different polarities by changing the solvent proportions. It was found that PTP can form fibers in THF/hexane solutions with 40–80%v of hexane. The fibers were stable and did not change on time. On the other hand, PTP formed ordered structures in a mixed solution with the water content from 40 to 60%v. For the as-prepared solutions, two nanostructures vesicles and parallelogram sheets were obtained. The parallelogram sheets could transform into vesicles on time. The fibers showed supramolecular chirality, however, there was no Cotton effect for vesicles and parallelogram sheets. UV-vis, FL, XRD, FT-IR, and CD spectra together with SEM, AFM, TEM were used to characterize the nanostructures and properties of the assemblies. Molecular packing mechanism was proposed based on the experimental data.
Collapse
|
81
|
Wang F, Ji W, Yang P, Feng CL. Inversion of Circularly Polarized Luminescence of Nanofibrous Hydrogels through Co-assembly with Achiral Coumarin Derivatives. ACS NANO 2019; 13:7281-7290. [PMID: 31150196 DOI: 10.1021/acsnano.9b03255] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Control over the handedness of circularly polarized luminescence (CPL) in supramolecular gels is of special significance in biology and optoelectronics; however, it still remains a great challenge to precisely and efficiently regulate the chirality of CPL. Herein, a chiral phenylalanine-derived hydrogelator and achiral coumarin derivatives can co-assemble into nanofibrous hydrogels with controllable chirality, and the handedness of CPL of these hydrogels can be efficiently inverted by coumarin derivatives through noncovalent interactions, which can be further tuned at will by incorporating metal ions into the co-assembly. The hydrogen bonds, coordination interactions, and steric hindrance are proved to be the crucial factors for the CPL inversion. This study provides feasible strategies to efficiently regulate the handedness of CPL through co-assembly, and these CPL materials may have potential applications in the fields of photoelectric devices, smart chiroptical materials, and biological systems.
Collapse
|
82
|
Dudek M, Machalska E, Oleszkiewicz T, Grzebelus E, Baranski R, Szcześniak P, Mlynarski J, Zajac G, Kaczor A, Baranska M. Chiral Amplification in Nature: Studying Cell-Extracted Chiral Carotenoid Microcrystals via the Resonance Raman Optical Activity of Model Systems. Angew Chem Int Ed Engl 2019; 58:8383-8388. [PMID: 30974037 DOI: 10.1002/anie.201901441] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Indexed: 12/11/2022]
Abstract
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β-carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α-carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant-and-soldier behavior, a small number of chiral sergeants (α-carotene or astaxanthin) force the achiral soldier molecules (β- or 11,11'-[D2 ]-β-carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co-crystallization of chiral and achiral analogues.
Collapse
|
83
|
Stefanelli M, Magna G, Zurlo F, Caso FM, Di Bartolomeo E, Antonaroli S, Venanzi M, Paolesse R, Di Natale C, Monti D. Chiral Selectivity of Porphyrin-ZnO Nanoparticle Conjugates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:12077-12087. [PMID: 30835426 DOI: 10.1021/acsami.8b22749] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recognition of enantiomers is one of the most arduous challenges in chemical sensor development. Although several chiral systems exist, their effective exploitation as the sensitive layer in chemical sensors is hampered by several practical implications that hinder stereoselective recognition in solid state. In this paper, we report a new methodology to efficiently prepare chiral solid films, by using a hybrid material approach where chiral porphyrin derivatives are grafted onto zinc oxide nanoparticles. Circular dichroism (CD) evidences that the solid-state film of the material retains supramolecular chirality due to porphyrin interactions, besides an additional CD feature in correspondence of the absorbance of ZnO (375 nm), suggesting the induction of chirality in the underlying zinc oxide nanoparticles. The capability of hybrid material to detect and recognize vapors of enantiomer pairs was evaluated by fabricating gas sensors based on quartz microbalances. Chiral films of porphyrin on its own were used for comparison. The sensor based on functionalized nanostructures presented a remarkable stereoselectivity in the recognition of limonene enantiomers, whose ability to intercalate in the porphyrin layers makes this terpene an optimal chiral probe. The chiroptical and stereoselective properties of the hybrid material confirm that the use of porphyrin-capped ZnO nanostructures is a viable route for the formation of chiral selective surfaces.
Collapse
|
84
|
Randazzo R, Gaeta M, Gangemi CMA, Fragalà ME, Purrello R, D'Urso A. Chiral Recognition of L- and D- Amino Acid by Porphyrin Supramolecular Aggregates. Molecules 2018; 24:molecules24010084. [PMID: 30591641 PMCID: PMC6337589 DOI: 10.3390/molecules24010084] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/27/2022] Open
Abstract
We report of the interactions between four amino acids lysine (Lys), arginine (Arg), histidine (His), and phenylalanine (Phe) with the J-aggregates of the protonated 5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin H4TPPS. Several aspects of these self-assembled systems have been analyzed: (i) the chiral transfer process; (ii) the hierarchical effects leading to the aggregates formation; and, (iii) the influence of the amino acid concentrations on both transferring and storing chiral information. We have demonstrated that the efficient control on the J-aggregates chirality is obtained when all amino acids are tested and that the chirality transfer process is under hierarchical control. Finally, the chiral porphyrin aggregates obtained exhibit strong chiral inertia.
Collapse
|
85
|
Wang J, Zhang SS, Xu X, Fei KX, Peng YX. A Surface Mediated Supramolecular Chiral Phenomenon for Recognition of l- and d-Cysteine. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1027. [PMID: 30544706 PMCID: PMC6315486 DOI: 10.3390/nano8121027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/04/2023]
Abstract
Chiral recognition is of fundamental importance in chemistry and life sciences and the principle of chiral recognition is instructive in chiral separation and enantioselective catalysis. Non-chiral Ag nanoparticles (NPs) conjugated with chiral cysteine (Cys) molecules demonstrate strong circular dichroism (CD) responses in the UV range. The optical activities of the l-/d-Cys capped Ag NPs are associated with the formation of order arrangements of chiral molecules on the surface of Ag NPs, which are promoted by the electrostatic attraction and hydrogen bonding interaction. The intensity of the chiroptical response is related to the total surface area of Ag NPs in the colloidal solution. The anisotropy factor on the order of 10-2 is acquired for Ag NPs with the size varying from ~2.4 to ~4.5 nm. We demonstrate a simple and effective method for the fabrication of a quantitative chiral sensing platform, in which mesoporous silica coated Ag nanoparticles (Ag@mSiO₂) were used as chiral probes for recognition and quantification of Cys enantiomers.
Collapse
|
86
|
Miao T, Yin L, Cheng X, Zhao Y, Hou W, Zhang W, Zhu X. Chirality Construction from Preferred π-π Stacks of Achiral Azobenzene Units in Polymer: Chiral Induction, Transfer and Memory. Polymers (Basel) 2018; 10:polym10060612. [PMID: 30966646 PMCID: PMC6404070 DOI: 10.3390/polym10060612] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 01/05/2023] Open
Abstract
The induction of supramolecular chirality from achiral polymers has been widely investigated in composite systems consisting of a chiral guest, achiral host, and solvents. To further study and understand the process of chirality transfer from a chiral solvent or chiral molecules to an achiral polymer backbone or side-chain units, an alternative is to reduce the components in the supramolecular assembled systems. Herein, achiral side-chain azobenzene (Azo)-containing polymers, poly(6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate) (PAzoMA), with different Mns, were synthesized by atom transfer radical polymerization (ATRP). Preferred chirality from supramolecular assembled trans-Azo units of PAzoMAs is successfully induced solely by the neat limonene. These aggregates of the polymers in limonene solution were characterized by circular dichroism (CD), UV-vis spectra, and dynamic light scattering (DLS) under different temperatures. The temperature plays an important role in the course of chiral induction. Meanwhile, supramolecular chirality can be constructed in the solid films of the achiral side-chain Azo-containing polymers that were triggered by limonene vapors. Also, it can be erased after heated above the glass transition temperature (Tg) of the polymer, and recovered after cooling down in the limonene vapors. A chiroptical switch can be built by alternately changing the temperature. The solid films show good chiral memory behaviors. The current results will facilitate studying the mechanism of chirality transfer induced by chiral solvent and improve potential application possibilities in chiral film materials.
Collapse
|
87
|
Liu G, Li X, Sheng J, Li PZ, Ong WK, Phua SZF, Ågren H, Zhu L, Zhao Y. Helicity Inversion of Supramolecular Hydrogels Induced by Achiral Substituents. ACS NANO 2017; 11:11880-11889. [PMID: 29140680 DOI: 10.1021/acsnano.7b06097] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Probing the supramolecular chirality of assemblies and controlling their handedness are closely related to the origin of chirality at the supramolecular level and the development of smart materials with desired handedness. However, it remains unclear how achiral residues covalently bonded to chiral amino acids can function in the chirality inversion of supramolecular assemblies. Herein, we report macroscopic chirality and dynamic manipulation of chiroptical activity of hydrogels self-assembled from phenylalanine derivatives, together with the inversion of their handedness achieved solely by exchanging achiral substituents between oligo(ethylene glycol) and carboxylic acid groups. This helicity inversion is mainly induced by distinct stacking mode of the self-assembled building blocks, as collectively confirmed by scanning electron microscopy, circular dichroism, crystallography, and molecular dynamics calculations. Through this straightforward approach, we were able to invert the handedness of helical assemblies by merely exchanging achiral substituents at the terminal of chiral gelators. This work not only presents a feasible strategy to achieve the handedness inversion of helical nanostructures for better understanding of chiral self-assembly process in supramolecular chemistry but also facilities the development of smart materials with controllable handedness in materials science.
Collapse
|
88
|
Liu G, Zhao Y. Switching between Phosphorescence and Fluorescence Controlled by Chiral Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1700021. [PMID: 28932661 PMCID: PMC5604387 DOI: 10.1002/advs.201700021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 01/24/2017] [Indexed: 06/02/2023]
Abstract
Helical self-assembly plays a unique role in regulating the localized excitations of π functional systems, which can also bring highly multi-scale orders, and show a special effect to tune the energy of electronics, vibration, and rotation of molecules. Due to controllable and dynamic property of chiral self-assembly, highly ordered and helical assemblies can be obtained to exhibit amplification effect and fascinating photophysical properties in photoluminescence. However, an effective control of singlet-triplet emissive switching in a unimolecular platform remains a great challenge. Recently, switchable singlet-triplet emission induced by helical self-assembly in a unimolecular platform has been developed. By taking advantage of the helical self-assembly driven by multiple intermolecular hydrogen bonding and strong π-π stacking interactions, reversible switching between fluorescence and phosphorescence could be efficiently achieved both in N,N-dimethylformamide/H2O solution and the solid state. The results will inspire the design of other intelligent luminescent materials through chiral self-assembly and be valuable for interdisciplinary development of supramolecular self-assembly and related materials science.
Collapse
|
89
|
Chen C, Chen J, Wang T, Liu M. Fabrication of Helical Nanoribbon Polydiacetylene via Supramolecular Gelation: Circularly Polarized Luminescence and Novel Diagnostic Chiroptical Signals for Sensing. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30608-30615. [PMID: 27760461 DOI: 10.1021/acsami.6b10392] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four kinds of commercially available diacetylene (DA) monomers with different chain length, diacetylene positions were fabricated into the organogels via mixing with a chaperone gelator, an amphiphilic l-histidine ester derivative LHC18 that can help the nongelator to form gels. Upon photo irradiation with a 254 nm UV light, the white gels underwent topochemical reaction and turned into red or blue gels, depending on the DA monomer structures. Through the gel formation, the molecular chirality of LHC18 can be transferred to the polydiacetylene (PDA) and helical nanoribbon structures were obtained. The blue gels showed a clear response to stimuli such as pH variation, heating, mechanical force and organic solvents, and turned into red gels. Interestingly, the blue gel showed strong supramolecular chirality, which could be turned off or changed into red phase CD signals. Such changes in chiroptical signals depended on the external heating and various organic solvents. In the case of heating, the blue gel changed into red one, which showed both strong CD signals and circularly polarized luminescence. In the case of organic solvents, although all the tested solvents made the blue gel to red, only some of them could keep the CD signals, thus providing additional sensing capacity of the PDA system. So far, the blue-to-red color change and the "fluorescence on" was widely used as colorimetric and fluorogenic diagnostic signals for PDA, here we showed an additional chiroptical diagnostic signal for a more precise sensing by using the helical PDA.
Collapse
|
90
|
Liu C, Yang D, Jin Q, Zhang L, Liu M. A Chiroptical Logic Circuit Based on Self-Assembled Soft Materials Containing Amphiphilic Spiropyran. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:1644-1649. [PMID: 26677055 DOI: 10.1002/adma.201504883] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 10/25/2015] [Indexed: 06/05/2023]
Abstract
A chiral logic circuit is proposed based on the multiple chiroptical responsiveness of a supramolecular gel material. The gel is fabricated by mixing a chiral gelator and a spiropyran derivative. Chiral responsiveness including the chiral switch and the logic gate is realized through the combined chirality transfer, photochromism, and acidichromism of the system.
Collapse
|
91
|
Lv K, Lin L, Wang X, Zhang L, Guo Y, Lu Z, Liu M. Significant Chiral Signal Amplification of Langmuir Monolayers Probed by Second Harmonic Generation. J Phys Chem Lett 2015; 6:1719-1723. [PMID: 26263339 DOI: 10.1021/acs.jpclett.5b00472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
With the development of the nonlinear optical technique such as SHG (second harmonic generation), the in situ measurements of the chirality in the monolayers at the air/water interface have become possible. However, when performing the SHG measurement of the chirality in a monolayer, it is still a great challenge to obtain the chiral signals with a good S/N (signal-to-noise) ratio. In this Letter, interfacial assemblies with induced supramolecular chirality were used to amplify the weak chiral SHG signals from the monolayers at the air/water interface. Tetrakis(4-sulfonatophenyl) porphyrin (TPPS) J aggregates were used as the subphase, and when chiral amphiphilic molecules were spread on it, chiral domains of the amphiphile/TPPS J aggregates were formed and then significantly amplified chiral signals that otherwise could not be detected. Moreover, the sign of the DCE (degree of chiral excess) changed with the chirality of the amphiphilic molecules, thus providing a possible way to obtain the absolute chiral information in situ in the monolayers.
Collapse
|
92
|
Hermann K, Pratumyot Y, Polen S, Hardin AM, Dalkilic E, Dastan A, Badjić JD. Twisted baskets. Chemistry 2015; 21:3550-5. [PMID: 25604262 DOI: 10.1002/chem.201406492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/09/2022]
Abstract
A preparative procedure for obtaining a pair of twisted molecular baskets, each comprising a chiral framework with either right ((P)-1syn) or left ((M)-1syn) sense of twist and six ester groups at the rim has been developed and optimized. The racemic (P/M)-1syn can be obtained in three synthetic steps from accessible starting materials. The resolution of (P/M)-1syn is accomplished by its transesterification with (1R,2S,5R)-(-)-menthol in the presence of a Ti(IV) catalyst to give diastereomeric 8(P) and 8(M). It was found that dendritic-like cavitands 8(P) and 8(M), in CD2Cl2, undergo self-inclusion ((1)H NMR spectroscopy) with a menthol moiety occupying the cavity of each host. Importantly, the degree of inclusion of the menthol group was ((1)H NMR spectroscopy) found to be greater in the case of 8(P) than 8(M). Accordingly, it is suggested that different folding characteristic of 8(P) and 8(M) ought to affect the physicochemical characteristics of the hosts to permit their effective separation by column chromatography. The absolute configuration of 8(P)/8(M), encompassing right- and left-handed "cups", was determined with the exciton chirality method and also verified in silico (DFT: B3LYP/TZVP). Finally, the twisted baskets are strongly fluorescent due to three naphthalene chromophores, having a high fluorescence quantum yield within the rigid framework of 8(P)/8(M).
Collapse
|
93
|
Zhang L, Qin L, Wang X, Cao H, Liu M. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6959-6964. [PMID: 24687217 DOI: 10.1002/adma.201305422] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Supramolecular chirality, which arises from the nonsymmetric spatial arrangement of components in the self-assembly systems, has gained great attention owing to its relation to the natural biological structures and the possible new functions in advanced materials. During the self-assembling process, both chiral and achiral components are possible to form chiral nanostructures. Therefore, it becomes an important issue how to fabricate these molecular components into chiral nanostructures. Furthermore, once the chiral nanostructure is obtained, will it show new functions that simple component molecule could not? In this research news, we report our recent development in the regulation of chiral nanostructures in soft gels or vesicle materials. We have further developed several new functions pertaining to the soft gel materials, which single chiral molecules could not perform, such as the chiroptical switch, chiral recognition and the asymmetry catalysis.
Collapse
|
94
|
Lv K, Zhang L, Lu W, Liu M. Control of supramolecular chirality of nanofibers and its effect on protein adhesion. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18878-18884. [PMID: 25302778 DOI: 10.1021/am504702p] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chiral nanostructure, such as the double helix of DNA and α-helix of protein, plays an important role in biochemistry and material sciences. In the organism system, the biological entities always exhibit homochirality and show preference toward one specific enantiomer. How the opposite enantiomers will affect the chirality of the supramolecular nanostructures and their interactions with the biological molecules remains an important issue. In this study, two gelators bearing amphiphilic l-glutamide and d- or l-pantolactone (abbreviated as DPLG and LPLG) were designed, and their self-assembly behavior and interactions with proteins were investigated. It was found that both of the gelators could form gels in the mixed solvent of ethanol and water, and the corresponding gels were characterized with UV-vis spectroscopy, circular dichroism, Fourier transform infrared spectroscopy, X-ray diffraction, and atomic force microscopy. Although both gels formed nanofiber structures and showed many similar properties, their supramolecular chiralities were opposite, which was determined by the chirality of the terminal group. The chirality of the nanofibrous structure is found to influence the protein adhesion significantly. Quartz crystal microbalance technique was used to investigate the adsorption of human serum albumin on the nanofibrous structures. It was revealed that supramolecular nanostructure of DPLG exhibited stronger adhesive ability than that of LPLG, while there is no clear difference at a molecular level. This suggested that slightly different interactions between d and l substances with the biological molecules could be amplified when they formed chiral nanostructures. Molecular dynamic simulations were performed to verify the interaction between the two gelators and protein molecules. A possible model was proposed to explain the interaction between the nanofibers and the proteins.
Collapse
|