1
|
Abstract
Integrin-associated protein (IAP or CD47) is a receptor for thrombospondin family members, a ligand for the transmembrane signaling protein SIRP alpha and a component of a supramolecular complex containing specific integrins, heterotrimeric G proteins and cholesterol. Peptides containing a VVM motif in the C-terminal domain of thrombospondins are agonists for CD47, initiating heterotrimeric Gi protein signaling that augments the functions of integrins of the beta 1, beta 2 and beta 3 families, thus modulating a range of cell activities including platelet activation, cell motility and adhesion, and leukocyte adhesion, migration and phagocytosis.
Collapse
|
Review |
24 |
654 |
2
|
Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol 2001; 75:1565-70. [PMID: 11152531 PMCID: PMC114064 DOI: 10.1128/jvi.75.3.1565-1570.2001] [Citation(s) in RCA: 366] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antiserum or heparin indicated that pseudovirions were shifted on the cell surface from a heparin-sensitive into a heparin-resistant mode of binding, possibly involving a secondary receptor. Alpha-6 integrin is not a receptor for HPV-33 pseudoinfection.
Collapse
|
research-article |
24 |
366 |
3
|
Hu H, Tomasiewicz H, Magnuson T, Rutishauser U. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 1996; 16:735-43. [PMID: 8607992 DOI: 10.1016/s0896-6273(00)80094-x] [Citation(s) in RCA: 301] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transplantation studies have been used to show that tangential migration of olfactory bulb interneuron precursors is retarded in NCAM-mutant mice, and that this defect reflects loss of NCAM polysialic acid (PSA). In contrast, radial migration of cells within the bulb did not require PSA. Reciprocal transplantations between wild-type and mutant mice have revealed that the mutation affects the in vivo migration environment in the subventricular zone, and not movement of individual cells. However, in vitro migration of the cells into a PSA-negative collagen matrix environment was also PSA dependent. The surprisingly similar results obtained in the in vivo and in vitro environments is consistent with the observation that migration of subventricular cells occurs as streams of closely apposed cells in which the PSA-positive cells appear to serve as their own migration substrate.
Collapse
|
|
29 |
301 |
4
|
Schmitt-Ulms G, Legname G, Baldwin MA, Ball HL, Bradon N, Bosque PJ, Crossin KL, Edelman GM, DeArmond SJ, Cohen FE, Prusiner SB. Binding of neural cell adhesion molecules (N-CAMs) to the cellular prion protein. J Mol Biol 2001; 314:1209-25. [PMID: 11743735 DOI: 10.1006/jmbi.2000.5183] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify molecular interaction partners of the cellular prion protein (PrP(C)), we sought to apply an in situ crosslinking method that maintains the microenvironment of PrP(C). Mild formaldehyde crosslinking of mouse neuroblastoma cells (N2a) that are susceptible to prion infection revealed the presence of PrP(C) in high molecular mass (HMM) protein complexes of 200 to 225 kDa. LC/MS/MS analysis identified three murine splice-variants of the neural cell adhesion molecule (N-CAM) in the complexes, which isolate with caveolae-like domains (CLDs). Enzymatic removal of N-linked sugar moieties did not disrupt the complexes, arguing that the interaction of PrP with N-CAM occurs through amino acid side-chains. Additionally, similar levels of PrP/N-CAM complexes were found in N2a and prion-infected N2a (ScN2a) cells. With the use of an N-CAM-specific peptide library, the PrP-binding site was determined to comprise beta-strands C and C' within the two consecutive fibronectin type III (FNIII) modules found in proximity of the membrane-attachment site of N-CAM. As revealed by in situ crosslinking of PrP deletion mutants, the PrP face of the binding site is formed by the N terminus, helix A (residues 144-154) and the adjacent loop region of PrP. N-CAM-deficient (N-CAM(-/-)) mice that were intracerebrally challenged with scrapie prions succumbed to disease with a mean incubation period of 122 (+/-4.1, SEM) days, arguing that N-CAM is not involved in PrP(Sc) replication. Our findings raise the possibility that N-CAM may join with PrP(C) in carrying out some as yet unidentified physiologic cellular function.
Collapse
|
|
24 |
269 |
5
|
Yamagata M, Weiner JA, Sanes JR. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 2002; 110:649-60. [PMID: 12230981 DOI: 10.1016/s0092-8674(02)00910-8] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A major determinant of specific connectivity in the central nervous system is that synapses made by distinct afferent populations are restricted to particular laminae in their target area. We identify Sidekick (Sdk)-1 and -2, homologous transmembrane immunoglobulin superfamily molecules that mediate homophilic adhesion in vitro and direct laminar targeting of neurites in vivo. sdk-1 and -2 are expressed by nonoverlapping subsets of retinal neurons; each sdk is expressed by presynaptic (amacrine and bipolar) and postsynaptic (ganglion) cells that project to common inner plexiform (synaptic) sublaminae. Sdk proteins are concentrated at synaptic sites, and Sdk-positive synapses are restricted to the 2 (of > or =10) sublaminae to which sdk-expressing cells project. Ectopic expression of Sdk in Sdk-negative cells redirects their processes to a Sdk-positive sublamina. These results implicate Sdks as determinants of lamina-specific synaptic connectivity.
Collapse
|
|
23 |
261 |
6
|
Johne B, Fagerhol MK, Lyberg T, Prydz H, Brandtzaeg P, Naess-Andresen CF, Dale I. Functional and clinical aspects of the myelomonocyte protein calprotectin. Mol Pathol 1997; 50:113-23. [PMID: 9292145 PMCID: PMC379605 DOI: 10.1136/mp.50.3.113] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
review-article |
28 |
249 |
7
|
Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 2003; 11:691-701. [PMID: 12791257 DOI: 10.1016/s0969-2126(03)00096-0] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neural cell adhesion molecule (NCAM) promotes axonal outgrowth, presumably through an interaction with the fibroblast growth factor receptor (FGFR). NCAM also has a little-understood ATPase activity. We here demonstrate for the first time a direct interaction between NCAM (fibronectin type III [F3] modules 1 and 2) and FGFR1 (Ig modules 2 and 3) by surface plasmon resonance (SPR) analysis. The structure of the NCAM F3 module 2 was determined by NMR and the module was shown by NMR to interact with the FGFR1 Ig module 3 and ATP. The NCAM sites binding to FGFR and ATP were found to overlap and ATP was shown by SPR to inhibit the NCAM-FGFR binding, indicating that ATP probably regulates the NCAM-FGFR interaction. Furthermore, we demonstrate that the NCAM module was able to induce activation (phosphorylation) of FGFR and to stimulate neurite outgrowth. In contrast, ATP inhibited neurite outgrowth induced by the module.
Collapse
|
|
22 |
206 |
8
|
|
Review |
29 |
204 |
9
|
Simson R, Sheets ED, Jacobson K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys J 1995; 69:989-93. [PMID: 8519998 PMCID: PMC1236327 DOI: 10.1016/s0006-3495(95)79972-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Techniques such as single-particle tracking allow the characterization of the movements of single or very few molecules. Features of the molecular trajectories, such as confined diffusion or directed transport, can reveal interesting biological interactions, but they can also arise from simple Brownian motion. Careful analysis of the data, therefore, is necessary to identify interesting effects from pure random movements. A method was developed to detect temporary confinement in the trajectories of membrane proteins that cannot be accounted for by Brownian motion. This analysis was applied to trajectories of two lipid-linked members of the immunoglobulin superfamily, Thy-1 and a neural cell adhesion molecule (NCAM 125), and the results were compared with those for simulated random walks. Approximately 28% of the trajectories for both proteins exhibited periods of transient confinement, which were < 0.07% likely to arise from random movements. In contrast to these results, only 1.5% of the simulated trajectories showed confined periods. Transient confinement for both proteins lasted on average 8 s in regions that were approximately 280 nm in diameter.
Collapse
|
research-article |
30 |
194 |
10
|
Veillette A, Thibaudeau E, Latour S. High expression of inhibitory receptor SHPS-1 and its association with protein-tyrosine phosphatase SHP-1 in macrophages. J Biol Chem 1998; 273:22719-28. [PMID: 9712903 DOI: 10.1074/jbc.273.35.22719] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHPS-1 (or SIRP) is a member of the immunoglobulin (Ig) superfamily abundantly expressed in neurons and other cell types. Within its cytoplasmic domain, it possesses at least two immunoreceptor tyrosine-based inhibitory motifs, which are targets for tyrosine phosphorylation and mediate the recruitment of SHP-2, an Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase. Since other immunoreceptor tyrosine-based inhibitory motifs-containing receptors have critical roles in the negative regulation of hemopoietic cell functions, we wanted to examine the expression of SHPS-1 in cells of hematological lineages. By analyzing a panel of hemopoietic cell lines, evidence was provided that SHPS-1 is abundantly expressed in macrophages and, to a lesser extent, in myeloid cells. No expression was detected in T-cell or B-cell lines. Expression of SHPS-1 could also be documented in normal ex vivo peritoneal macrophages. Further studies showed that SHPS-1 was an efficient tyrosine phosphorylation substrate in macrophages. However, unlike in non-hemopoietic cells, tyrosine-phosphorylated SHPS-1 in macrophages associated primarily with SHP-1 and not SHP-2. Finally, our analyses allowed us to identify several isoforms of SHPS-1 in mouse cells. In part, this heterogeneity was due to differential glycosylation of SHPS-1. Additionally, it was caused by the production of at least two distinct shps-1 transcripts, coding for SHPS-1 polypeptides having different numbers of Ig-like domains in the extracellular region. Taken together, these findings indicate that SHPS-1 is likely to play a significant role in macrophages, at least partially as a consequence of its capacity to recruit SHP-1.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Antigens, Differentiation
- Bone Marrow Cells/enzymology
- Bone Marrow Cells/metabolism
- Cell Line
- Cloning, Molecular
- DNA, Complementary
- Glycosylation
- Intracellular Signaling Peptides and Proteins
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/metabolism
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Neural Cell Adhesion Molecule L1
- Neural Cell Adhesion Molecules/chemistry
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Phosphorylation
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Immunologic
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Sequence Homology, Amino Acid
- Tyrosine/metabolism
Collapse
|
|
27 |
178 |
11
|
Johnson CP, Fujimoto I, Rutishauser U, Leckband DE. Direct Evidence That Neural Cell Adhesion Molecule (NCAM) Polysialylation Increases Intermembrane Repulsion and Abrogates Adhesion. J Biol Chem 2005; 280:137-45. [PMID: 15504723 DOI: 10.1074/jbc.m410216200] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular force measurements quantified the impact of polysialylation on the adhesive properties both of membrane-bound neural cell adhesion molecule (NCAM) and of other proteins on the same membrane. These results show quantitatively that NCAM polysialylation increases the range and magnitude of intermembrane repulsion. The repulsion is sufficient to overwhelm both homophilic NCAM and cadherin attraction at physiological ionic strength, and it abrogates the protein-mediated intermembrane adhesion. The steric repulsion is ionic strength dependent and decreases substantially at high monovalent salt concentrations with a concomitant increase in the intermembrane attraction. The magnitude of the repulsion also depends on the amount of polysialic acid (PSA) on the membranes, and the PSA-dependent attenuation of cadherin adhesion increases with increasing PSA-NCAM:cadherin ratios. These findings agree qualitatively with independent reports based on cell adhesion studies and reveal the likely molecular mechanism by which NCAM polysialylation regulates cell adhesion and intermembrane space.
Collapse
|
|
20 |
174 |
12
|
Sohnle PG, Hunter MJ, Hahn B, Chazin WJ. Zinc-reversible antimicrobial activity of recombinant calprotectin (migration inhibitory factor-related proteins 8 and 14). J Infect Dis 2000; 182:1272-5. [PMID: 10979933 DOI: 10.1086/315810] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2000] [Revised: 07/10/2000] [Indexed: 11/03/2022] Open
Abstract
Recombinant calprotectin, consisting of 2 individual peptide chains also called migration inhibitory factor-related protein (MRP)-8 and MRP14, was tested for antimicrobial activity in a Candida albicans growth inhibition assay. Both chains contain HEXXH zinc-binding sites and might be expected to manifest zinc-reversible, antimicrobial activity similar to that of native calprotectin. When tested alone, neither MRP8 nor MRP14 showed activity in the Candida growth assay. A synthetic 20-amino acid peptide containing the HEXXH sequence of MRP14, along with a nearby HHH sequence, was also inactive in this assay. However, equimolar concentrations of MRP8 and MRP14 demonstrated a potent growth inhibitory effect that was reversible by 30 microM zinc. Truncated MRP14 (missing the C-terminal GHHHKPGLGEGTP tail) used in combination with MRP8 demonstrated zinc-reversible activity that was somewhat less than that with complete MRP14. These results suggest that intact calprotectin, consisting of a heterodimer of MRP8 and MRP14, is necessary to form a zinc-binding site capable of inhibiting microbial growth.
Collapse
|
|
25 |
167 |
13
|
Hortsch M. Structural and functional evolution of the L1 family: are four adhesion molecules better than one? Mol Cell Neurosci 2000; 15:1-10. [PMID: 10662501 DOI: 10.1006/mcne.1999.0809] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
Review |
25 |
167 |
14
|
Schaefer AW, Kamiguchi H, Wong EV, Beach CM, Landreth G, Lemmon V. Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 1999; 274:37965-73. [PMID: 10608864 DOI: 10.1074/jbc.274.53.37965] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
L1-mediated axon growth involves intracellular signaling, but the precise mechanisms involved are not yet clear. We report a role for the mitogen-activated protein kinase (MAPK) cascade in L1 signaling. L1 physically associates with the MAPK cascade components Raf-1, ERK2, and the previously identified p90(rsk) in brain. In vitro, ERK2 can phosphorylate L1 at Ser(1204) and Ser(1248) of the L1 cytoplasmic domain. These two serines are conserved in the L1 family of cell adhesion molecules, also being found in neurofascin and NrCAM. The ability of ERK2 to phosphorylate L1 suggests that L1 signaling could directly regulate L1 function by phosphorylation of the L1 cytoplasmic domain. In L1-expressing 3T3 cells, L1 cross-linking can activate ERK2. Remarkably, the activated ERK localizes with endocytosed vesicular L1 rather than cell surface L1, indicating that L1 internalization and signaling are coupled. Inhibition of L1 internalization with dominant-negative dynamin prevents activation of ERK. These results show that L1-generated signals activate the MAPK cascade in a manner most likely to be important in regulating L1 intracellular trafficking.
Collapse
|
|
26 |
155 |
15
|
Walmod PS, Kolkova K, Berezin V, Bock E. Zippers Make Signals: NCAM-mediated Molecular Interactions and Signal Transduction. Neurochem Res 2004; 29:2015-35. [PMID: 15662836 DOI: 10.1007/s11064-004-6875-z] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neural cell adhesion molecule, NCAM, is involved in multiple cis- and trans-homophilic interactions (NCAM binding to NCAM) thereby facilitating cell-cell adhesion through the formation of zipper-like NCAM-complexes. NCAM is also involved in heterophilic interactions with a number of proteins and extracellular matrix molecules. Some of these heterophilic interactions are mutually exclusive, and some interfere with or are dependent on homophilic NCAM interactions. Furthermore, both homo- and heterophilic interactions are modulated by posttranslational modifications of NCAM. Heterophilic NCAM-interactions initiate several intracellular signal transduction pathways ultimately leading to biological responses involving cellular differentiation, proliferation, migration and survival. Both homo- and heterophilic NCAM-interactions can be mimicked by synthetic peptides, which can induce NCAM-like signalling, and in vitro and in vivo studies suggest that such NCAM mimetics may be used for the treatment of neurodegenerative disorders.
Collapse
|
|
21 |
148 |
16
|
Su XD, Gastinel LN, Vaughn DE, Faye I, Poon P, Bjorkman PJ. Crystal structure of hemolin: a horseshoe shape with implications for homophilic adhesion. Science 1998; 281:991-5. [PMID: 9703515 DOI: 10.1126/science.281.5379.991] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Hemolin, an insect immunoglobulin superfamily member, is a lipopolysaccharide-binding immune protein induced during bacterial infection. The 3.1 angstrom crystal structure reveals a bound phosphate and patches of positive charge, which may represent the lipopolysaccharide binding site, and a new and unexpected arrangement of four immunoglobulin-like domains forming a horseshoe. Sequence analysis and analytical ultracentrifugation suggest that the domain arrangement is a feature of the L1 family of neural cell adhesion molecules related to hemolin. These results are relevant to interpretation of human L1 mutations in neurological diseases and suggest a domain swapping model for how L1 family proteins mediate homophilic adhesion.
Collapse
|
|
27 |
145 |
17
|
Kiselyov VV, Soroka V, Berezin V, Bock E. Structural biology of NCAM homophilic binding and activation of FGFR. J Neurochem 2005; 94:1169-79. [PMID: 16045455 DOI: 10.1111/j.1471-4159.2005.03284.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this review, we analyse the structural basis of the homophilic interactions of the neural cell adhesion molecule (NCAM) and the NCAM-mediated activation of the fibroblast growth factor receptor (FGFR). Recent structural evidence suggests that NCAM molecules form cis-dimers in the cell membrane through a high affinity interaction. These cis-dimers, in turn, mediate low affinity trans-interactions between cells via formation of either one- or two-dimensional 'zippers'. We provide evidence that FGFR is probably activated by NCAM very differently from the way by which it is activated by FGFs, reflecting the different conditions for NCAM-FGFR and FGF-FGFR interactions. The affinity of FGF for FGFR is approximately 10(6) times higher than that of NCAM for FGFR. Moreover, in the brain NCAM is constantly present on the cell surface in a concentration of about 50 microm, whereas FGFs only appear transiently in the extracellular environment and in concentrations in the nanomolar range. We discuss the structural basis for the regulation of NCAM-FGFR interactions by two molecular 'switches', polysialic acid (PSA) and adenosine triphosphate (ATP), which determine whether NCAM acts as a signalling or an adhesion molecule.
Collapse
|
|
20 |
138 |
18
|
Soroka V, Kolkova K, Kastrup JS, Diederichs K, Breed J, Kiselyov VV, Poulsen FM, Larsen IK, Welte W, Berezin V, Bock E, Kasper C. Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 2004; 11:1291-301. [PMID: 14527396 DOI: 10.1016/j.str.2003.09.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neural cell adhesion molecule, NCAM, mediates Ca(2+)-independent cell-cell and cell-substratum adhesion via homophilic (NCAM-NCAM) and heterophilic (NCAM-non-NCAM molecules) binding. NCAM plays a key role in neural development, regeneration, and synaptic plasticity, including learning and memory consolidation. The crystal structure of a fragment comprising the three N-terminal Ig modules of rat NCAM has been determined to 2.0 A resolution. Based on crystallographic data and biological experiments we present a novel model for NCAM homophilic binding. The Ig1 and Ig2 modules mediate dimerization of NCAM molecules situated on the same cell surface (cis interactions), whereas the Ig3 module mediates interactions between NCAM molecules expressed on the surface of opposing cells (trans interactions) through simultaneous binding to the Ig1 and Ig2 modules. This arrangement results in two perpendicular zippers forming a double zipper-like NCAM adhesion complex.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
137 |
19
|
Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 2004; 24:4197-204. [PMID: 15115815 PMCID: PMC6729275 DOI: 10.1523/jneurosci.0436-04.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/07/2004] [Accepted: 03/07/2004] [Indexed: 11/21/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.
Collapse
|
research-article |
21 |
137 |
20
|
Lisé MF, El-Husseini A. The neuroligin and neurexin families: from structure to function at the synapse. Cell Mol Life Sci 2006; 63:1833-49. [PMID: 16794786 PMCID: PMC11136152 DOI: 10.1007/s00018-006-6061-3] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Proper brain connectivity and neuronal transmission rely on the accurate assembly of neurotransmitter receptors, cell adhesion molecules and several other scaffolding and signaling proteins at synapses. Several new exciting findings point to an important role for the neuroligin family of adhesion molecules in synapse development and function. In this review, we summarize current knowledge of the structure of neuroligins and neurexins, their potential binding partners at the synapse. We also discuss their potential involvement in several aspects of synapse development, including induction, specificity and stabilization. The implication of neuroligins in cognitive disorders such as autism and mental retardation is also discussed.
Collapse
|
Review |
19 |
137 |
21
|
Neiiendam JL, Køhler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E. An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 2004; 91:920-35. [PMID: 15525346 DOI: 10.1111/j.1471-4159.2004.02779.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Neural Cell Adhesion Molecule (NCAM) plays a crucial role in development of the central nervous system regulating cell migration, differentiation and synaptogenesis. NCAM mediates cell-cell adhesion through homophilic NCAM binding, subsequently resulting in activation of the fibroblast growth factor receptor (FGFR). NCAM-mediated adhesion leads to activation of various intracellular signal transduction pathways, including the Ras-mitogen activated protein kinase (MAPK) and the phosphatidylinositol-3-kinase (PI3K)-Akt pathways. A synthetic peptide derived from the second fibronectin type III module of NCAM, the FGL peptide, binds to and induces phosphorylation of FGFR without prior homophilic NCAM binding. We here present evidence that this peptide is able to mimic NCAM heterophilic binding to the FGFR by inducing neuronal differentiation as reflected by neurite outgrowth through a direct interaction with FGFR in primary cultures of three different neuronal cell types all expressing FGFR subtype 1: dopaminergic, hippocampal and cerebellar granule neurons. Moreover, we show that the FGL peptide promotes neuronal survival upon induction of cell death in the same three cell types. The effects of the FGL peptide are shown to depend on activation of FGFR and the MAPK and PI3K intracellular signalling pathways, all three kinases being necessary for the effects of FGL on neurite outgrowth and neuronal survival.
Collapse
|
|
21 |
133 |
22
|
Weller S, Gärtner J. Genetic and clinical aspects of X-linked hydrocephalus (L1 disease): Mutations in the L1CAM gene. Hum Mutat 2002; 18:1-12. [PMID: 11438988 DOI: 10.1002/humu.1144] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
L1 disease is a group of overlapping clinical phenotypes including X-linked hydrocephalus, MASA syndrome, spastic paraparesis type 1, and X-linked agenesis of corpus callosum. The patients are characterized by hydrocephalus, agenesis or hypoplasia of corpus callosum and corticospinal tracts, mental retardation, spastic paraplegia, and adducted thumbs. The responsible gene, L1CAM, encodes the L1 protein which is a member of the immunoglobulin superfamily of neuronal cell adhesion molecules. The L1 protein is expressed in neurons and Schwann cells and seems to be essential for nervous system development and function. The patients' gene mutations are distributed over the functional protein domains. The exact mechanisms by which these mutations cause a loss of L1 protein function are unknown. There appears to be a relationship between the patients' clinical phenotype and the genotype. Missense mutations in extracellular domains or mutations in cytoplasmic regions cause milder phenotypes than those leading to truncation in extracellular domains or to non-detectable L1 protein. Diagnosis of patients and carriers, including prenatal testing, is based on the characteristic clinical picture and DNA mutation analyses. At present, there is no therapy for the prevention or cure of patients' neurological disabilities.
Collapse
|
Review |
23 |
128 |
23
|
Dickson TC, Mintz CD, Benson DL, Salton SRJ. Functional binding interaction identified between the axonal CAM L1 and members of the ERM family. J Cell Biol 2002; 157:1105-12. [PMID: 12070130 PMCID: PMC2173555 DOI: 10.1083/jcb.200111076] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A yeast two-hybrid library was screened using the cytoplasmic domain of the axonal cell adhesion molecule L1 to identify binding partners that may be involved in the regulation of L1 function. The intracellular domain of L1 bound to ezrin, a member of the ezrin, radixin, and moesin (ERM) family of membrane-cytoskeleton linking proteins, at a site overlapping that for AP2, a clathrin adaptor. Binding of bacterial fusion proteins confirmed this interaction. To determine whether ERM proteins interact with L1 in vivo, extracellular antibodies to L1 were used to force cluster the protein on cultured hippocampal neurons and PC12 cells, which were then immunolabeled for ERM proteins. Confocal analysis revealed a precise pattern of codistribution between ERMs and L1 clusters in axons and PC12 neurites, whereas ERMs in dendrites and spectrin labeling remained evenly distributed. Transfection of hippocampal neurons grown on an L1 substrate with a dominant negative ERM construct resulted in extensive and abnormal elaboration of membrane protrusions and an increase in axon branching, highlighting the importance of the ERM-actin interaction in axon development. Together, our data indicate that L1 binds directly to members of the ERM family and suggest this association may coordinate aspects of axonal morphogenesis.
Collapse
|
research-article |
23 |
121 |
24
|
Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T, Hosooka T, Akira S, Kasuga M. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J 2000; 19:6721-31. [PMID: 11118207 PMCID: PMC305898 DOI: 10.1093/emboj/19.24.6721] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transmembrane glycoprotein SHPS-1 binds the protein tyrosine phosphatase SHP-2 and serves as its substrate. Although SHPS-1 has been implicated in growth factor- and cell adhesion-induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS-1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild-type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion-induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras-extracellular signal-regulated kinase signaling pathway and of c-Jun N-terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS-1 plays crucial roles in integrin-mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor-induced activation of mitogen-activated protein kinases.
Collapse
|
research-article |
25 |
120 |
25
|
Schwanzel-Fukuda M, Crossin KL, Pfaff DW, Bouloux PM, Hardelin JP, Petit C. Migration of luteinizing hormone-releasing hormone (LHRH) neurons in early human embryos. J Comp Neurol 1996; 366:547-57. [PMID: 8907364 DOI: 10.1002/(sici)1096-9861(19960311)366:3<547::aid-cne12>3.0.co;2-m] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Luteinizing hormone-releasing hormone (LHRH) neurons originate in the epithelium of the medial olfactory pit and migrate from the nose into the forebrain along nerve fibers rich in neural cell adhesion molecule (N-CAM). The present study examined the ontogenesis of LHRH neurons in early human embryos and found a similar pattern of development of these cells. Luteinizing hormone-releasing hormone immunoreactivity was detected in the epithelium of the medial olfactory pit and in cells associated with the terminal-vomeronasal nerves at 42 (but not 28-32) days of gestation. The migration route of these cells was examined with antibodies to N-CAM and antibodies to polysialic acid (PSA-N-CAM), which is present on N-CAM at certain stages of development. Neural cell adhesion molecule immunoreactivity was present in a population of cells in the olfactory placode of the earliest embryos examined (28-32 days) and later (42 and 46 days) throughout the migration route. The PSA-N-CAM immunoreactivity was not detected until 42 days and was present in a more limited distribution in nerve fibers streaming from the olfactory placode and along the caudal part of the migration route below the forebrain. Previous studies have indicated that the highly sialated form of N-CAM is less adhesive. The PSA-N-CAM may therefore facilitate the migration of these cells by lessening the adhesion between the fascicles that make up the migration route, expediting the passage of cords of LHRH cells between the nerve fibers as these cells move toward the brain.
Collapse
|
|
29 |
120 |